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Structural Estimation of FCC Bidder Valuatlon

Abstract

We modify a method introduced in Fox and Bajari (2013) which structurally estimates the
deterministic component of bidder valuations in FCC spectrum auctions based on a pairwise
stability condition: two bidders cannot exchange two licenses in a way that increases the sum of
their valuations, and we apply it to C block auctions 5, 22, 35 and 58. Our modifications improve
the fit of the Fox and Bajari (2013)’s estimator especially in similar auctions involving big bidders.
We find that there is evidence of significant “cross-auction” complementaries between licenses

sold in a particular auction and those already owned by these endowed bidders.

JEL Codes :D44, D45, H82, L82

Keywords auction theory, structuralefficiency estimation pairwise stability,
telecommunications, regulation, spectrum auctions, welfare, FCC, broadiaat bidders,

geographic complementarities
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1.! Introduction

Prior to the passing of the Omnibus Budget Reconciliatiorbf¢Congressn 1993, the Federal
Communications Commission (FC@lied on comparative hearings and lotteries to allocate
civilian rights touse noroverlappingsegments of the electromagnetigectrum in the United
States The Omnibus Budget Reconciliath Act gave the FC@he additional Oauthority to use
competitive bidding to choose from among two or more mutually exclusive applications for an
initial license@ Since 1994, theCChasconsistently exercised this authority by makéngtions

the primarymeans odistributing spectrum license#/hile these auctions aigenerallyopen to

any eligibk company or individuathe FCC imposgadditional rules and access restrictions
fulfill the Congressional mandatesapportingsmaller ounderrepresentdsidder. The Balanced
Budget Act of 1997 officiated the use of auctions as the defamdithod of spectrum liceas
allotment; itrequiredthatthe FCC to use auctions to resolve mutually exclusive applications for

initial licensesunlessspecificexemptiondave been legally grant@@dCC 2017)

These FCC auctionare ascendingauctionswhich Klemperer (1999) defines as atlocative
process where Othe price is successively raised until only one bidder remains, and that bidder wins
the object athe final priced All auctions generally sell to the bidder with the highest signal.

Insofar as an efficient auction can be described as one which allocates a resource to the individual

2 Omnibus Budget Reconciliation Act (1993), Sec. 6002

® These bidders are defined in the FCC's rules and regulations located in Title 47 of the Code of Federal Regulations
(CFR) as “designed entities.” Designed entities are “small businesses (including businesses owned by members of
minority groups and/or women), rural telephone companies, and eligible rural service providers.” The specific
requirements to qualify as a “designed entity” are outlined clearly in CFR 1.2110.

* Balanced Budget Act (1997), Title 111

® Klemperer (2007), pp 14.
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able to extract the highest marginal revenue from that particulaf god an auction which is
ascending, as comparedttoose which ar®utch, firstprice sealedid or secongrice seabid
types, more greatly incentivizes players to bid their true values as Sigleaigperer 1999 Smith
1987; Milgrom 1987) FCC auctions are designedaltocate spectrum licensas a relatively

efficient manner.

The FCCalso employsa simultaneous multipleound (SMR) auctiorstructure designed to
adequatelyxapture the value of complementaries among licenses sold in an aBationer et al
(2009) explained that, as a result of these complementariesaihef a collection of spectrum
licenses for adjacergreas can be higher than the sumhef valuesfor separate licensesO and
vidders with value complementarities may have to bid more for some lithasabey are worth
individually, which may result in losses when only a subset is @oho address thishe
simultaneous feature d¥CC auctiors allows for all licenses toremain availablefor bidding
throughout the entire auctigmocess. Biddersan vary theibidding strategieacross their entire

desired set of licenseecording tqublic bids placed bgtherbidders

Auction efficiency is important because it affects socioeconomic outcomies2016 Broadband
Progress Report, the Federal Communications Commission (FCC) highlights that a digital divide

remains prevaleritThere are twavaysauction efficiency canhelp to reduce this digital divide

® Myerson (1981) and Bulow and Roberts (1989).

"Klemperer (1999) argues that Oit is a clearly dominant strategy to stay in the bidding until the price reaches your
value [E] the nextto-last person will drop out when her value is reaches, so the person with the highest value will
win at the price equab the value of the secodtghest bidderO. Based on such an auction design, Otruth telling is a
dominant strategy equilibriumO.

& Brunner et al (2009) argues that geographical complementaries arise because “if a telecommunications company is

already operating in a certain area, the cost of operating in adjacent areas tends to be lower [...] and consumers may

value larger networks that reduce the cost and inconvenience of roaming.”

® 2016 Broadband Progress Report, FCC, 2016, p. 3.
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Firstly, auction efficiency allowfor theeffective differentiatiorof spectrum accessdésbased on

varied demand. For example,pricing can be adjusted to allow faccess to advanced
telecommunications capability from rural areas without necessarily underpricing spectrum for
those living in urban areas. Secondly removing the need for licensesales, an efficierguction
eliminates transaction costs associatéti secondary marke{€oase 1959and hence improves
overallaccess tdaelecommunication. Connolly, Lee and Tan (2016) argues that equal access to
telecommunications is important to the extent that it allows for more equal access to economic
opportunitiesand Ounequal access to such technological tools can maintain or even worsen existing

inequalitiesO

There are economic theories which posit that simultaneous English awaimgnsnder specific
circumstances, fail to be perfectly efficiel@ome potentiabourcesof inefficiencies include:
bidder intimidatory collusion and predatory pricif@aillaud and Jehiel 1998; Engelbrecht
Wiggansand Kahn 2005§) unilateral demand reductido order todrive prices lower (Ausubel
and Cramton 2002 Cramton and Schwartz 200Qjfficulties in attaining aggregates of licenses

which have complementari@¢Cramton1998).

9 particularly disappointing were the results of the 1997 auction of supplemental wireless communication service
spectrum, in which many licenses sold for only nominal amounts of money (Gruley 1997). The auction, which had
been expected to raise $1.8 billion, raised only $13.6 million (Economist 1997). A common feature of these
disappointing auctions is that a relatively small number of bidders competed against each other on a relatively larger
number of items.

1 Ausubel and Cramton (2002) pp. 0 argues “In auctions where bidders pay the market-clearing price for items won,
large bidders have an incentive to reduce demand in order to pay less for their winnings. This incentive creates an
inefficiency in multiple-item auctions.”

12 Cramton (1998) pp. 8 argues “Another source of inefficiency in the spectrum auctions comes from the difficulties
firms may have in piecing together efficient sets of licenses.”



Structural Estimation of FCC Bidder Valuatlon

To studythesepossible efficiencyariations, Fox and Bajari (2013roposed the use &

maximum rank correlation estimator first introduced in Fox (2010examinethe determinants
of a bidderOs valuation of a licensecording toFox and Bajari (2013)their new approach of
efficiency evaluation improved upon existing economialgsis d spectrum auctions in these

crucial way®it

1.! structurally estimates bidder valuation functions in a spectrum auction, enabling qualitative
measurement of different valuation components;

2. does not determine a bidderOs valuation usingofiist conditionwhich implicitly
assumes that biagse already good reflections of valuations;

3.!I allows for the inclusion of unobserved heterogeneity in bidder valuations;

4. does not use bidaluesdata;

5. accommodatealarge choice set for all bidders;

6.! examines pairwise stability which has a definite solution even though a noncooperative,
dynamic game has multiple Nash equilibria; and

7.! measures complementarities among licenses and does not assume additive separability in

valuation.

Fox and Bajar(2013) estthis estimatoiin a singleBroadband Personal Communication Services
(PCS) C Block aucibn in 19951996 A recent extension to Fox and BajariOs wisrkhe

application of their model to the AWS(2008) Auction in Canada by Hyndman d&arameter

3 Hyndman and Parmeter (2015), pp. 31 concludes “... in the absence of the set-aside was a spectrum allocation with
no new entry and pre-existing market shares of the incumbents being largely unchanged. In this case, our results
suggest an efficiency loss on the order of $400-500 million.”
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(2015), in whichthe authors findhat in the absence of a setide rule, upwards of $400 million

in efficiency loss could have been avoidé&tie objective obur paper is to extend the work of
Fox and Bajari (2013) bgpplying the samestimatotto four other PCS C Block auctions hddg

the FCChetween 1996 and 200@Qur work contributes directly to the empirical analysis first
initiated by Fox and Bajari (2013). Furthermori, attempts toimprove upon the structural
estimation of bidder valuation proposedtbgmby including a dummy variable which, we argue,
couldrelate tocrossauctioncomplementaries between licenges currentauction andicenses
thata bidder already own$n addiion to reducing bias in unobserved heterogeneity, our new
estimation allows for the analysis ofthe differences in valuation between big and small players

within an auction.
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2.! Background of Chosen Auctions

Broadband PCS refers to spectrum in the 1850 MHz to 1990 MHz range that are most commonly
used in mobile voice and data services, including cell phone, text messaging and Internet services.
Broadband PCS spectrum is similar in utility to the 700 MHz Service, Advanced Wireless Service,
800 MHz Cellular and Specialized Mobile Radio spectrums. Broadband PCS auctions originated
in 1993 when the FCC became aware of the need for rulemaking for the 1850 MHz to 1990 MHz
spectrum. The FCC announced service rules for Broadband PCS and licensed 120 MHz of
spectrum in 1993, with the remaining 20 MHz of unlicensed spectrum in the 1910 — 1915 and 1990

— 1995 MHz range later becoming available under Block G for licensed used in 2015.

1910 1930 1950 1970 1990

Iﬁnﬁ“i TR

Unlicensed A
20 MHz e

I

1860 1880 1900 1920 1940

Channel Bandwidth
Block (MHz) Frequencles

30 1895-1910, 1975-1990

Cc1 15 1902.5-1910, 1982.5-1990

c2 15 1895-1902.5, 1975-1982.5

C3 10 1895-1900, 1975-1980

C4 10 1900-1905, 1980-1985

C5 10 1905-1910, 1985-1990 |

Note: Some of the original C Block licenses (Originally 30 Mz each) were split into multiplelicenses (C-1 and C-2, 15 MIz; C-3, C-4,

and C-5 10 MHz).

Figure 1. Block Classifications by the FCC based on Spectrum Frequencies
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Our paper applies Fox (2010aPsnaximum rank correlation estimatty determine the relative
significance of different components of bidder valuation for Auction 5, Auction 22, Auction 35
and Auction 58 We have chosen to specifically examine only C-block auctions so as to hold
constant both the type of spectrum being auctioned and the scope of the market being considered.

It is particularly important that the latter is unchanged because part of Fox and Bajari (2013)’s
structural estimatioof bidder valuation is based on witkanction complementaries.or example,

in Auction 5, this withirauction complementaries would be that amonrgldck frequencies. If

we had not taken out-Block license from Auction 38hen estimated values wafithin-auction
complementaries in Auction 35 could include those betweBio€k and FBlock licensesince

a bidder could bid and win licenses from both blocks within the same auctitvesecases, the

relative importance of withkauction complementaries in Auction 35 would be artificially inflated

Number | Number Total
Auction Dates of of Blocks Auction
Licenses | Bidders Revenue
December 18" 1995 —
5 May 61 1996 493 89 C $13.4B
March 23 1999 — April
22 15" 1009 294 56 C $410M
December 12" 2000 —
35 January 261 2001 355 33 C $13.9B
January 26" 2005 —
58 February 151 2005 173 19 C $1.86B

Table 1. Information on the four PCS Broadband Auctions examined in this paper
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A.! Auction No. 5(19951996

Fox and Bajari (2013) apptheir model solely on Auction 5. In this auctiati,thelicenses were
specifically reserved fdoidders that are classified as entrepreneurs, and to qualify as such, these
bidders were typically small businesses required to have gross revenues of not more than $125
million in each of the previous two years and total assets of not more than $560 atifhoint in

time when the bidders file their FCC Form I7Ridders were eligible for a bidding credit, which

is a subsidy that depends on the average gross revenues for the previous three years of the bidder
and instdiment payments were offered. Adbof 255 bidders qualified for the auction, of which,

89 of them won all 493 licenses in a total of 184 rounds, raising $lBohbThe largest single

winner was NextWave Personal Communication, winning 56 licenses for a total bild2"™

B.! Auction No. 22(1999)

Auction No. 22 was a Broadband PCS C, D, E and F Block auction that began on 23 March 1999
and closed on 15 April 1999, offering a total of 347 licenses (206 30 MHz C block, 133 15MHz C
block, six 10 MHz E block and two 10MHz Bock) for tenyear terns. The C and F block
spectrum licenses were classified as EntrepreneurOs Blocks and specifically reserved for those who
met the entrepreneur requirements, similar to Auction No. 5. Bidding credits were offered only for
the C and Fitense blocks and no indt@lent payment plans were offered. A total of 67 bidders

qualified for the auction, of which, 57 of them won 302 licenses in a total of 78 rounds, raising

In this case, the FCC Form 175, which requires bidders to disclose basic information about themselves, was due
on November 6, about a month before the commencement of the auction.

15 Kwerel and Rosston (2000) points out that all “top three bidders in the auction (NextWave, Pocket and GWI) have
declared bankruptcy and the fourth largest bidder (BDPCS) failed to make the initial down payment. Their bids
represented 75% of the $10 billion in C block net bids [in Auction 5].”

! 11
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$533 million. Of these 57 winning bidders, 48 of them are small biddeedafdjest single winner

was VCook Inlet/VoiceStream PCS, winning 28 licenses for a total of $192 million.

C.!I Auction No. 3520002001)

Auction No. 35 was a Broadband PCS C and F Block auction that began on 12 December 2000
and closed on 26 Jan 20@ifering a total of 422 licenses (312 10 MHz C block, 43 15MHz C
block and 67 10MHz F block) for a tgrear term. These license blocks were divided according to
the nature of bidding (open or closedarge biddensand its tiers (Tier 1 blocks were thosih

population more than 2.5 million and Tier 2 blocks were the remaining), which is shown in Table

2.
Channel Eligibility Status
Block

Tier 1 Tier 2
Cl Open | Closed
2 Open | Closed
C3 Closed | Closed
ca Open | Closed

c5 Open | Open

Table 2. Breakdown of all C blocks based on tiered eligibility status (“Open” or “Close™)
!

!
Some licenses were reserved only to entrepreneurs in OclosedO bidding, while the rest were open

to all bidders in Oopen biddi@gimilar to Auction No. 5 and 22, bidding credits were offered to

small businesses that satisfied stipulated gross revenues requirements and no instalment payment
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plans were offered. A total of 87 bidders qualified for the auction, of which, 35 of them2&on
licenses in a total of 101 rounds, raising $17.6 billion. The largest single winner was Cellco

Partnership, winning 113 licenses for a total of $8.8 billion.

D. Auction No. 58(2005)

Auction No. 58 was a Broadband PCS A, C, D, E and F Bhockion that began on 26 January
2005 and closed on 15 February 2005, offering a total of 242 licenses (two 30 MHz A block, 188
10 and 15MHz C block, eleven 10 MHz D block, 20 10 MHz E block and 21 10MHz F block) for
tenyear terns. These license blocks wedivided according to the nature of bidding (open or
closed) andheir population size (Tier 1 blocks were those with population more than 2.5 million

and Tie 2 blocks were the remaining).

Specific C block licenses were reserved for entrepreneurdifygqua requirements similar to
previous auctions) in a OclosedO bidding, while the rest are available to all bidders in OopenO
bidding. Bidding credits were offered only for the C and F license blocks and no instalment
payment plans were offered. A totdl35 bidders qualified for the auction, of which, 24 of them

won 217 licenses in a total of 91 rounds, raising $2.3 billion. The largest single winner Cellco

Partnership, winning 26 licenses for a total of $365 million.
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3.! Structural Estimation of Bidder Valuation

A.! Fox and Bajari (2013)®sluationFunctiort®

We now introduce the component of a bidderOs profit function as proposed in Fox and Bajari
(2013). Bidder®f an auction are defined as:

" #P8 ()
and licenses for sale are noted as

RS (.
Any subset of licenses can be rewritten as

RS (.
where.'/ , . A bidder! Os valuation of any set of licensés dependent on its own bidder
characteristics and also characteristics os¢hlicenses within the package, and will be written

generally a9, 2.'3 This can bexpresseas

oug - - 0:(.) " '0;(1$.)5 %7 6,5 Ny 81g™

whereO4 (! $.") is parameterized by a finite vector of parameﬁam')nstant within each auction
and is depended deterministically on characteristics of the bxdaled the set of licenses being
considered.. 6; represents thadditive separabléxed effect which captures the component of
valuation assigned to the each license common to all bidder$; arsla private idiosyncratic

value specific to licenseand biddex not known to the researcher.

1° See Fox and Bajari (2013) Sec. I1 B for a list of assumptions and their corresponding justifications implicit
in their model.
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In particular, Fox and Bajari (2013hase for0;(! $.") to be described as follows
) 0-(1$.)" '9. <=>?@2y,;  ABA35 '9-<@=BDBEA 9¢<GHIJ=>DBEA'

where =>?@is the populationthat a bidder is eligible to bid for based treir eligibility
downpaymentABA is the population size of each licen@®=BDBEAIs a variable which
measures the total withisuction geographicalcomplementaries of license se$ and
GHIJ=>DBEAIis a similar variable which mea®ss the total withirauction easef-travel

complementaries of license set

Fox and Bajari (2013)imd that initial eligibility strongly correlates to the size of the bidder and
the likelihood of the bidder winning a licenseitilal eligibility is thereforechosen as a variable to
interact with}; ABA in order to @ capture [the]assortivematching between bidders with
higher values and packages of licenses with more popul@tioc@=BDBEAaNdGHIJ=>DBEA

are nonlinear and neadditive constructions of license and bidder characteristics as f»llow

3)! @=BDBEA 'Sy AB&'Z%W'

and

To( . quv WXKEKK\K] 'K26_ZWK] WK[IKZ73],
To(, guy WXKKK\K] 'KZ$_ZWK] WK[IKZ73|

(4)! GHIJ=>DBEA 'Yy |ABA

" Fox and Bajari (2013), pp. 10
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wherea?b(g is the geographical distance between the populateighted centroid of each
license, andGH?2BH?@?t/% a=bG?cIG?BH*3 is the total number of airavel from

geographical region of licenséo geographical region ditensgj in a given yeat®

B.! Omission of Travel Complementaries

Our paper has omitted ti@&HIJ=>DBEAn the application of Fox and Bajari (2013)Os structural
estimation and pairwise stabiligstimatoron Aucion 5, 22, 35 and 58 his is justified orthree
grounds Firstly, we found no reliable and complete data on American travel for periods after 1998
to accurately measure travel frequencies. Secoedlgtingair travel data are based on locales
which do not correspond exactb the geographical boundaries of spectrum licenses; this means
thatit is possible for a license located 100 kilometers from the airport to have the same travel
complementaries measure as one located right next to the airport, ldstly Fox and Bajar
omittedGHIJ=>DBEAand reapplied their amended model on the same dataset, i.e. Auction 5,
there was no significawhangan maximumpairwise stabilityscore attained this implied thata

large part of the variation I@HIJ=>DBEAwhich relates to variations in bidder valuation was

18 An intuitive way to think about geographical complementaries is to think of it as a cumulative total of licenses in a
set, each multiplied by a respective weight. This weight gives a proxy of the valuation of that license derived from its
“geographic synergy” with other licenses that same set. For example, we would expect a similar license to be of
highest “geographic synergy” when this license is owned in conjunction with all other licenses and of lowest
“geographic synergy” if this license is owned in isolation. As explained by Fox and Bajari (2013), the complementary
proxy can be motivated as follows. “Consider a mobile phone user in a home market i. That mobile phone user
potentially wants to use his phone in all other markets. He is more likely to use his phone if there are more people to
visit, so his visit rate is increasing in the population of the other license, j. The user is less likely to visit j if j is far
from his home market i, so we divide by the distance between i and j. We care about all users equally, so we multiply
the representative user in i’s travel experience by the population of i.

19 With the inclusion of GHIJ=>DBEA&Fox and Bajari found a maximum rank correlation estimate of 0.960. Without
GHIJ=>DBE#&he estimate was 0.956.
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already explained by variations in eitler?@2).;  ABA3 or @=BDBEAand we do not lose

much explanatory power when omittiGiHIJ=>DBEA

C.| Replacement ofligibility with downpayment

Our papehaschosen to replace>?@expressed in termd population in Fox and Bajari (2013),
with the downpaymentamountaBdc ; requiredto attain that=>?@In Auction 5, the required
downpayment amournt calculated asl.5 cents per MHmdividual for any license, and all
licenses are fixed at 30MHAs such, in Auction 5aBdc ; and=>?{@are related to each other by
a fixed scalar multiple. Howevean subsequent auctiorisjs difficult to corvert the downpayment
number into a population figurln theselaterauctions, licenses asegmented into 10Mh25Mhz
and 30MHz blocksand there is no way to knoswantefor which licenses a bidder is putting his
downpayment. fis replacement ovariable is appropriate for u® compare across auctions,

without losing the intended effeataptured bynitial eligibility in the first place

D.! Maodified ValuationFunction

While Fox and Bajari (2013)Os descriptioe&fg$.") is consistent in providing a deterministic

structural estimation for bidder valuation in Auction 5, we anticipate that it would have difficulties
accommodating open auctions which involve bigger players. This is because Fox and Bajari (2013)
considers wiiin-auction geographical complementaries, but not those complementaries between
licenses sold in the particular auction and those already owned by the mdélection 5 which

is open only to small bidders, the impact of these eaostion complementags is likely to be
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small, and could therefore adsorbed into thprivate exogenougrmh g without creating much

problem

Our paper posits that such a setup woludvever have loer maximum pairwise stability
matching when used to estimate valuation functions in auatens/ing bigger playersThis is
because, #sed on Fox and Bajari (2013)Os model, a big bidder who does not buy much from an
auction but nonetheless values a license because it complementsofriheir pre-existing

spectrum ownership would be assigned a low bid valu@itjgh$ ."). If the big biddeeventually

wins the license following a high bid that accuratedignals the high crossuction
complementaries, Fox and Bajari (2013)Os scoring estimator would still likely count such an

outcome as pairwise unstable.

Expanding the existin@=BDBEAvariable to includehe setof licenses already owned by the
bidderwould most accuratelgndogenizéhe crossauction complementaries. However, while this
is conceptually simplat is empiricallyextremelydifficult. This is because prauction ownership
is amixedresult of bids in multiple past auctions, private pusgsan secondary spectrum license
marketsandcorporate mergers or acquisiti@al of which aredifficult to accuratelykeep track
of. Insteadwe introduce a dummy variablg ¢ which is bidder and licensespecificas a proxy

term indicating the existence of signifi¢anossauction complementarielt.is defined as follow

g Imloopdg'rsop 's'nlo’mttulvpwxyswad
IX'wtz' pul{Inlupmt¢nlo’vgpolz
(6)! kig " '

tz}pg~Ixp
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The modified valuation function then becomes

(6)! 0-(1$.") " '9. aBdc ', ABA35 '9.<@=BDBE 97 kig""

in which he crossauction complementaries dumrkyg'can be motivated asich.A big bidder,
one who is not eligible for bid credit, would more likely have existing ownership ofgpecthis
means that, compared to small playebig bidder idikely to enjoy a significant degree of cress
auctioncomplementariesStill, a bidder does not enjoy cressction complementaries for all
licensessimply by virtue of being big. Instead, simibarto within-auction complementaries, a
bidder only enjoysomplementaries for licenses which are geographically close toitlabsady
owns. We make the assumptidimatone key way in which that bigidder reveals the existence of
these licensspecific crossauction complementaries is whigplaces some bifbr that particular
license.Therefore, we assigh ¢ to be 1 only if both conditions are m€onsequentlywe think
that a significant part of the estimation®@&.7 k;g'would theoreticallyoe compose of these

crossauction complementaries.
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4.! Data and Methodology

A.! Datafor the Covariates

Our papemusesFCCauction data obtained from ti@enter for Study of Auctions, Procurements
and Competition Policy at Pennsylvania State Univefditygenerate licensand bidderspecific
variables such aaBdc,'[in dollars], ABA [in persons] andt o' for all*( ','and ! (). We

have also intentionally removed all licenses that are not in the C block for each of the auctions for
reasons detailed earlier in this paper. To generate geographical complement@yBDBEAthe
latitude and dngitude coordinatesfor each of the licenseare generated using th€hristos
Samaras®YBA Google Geocoding Functisfi based on market descriptions provided by the FCC,
and distancea?b(g'[in kilometers]are calculated using a Haversine function we wtogccount

for the EarthOs spatial curvature.

For the purpose of testing pairwise stability, it is necessary to fingsipectivdicense setsvon
by each biddex. We define the license set won by bidaeo be a specific noted as'. / , .

Accordingly,.'. are noroverlapping for alk, and if all licenses are solihen

Ul'(') oK

 These FCC auction data can be accessed online directly at http://capcp.psu.edu/data-and-software/fcc-
spectrum-auction-data.

2l Christo Samaras’s VBA Google Geocoding Functions is published for public use at
http://www.myengineeringworld.net/2014/06/geocoding-using-vba-google-api.html.

! 20
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Utilizing this new notation, @=BDBEA would be defined as the specific geographical

complementaries of the set of licenses won by bidder x. The summary statistics of the three key

covariates in the proposed bidder valuation function— aBdc ; $ ABA$Swd@=BDBEA"is outlined

in Table 3.2
Variable Auction Mean StandardDev Minimum Maximum
5 305 million 8.35 x 16 0.83 million 79.23 million
22 5.08 million 1.06 x 10 33,000 50.0 million
aBdc,
35 39.0 million 6.35 x 10 6,400 239 million
58 11.6 million 1.19x 10 0.14 million 36.9 million
5 2.83million 1.08x 10 2,500 93.8million
22 1.89million 4.13x 1¢° 316,700 18.9million
S s
7. 35 10.41million 2.46x 10’ 687,00 118.9million
58 10.41million 1.14x 10 989,2®M 37.0million
5 0.92 million 4.75x 10° 0 42.6 million
22 0.48 million 1.50x 1¢° 0 8.24 million
@=BDBEA
35 2.06 million 7.24x 10° 0 41.3 million
58 1.36 million 1.98x 10 0 7.09 million

Table 3. Summary statistics of aBdc 1$Y.7 -, ABAlca '@=BDBEA across winning bidders in Auctions
5,22, 35 and 58

To normalize the data, we divide valuesaBidc ; by the total downpayment required to obtain
all licenses in each specific auction. This number is released by the FCC in an information package
prior to every auction. Next, we divide all valuesAd®,; by the total populatiosizein each

specific auction. We divid@=BDBEA by the geographical complementaries exhibited for a set

%2 The statistics based on the (xx j) matrix for kyg can be found in the Appendix.

! 21
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encompassing all licensemach specific auctigni.e. @=BDBEA it is useful to note that
@=BDBEAIn each specific auctiois alsoequivalent tahe total population sizef that auction
Lastly, we dividek,g by the total number of licenses for saleeiach auctionThe summary
statistics of the three normalized key covariates in the proposed bidder valuation #inction

aBdc ; $ABASwWI@=BDBEA"is outlined in Table 4°

Variable Auction Mean StandardDev Minimum Maximum
5 0.040 0.110 0.000 0.697
22 0.032 0.066 0.000 0.314
aBdc,
35 0.194 0.315 0.000 1.187
58 0.114 0.117 0.001 0.362
5 0.0112 0.0426 0.00m1 0.3714
Z ABA 22 0.0179 0.0391 0.0 0.1786
7 35 0.0303 0.0716 0.0 0.3462
58 0.0526 0.0676 0.06 0.1868
5 0.004 0.019 0.000 0.169
22 0.005 0.014 0.000 0.078
@=BDBEA
35 0.006 0.021 0.000 0.120
58 0.007 0.010 0.000 0.036

Table 4 Summary statistics of normalized values of aBdc 1$Y7 -, ABAIca '@=BDBEA across
winning bidders in Auctions 5, 22, 35 and 58

% The statistics based on the normalized (xx j) matrix for kg can be found in the Appendix.
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B. Pairwise Stability

Consider two bidders,c$! ¢'( ) , who won license set§ .and.'.  respectivelyTheir valuation

of their won sets are defined @s (."..") and0;(.".,"). The allocation of resources between

these two bidders is defined to be pairwise stable if

7)! e (105 e (i) fre () )5 e (Cigs ) .0

for all ? ('.". 'and* ( '."...* This means thathere mustbe no possible way for these two
bidders toexchangeonefor-onetheir licenses in order to increase their collective profits. Since
fixed effectst;'are additivey separable and common to both bidders, and since further private
values8, g'are assumed to andom they cancel oubn both sides of the inequality. (7) can

therefore be equivalently expressas

@) 0-(1c$... )5 0-(1es.. ) fF O-(tHe's (B) .05 O-(Les(.n. s ) . (3)

We note that pairwise stabilitgnly considers thgpairwise exchangef onelicenseand not
multiple licensessimultaneouslylt does not consider the possibility of a bid@onatingd a
licenseto another bidder without receivindieensein return. It also does not allow for more than
two players to swalicensesamong themselves simultaneoustgnce, pairwise stability héeen

sometimegriticized as a weak concept

 The definition follows from Jackson and Wollinsky (1996).

% Jackson (2003), pp. 19 “First, it is a weak notion in that it only considers deviations on a single link at a time. This
is part of what makes it easy to apply. However, if other sorts of deviations are viable and attractive, then pairwise
stability may be too weak a concept.”
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While there are stronger definitions of stabiliyefficiencythat allow for larger groups of players

to deviate from the allocation such as those mentidcnyeDutta and Mutuswami (1997),is not
computationallyfeasibleto considerevery configurationof licenses among the bidders of each
auctiorf®. Jackson (2003considered the interactions between pairwise stability and different
forms of efficiency andound cases in which networks that are pairwise stable are also efficient.
While pairwise stability is certainly a weaker cdiwh than allocative efficiency, dx (2010b)
proved that nonparametric identification of the valuation function can work equally well from

conditions of pairwise stability as conditions of efficiency.

C. Scoring Algorithm and Structural Estimator

Using this definition of pairwise stabilitjor each auctionye find the vector of parameteisthat
maximizes the total number of pairwise stable configurations among all bidders. Similar to how a
regression finds the optimal parameterization of cav@sito besfit a set of observable outcos)e

Fox (2010a)0Os structural estimator finds the optimal parameterization of valuation components to
bestfit the observed auctiopairwiseoutcomes. In the case of a regression, @t®stould be
defined, sayas the minimization of sum of the squares of the difference between an observed
value and the value by the structural estimation. In the case of Fox (2010a)Os estimafib® Obest

is defined as the maximization of pairwise stataafigurations

% See Appendix C for a breakdown of estimated runtimes for different definitions of pairwise stability.
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Specifically, in Fox and Bajari (2013), the scoring objective function to be maximized is defined

as—

@O TE)"EEEIE 2cTa i T € (@0 ¢
PUL S (s T < PUKi | €ver(acss )5 er(grd o) frer (oot

1) - 9) 5 er(ge¥(-5is"» O) --1})"

where€][.] is an indicator function and H is the number of winning bidders. The objective function
counts the number gfairwise stable configurations which do not violate ithigal population
eligibility limit of eachbidder.Cases where, say, both biddefand biddet - arenotable to be
collectively better df if they swap ondo-one, but where at least one of them is unable to

accommodate the new license due to initial eligibility constraints, would not count as a stable pair.
This  logical interaction of € [Zj.(.(..%n."{g)_{jftA i< pul; @j.(.(..y@."{j})_{gtA j <
pulf; S"] €ver (0% )5 'er(ge8i) frep(acH.i 'n 1) .. 0) 5 er (g fis'n 1) -

{1})"" is presented in Figure 2.

Both bidder better Both bidder worse off

off after swap[0] after swap[1]
Eligibility limits
allow for swap to 0 1
happen|[0]

Eligibility limits do
not allow for swap 0 0
to happen|[1]

Figure 2. Value of Fox and Bajari (2013)’s interacting indicator functions under different cases
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In Figure 2, a value of 1 signifies pairwise stability and a value of O signifies the lack thereof.

our paper, we have chosmisteadto relax the latter assumption, and consider bottaght cases

in Figure 2 as pairwise stablmtuitively, we think this new methodology allows for a fairer
assessment of pairwise stability; if a pair of bidders was already not going to swap their licenses
because the new collective valuation is poorer, an external imposition of a restriction which
prevent tem from doing what they do not want to khothe first placeshould not make them

pairwise unstable.

Therefore, we use a modifisdoring objective function defined as follows—

(10) tE) " IECEG 0 2cZg Zic., €oer(acs )5 er(0rs i)' f

‘er(ocq- o 3) ) 5 er(ge¥. g s () - 0)

and the logical interactions of €'er(gc$'i ') 5 'er(ged'i) ' f "ep(acH(.i '» {13) ..0}) 5

er(0e9(. 55w () ...{13)" is represented in Figure 3.

Both bidder better Both bidder worse off

off after swap after swap
Eligibility limits
allow for swap to
happen
0 1

Eligibility limits do
not allow for swap
to happen

Figure 3. Value of this paper’s pairwise scoring indicator function under different cases
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Computationally, we design an algorithm which considers each distinct pair of owners, and iterates
through every possible one-for-one exchange between the owners’ license sets. After the swap is
conducted, the new result obtained from the valuation funitioompared to the value before the
swap.Whenever we find that the new resuttedno better than the old one, we add one to the
score counter. The final value of the score counter after all ss@pensidereds thendivided

by the total number of swaps to give us a sbeteveen 0 and thatreflects the pairwise stabiliy

or degree of ObeBtCbof the actual allocation of licenses.

The algorithm is run repeatedly for different guesses of 9. We normalize 9o to be * #'s0 as to limit

the range that the estimator 9 can be found. This does not materially change the validity of our
estimator as the scaling factor would be canceled out on both sides of the inequality in (8). A

noteworthy observation is that the scores were neither strictly decreasing nor increasing with

changes in guesses of §, so it is possible to have a range of non-unique values of 9 which

maximizes the objective function.

There are a few things to note whdasigning0-(! $.)<It is prudentto ensure thatach
parameterized component dhe valuation function varieso both bidder and license
characteristicen anonlineammanner For instance, suppose tha¢ design a structural estimation
valuation function to b&-('$.") " '9. <aBdc,"such that the component is not dependent on
license characteristics. Thén<aBdc ;' would not change for all possible eteeone swaps. It

follows that ifaBdc; “ aBdc; $thenO-(1c$'.1 ") “ '0-(! $'". 1) always;we will find that

there are infinitely many possible estimatiorﬁg\)lc Now, suppose that the valuation function is
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0-('$.)" '9. 97 ABAinstead. Therd. 9, ABA'becomes a license fixed effect common to

all bidders; this means that aldders will value the license equally. This fixed effect would be
canceled out on both sides of the inequality (8). Obviously, both problems would still exist even

if we define the valuation function &-(! $.") " '9. 6,4 ', where6, ¢ is somecovariate that is

a linear combination of a biddenly characteristic and a licensaly characteristice.g.6,¢ "

aBdc 1 5" 27( ) ABA<
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5. Results

A.! EstimatingFox and Bajari (2013)@wdef’

Our paper testhe explanatory power of the following adapted structural estimation first proposed

by Fox and Bajari (2013)

(11) 0-(1$.)" " #<aBdc, <Y, ABA35 '9-<@=BDBEA

The results of the estimation are outlined in Table 5. The parameters are those which best optimizes

the scoring objective function. The pairwise stability score is the corresponding percentage of

pairwise stable configuration based on the optimized parameters.

Auctin | " € % Stabe Configurations.
5 1 13.4 96.3%
22 +1 9.3 90.6%
35 +1 10.3 72.2%
58 +1 14 67.3%

Table 5. Results of Fox and Bajari (2013) estimator when applied on Auctions 5, 22, 35 and 58

%’ See Fox and Bajari (2013) Sec. Il B for a list of assumptions and their corresponding justifications implicit in their
model.
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B.! Estimating ouModified Valuation Function

We then test the explanatory power of the modified structural estimation proposed earlier in this

paper

(12) 0-(1$.)" " #<aBdc,'<CY; ABA35 '9-<@=BDBES 97 kig™

Similarly, the results of the new estimation are outlined in Table 6.

SR ' g — — Percentage of Pairwise
€ : Stable Configurations
5 +1 13.4 8 96.3%
22 +1 6.8 20.0 92.1%
35 +1 7.4 19.2 87.0%
58 +1 1.2 10.2 79.5%

Table 6. Results of our modified estimator when applied on Auctions 5, 22, 35 and 58

% Note that Auction 5 has a ¥ value that is undefined because the entire auction is closed, meaning only small bidders
are allowed in the auction.
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6. Discussion

A.! Modifying Scoring Algorithm

As discussed earlier, our paper modifiee scoring objective function used in Fox and Bajari
(2013) in order to employ a less restrictive definition of pairwise stabilityeXg&inin Section
4that this would better capture the true valuatiothebiddei®one which is independent of auctio
mechanics. As a resutyen without the inclusion of the dummy variaklg, our estimates for

9qin Auction 5 differs from that found in Fox and Bajari (2013).

Objective Function , — Percentage of Pairwise
Used Stable Configurations

With eligibility

2 +1 1.06 0.956
restrictions

Without eligibility

S +1 13.4 0.963
restrictions

Table 7. Comparing estimator results for Auction 5 with and without eligibility restrictions in scoring

Both scoring objective functions give roughly similar maximum pairwise stability scores.
However, our methodology results in a higher coefficient for geographical complementaries as a
component in bidder valuation. We can interpret the highier be indcating the existence of

pairs consistingf bidderswho (i) derive significant valuation & geographical complementaries
such that they (ii) would not collectively do better after swappingforene with another bidder,

and (iii) could not swap evehthey had wanted to due to eligibility constraints. Dissimilar to Fox
and Bajari (2013), we think that these bidder pairs should count towards the the pairwise stability

score.
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Since wenormalized the coefficient @Bdc,'<2.; ABA3to be’ #, "Oc represents the relative
importance othe gegraphical complementaries valuation compor@+BDBEAvis-"-vis that

of the assortive matchingetween bidders who paid higher levels of downpayment and packages
with more populationaBdc,'<%; . ABA3. Using the newscoring objective functignour
estimated9. is 13 times that of Fox and Bajari (2018)@e think that Fox and Bajari (2018)0

methodologyof scoring pairwise stability may have understated the importance of geagiaphi

complementaries in determining Auction 5 bidder valuation.

B.! Relationship ofAuction Estimator to théNumber of licenses

Based on the replicated Fox and Bajari (2013) structural estimation of bidder va(uatinout
the inclusion of dummy variable,¢), as the number of licenses in an auction decreases, the
importance of@=BDBEAalls. This is observed from thgositive correlation betweex and the

number of licenses.

Estimator based on Fox and Bajari (2013)

16
= Auction 5
2 14 134 ®
SE 12 " Auction 35
= Auction 103 ®
I g 10 93 @
cs= 8
2% 6
2E ,
m —
D £ 2 Auction 58
S 14 ®
g 0
o 0 100 200 300 400 500 600

Number of Licenses in Auction

Figure 4. Relationship of Fox and Bajari (2013) within-auction geographical complementarity estimator
9c'to the number of licenses in Auctions 5, 22, 35 and 58
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We normalize our data by dividirmBdc ;, ABAS@=BDBEAby their respective theoretically
attainable maxima specific to each auctiomrder to beable to interpret the relative importance

of variables across auctionH. is to be expected that the average valuewdhin-auction
complementariesvould fall whenthe number of licenses decreases; this is because in auctions
where only a small subset of total license set is up for sales, there are going to be many missing
pieces when a bidder tries to build geographical complements. In other words, the avaliage q

of within-auction geographical complementaries falls.

We positthatmuch of this missing withkauction geographical complementaries waunktead
be consigned to whaiur paperclassifes as crossauction geographical complementaries. An
analysis of the estimators obtained in our modified structural estimator giipg®rtto this
hypothess, assuming thatk,y is indeed correlated to the unobservedrossauction
complamentaries valuation componefigure 5shows theelationship between thatio of the
estimated coefficient ofhe big bidder dummy;k,g, to that of@=BDBEAand the number of

licensesacross the auctions we have tested.
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Beta2/Betal (Relative importance of

big bidder dummy)

Ratio of Estimators against Number of Licenses

85 @
Auction 58

Auction 22 Auction 35
29 ®

26 ®
Auction 5
0.0@
100 200 300 400 500 600

Number of Licenses

Figure 5. Illustration of how the z: changes with the number of licenses in an auction
#

As shown, the relative importance of cr@gtion complementaries increases as the number of

licenses decreases. In Auction 58, for a theoretical big bidder who bid and bought all 173 licenses,

theirtotal valuation based on our model is 1*1*1 + 1.2*10+2¥1 = 12.4. Out of the bidderOs total

valuation, 82% comes from the supposed cesgion complementaries and about 10% comes

from within-auction complementaries. In contrast, in the bigger Auction 35, a theoretical big

bidder who bid and bought all 356enses, would have a total valuation of 1*1*1 + 7.4*1 + 19.2*1

= 27.6, of which only approximately 70% comes from the supposed -auctisn

complementaries and 27% comes from wHauttion complementaries

34
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C.! Goodnesof-fit Improvement

While the replicated structural estimation used in Fox and Bajari (2013) is strong in explaining
much of the pairwise configurations observed in Auction 5, it was considerably weaker in
explaining subsequent auctions which included big bidders, i.e. AR2iA35 and 58. We observe

that the weakness of the model worsens as the proportion of big bidders tniddeaDmcreases.

Auction Pe_rcentage of _Mt_;lximum N
Big Bidders Pairwise Stability
5 0% 96.30%
22 13.79% 90.60%
35 18.18% 72.20%
58 26.32% 67.30%

Table 8. Percentage of big bidders and pairwise stability score based on Fox and Bajari (2013)

The inclusion of the dummy varialteg which supposedly correlates to the existence of eross
auction complementaries increasiee strength of the structural estimation. The improvement in

maximum pairwise stability score isgsented graphically in Figure 6
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Maximum Pairwise Stability

100%

80%

60%

40%

20%

0%
’ 5 22 35 58

Without Dummy  96.30% 90.60% 72.20% 67.30%
®\Vith Dummy 96.30% 92.10% 87.00% 79.50%

Figure 6. Pairwise stability improvements upon inclusion of big bidder dummy variable

Our results showignificant variation in the inherent valuation structure between small and big
bidders in C block auctions. In our discussion, we have presented some evidence that these
valuation differentials could be due to cross-auction complementaries. However, more work needs

to be done to verify if the same trends can be observed in other spectrum auctions and to test
competing hypotheses of what the big bidder dummy could represent. Where these differentials
come from has patrticularly consequential implications5HGC auction design. If big bidders are
valuing licenses more because they have better access tagotiss) complementaries or wider
economies of scale, thehe FCC should ideally design auctionspmovide incentives fothese
bigger players toignal their value differentials. In this waycénses can be allocated to these
bigger players such that creasction complementaries would not be Idsbm total welfare
However, if big bidders are valuing licenses more as meanstiofidatory pricng or to
unilaterally enact high barriers of entry in the spectrum maokietrther their own profit motives
thenthe FCC might want to eliminate these differentidi®m auction bidso as tocountervail

monopoly power angrotectendconsumers.
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To supplemenpolicy analysis, weun counterfactual simulations on the auctions involving big
bidders (i.e. Auctions 22, 35 and Y8)ere we assume thatax on big bidders is imposby the

FCC. Note that this issomorphicto small bidders receiving bid credits in open auctions including

big bidders.In these simulations, we use the estimated parameterizations of valuation components
for each auction to generate numerical bidder valuabefare subtracting a tax amouAtsingle

unit of tax is measured as a percentagé the maximum valuation of a monopolist bidder who
bids and wins all licenses in an auction, divided by the total population represertddenses

won by big biddei®

T CZ": , 'Z: S“ f
Zn() el mY[Y 0

(13) —c?GTI"

where) .k, is the set of all big bidders in an auction.

For all bidders, their new poe#x valuation function then becomes as follows

(14)! 0-%1$.") " '0-( $.)V'—Cc?G"I! 37 ABA <€-IrmloopdIx'nl{ "

The tax which only a big bidder has to pag the—c?G"I!multiplied by the population size of
the license set in whiclh wins. The percentage of pairwise stable configuratiesiag the new
posttax valuation functiopfor different values of tax ratebetwea 0 and 1, are shown in Figure

7.
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Figure 7. Counterfactual simulations of the impact of taxation of big bidders on pairwise stability

The results can be interpreted as the relatesesitivitiesof the auction allocation outcomes to
changingdegrees of taxation on big bidders. When the tax+at®, the postax bidder valuation

for all bidders is exactly the same as their initial bidder valuation; at thisypfevel, a large part

of observed auction outcomes can be explained by the model. As the tax rate increases, the
deviationsbetween obsrved auction and the outcome predicted by the newtgostaluation
increase. The results of theseunterfactual simulationare particularly useful in informing
policymakers of the varied disruptive effective associated with the taxation of big b{dders

equivalently the subsidization of small bidders).
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Appendix A: Graphs of Results and Variables

In the first part of this section, we show the plotted graphs of pair-wise stability scores T(f)'

against estimated 9 under the Fox and Bajari’s model across Auction 5, 22, 35 and 58. The

structural estimation is restated below-

0-('$.)" " #<aBdc;'<2l7  ABA35 '9.<@=BDBEA

Auction 5

0.97

0.96

0.95

0.94

0.93

Pairwise stablity scores

0.92
0.91

0.9

Beta

Figure Al — Relationship of Fox and Bajari (2013) estimator to estimated betas for Auction 5
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Auction 22
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Pairwise stability scores
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Figure A2 — Relationship of Fox and Bajari (2013) estimator to estimated betas for Auction 22

Auction 35
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Figure A3- Relationship of Fox and Bajari (2013) estimator to estimated betas for Auction 35
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Auction 58

0.68

0.67
0.66
0.65
0.64
0.63
0.62

Pairwise stability scores
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Figure A4 — Relationship of Fox and Bajari (2013) estimator to estimated betas for Auction 58
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In the second part of this section, we show the plotted graphs of pair-wise stability scores T(f)'
against 9cand 9 under the modified structure estimation across Auction 5, 22, 35 and 58. The

modified structural estimation is restated below-

0-0$)" " #<aBdcl'<ZZ ABA35 '9.<@=BDBE/S 9:<) kg
7( 7(.

Auction 22: Estimator versus Beta1 and Beta2

3 2

1 0 Beta1

Figure A6 — Relationship of modified estimator to estimated betas for Auction 22

! 42
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Auction 35: Estimator versus Betal and Beta2

19.5 6

19 Beta1

Beta2

Figure A7 — Relationship of modified estimator to estimated betas for Auction 35
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Auction 58: Estimator versus Beta1 and Beta2

0.795 —
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0.785 —|

0.78 —|
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0.775 —

0.77 —

0.765 =

Figure A8 — Relationship of modified estimator to estimated betas for Auction 58

In the third part of this section, we show the scatter plots of each of our normalized covariates
(aBdc;'®;. ABA$SaBdc ' ABA3SQ=BDBEAR. 7 . Kk;ig) across Auction 5, 22, 35 and 58.

For aBdc;'®.; . ABA$Bdc ', ABA3, we use logarithmic plots to address skewness

towards large values.
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Figure A10- Scatter plot of log (normalized down payment) for Auction 22

! 45



Structural Estimation of FCC Bidder Valuatlon

Auction 35
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Figure A11 - Scatter plot of log (normalized down payment) for Auction 35
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Figure A12 - Scatter plot of log (hormalized down payment) for Auction 58



Structural Estimation of FCC Bidder Valuatlon
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Figure A13 - Scatter plot of log (bidder’s normalized total population) for Auction 5
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Figure Al14 - Scatter plot of log (bidder’s normalized total population) for Auction 22
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Figure A15 - Scatter plot of log (bidder’s normalized total population) for Auction 35
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Figure A16 — Scatter plot of log (bidder’s total population) for Auction 58
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Figure A18 - Scatter plot of log (normalized down * bidder’s total population) for Auction 22
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Figure A19 - Scatter plot of log (normalized down * bidder’s total population) for Auction 35
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Figure A20 - Scatter plot of log (normalized down * bidder’s total population) for Auction 58
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Scatter Plots ofce|i§j @

Auction 5
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Figure A21 - Scatter plot of log (normalized geocomp) for Auction 5
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Figure A22 - Scatter plot of log (normalized geocomp) for Auction 22
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Auction 35
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Figure A23 - Scatter plot of log (normalized geocomp) for Auction 35

Auction 58
0
0 2 4 6 8 10 12 14 16
-1
e ©
@
= 2 e ®© ® o o ¢
g o ®
= .
2
o -4
sl
5 5 hd
£
<
£
(@]
o
-7
[ )

Figure A24 — Scatter plot of log (normalized geocomp) for Auction 58
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Lastly, we show graphs of big bidders and their corresponding total @, & There will be no graph

for Auction 5 as there is no big bidder present.

Auction 22
TLA Spectrum, LLC
IT&E Overseas, Inc.
Telepak, Inc.
Denton County Electric Cooperative, Inc.
Conestoga Wireless Company, Inc.

CFW Communications Company

Zuma PCS, Inc.

|
H
-
-
I
I
Pegasus PCS Partners, L.P. ||| G
|

Figure A26 — Bar graph of big bidder’s total delta for Auction 22
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Auction 35

Purchase Communications

SVC BidCo, L.P.

VoiceStream PCS BTA | License Corporation

Cook Inlet/VVSGSM V PCS, LLC

Cellco Partnership, d/b/a Verizon Wireless

DCC PCS, Inc.

o

50 100 150 200

Figure A27 — Bar graph of big bidder’s total delta for Auction 35
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Auction 58

Centennial Michiana License Company LLC I

Union Telephone Company I

Cricket Licensee (Reauction), Inc. -
Cellco Partnership d/b/a Verizon Wireless -

Figure A28 — Bar graph of big bidder’s total delta for Auction 58
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We present the summary statistics of the Y7 kyg below. There will be no data for Auction 5 since

there are no big bidders in that auction.

Average Standard Deviation Min Max
5 n/a n/a n/a n/a
22 0.0310 0.0309 0.0034 0.0986
35 0.256 0.185 0.006 0.564
58 0.121 0.123 0.006 0.347

Table A1 - Summary Statistics for Y., kyg of big bidders



Structural Estimation of FCC Bidder Valuatlon

Appendix B: Documentation of Algorithm Code

Script 1. Data

% License Data

Let = Data(:,3+Adj)); % Latitude of license location

Lat = deg2rad(Lat); % Converting to radians

Long = Data(:,4+Ad)); % Longitude of license location

Long = deg2rad(Long); % Converting to radians

Pop = Data(:,5+Ad)); % Population of license location
LicenseElig = Data(:,6+Adj)); % Eligibility required for license
NumLicense = length(Lat); % Total number of licenses

% Bidder Data

Elig = Data(:,12); % Eligibility of better
Elig = Elig(Elig>0); % Removing entries with non - valid eligibility
Notes

The data we imported were categorized into license specific data and bidder specific data. The

Latitude and Longitude numbers were generated using Christos Samaras’s VBA Google

Geocoding Functions in Microsoft Excel.
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Script 2. Indexing

% The following indexing allow us to identify ownership of licenses
IndexStart = Data(:,10);

IndexStart = IndexStart(IndexStart>0);

IndexEnd = Data(:,11);

IndexEnd = IndexEnd(IndexEnd>0);

IndexPure = zeros(length(Elig),2); % IndexPure for non
| ndex = zeros(length(Lat),1); % Index for repeated indexes
NumOwner = length(IndexPure); % Number of owners

% Creation of IndexPure
for k= 1:length(Elig)
IndexPure(k,1) = IndexStart(k);
IndexPure(k,2) = IndexEnd(k);
end
counter = 1,
% Creation of Index
for | =21:length(Elig)
NumLicEachBidder = IndexPure(l,2) - IndexPure(l,1)+1;
for m = 1:NumLicEachBidder
Index(counter,1) = IndexPure(l,1);
Index(counter,2) = IndexPure(l,2);
counter = counter +1;
end

end

Notes

- repeated indexes

IndexPure has m rows and two columns, with m representing the number of bidders winning at

least one license in the auction. (Row J, column 1) tells us the first license on the list of licenses

won by bidder J, and (Row J, column 2) tells us the last license on the list of licenses won by bidder

J.

Index has n rows and two columns, with n representing the number of licenses in the auction. (Row

J, column 1) tells us the first license on the list of licenses won by the bidder who won license |

and (Row J, column 2) tells us the last license on the list of licenses won by the bidder who won

license j.
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Script 3. Matrix Construction

% PopMatrix construction

PopMatrix = meshgrid(Pop)';

for g=1:NumLicense
PopMatrix(g,9)=0;

end

DistanceCheck = zeros(NumLicense);

% GeoMatrix Construction
GeoMatrix = zeros(NumLicense);
for k=1:NumLicense
for I=1:NumLicense
DistanceNum = haversine(Lat(k),Long(k),Lat(l),Long(l));
DistanceSquared = power(DistanceNum,?2);
DistanceCheck(k,l) = DistanceNum;
if DistanceNum ==
GeoMatrix(k,l) =0;
else
GeoMatrix(k,l) = Pop(k).*Pop(l)./DistanceSquared;
end end end
for m=1:NumLicense

GeoMatrix(m,m)=0;

End

% Bigsmall Matrix Data

BigSmallMatrix = Data(:,14:14+NumOwner - 1);
Notes

PopMatrix is constructed as a symmetrical matrix with the diagonals having a value of zero. It is

used later on in the calculation of geocomplementarity. GeoMatrix is a helper matrix constructed

to help us generate two more matrices, the Numerator and the Denominator matrices that will help

LMLNMLG

Yo '.WUVW

us calculate the ————wrgmg term in the geocomp function. BigSmallMatrix helps us calculate

Yo, &TUVW

the Y.7(. kig™ term in the valuation function.
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Script 4. Geocomplementarity calculation

Numer = zeros(NumLicense);

for n=1:NumLicense

Numer(n) = sum(GeoMatrix(Index(n,1):Index(n,2),n));

end
% Transposing Numer to operate on it later
Numer = Numer(:,1)";

Denom = sum(GeoMatrix);

% GeoComp by license j
GeoCompj = zeros(1,NumLicense);
for p=1:NumLicense
GeoCompj(p) = Pop(p)-*Numer(p)./Denom(p);
end
% GeoComp by bidder J
GeoCompJ = zeros(1,NumOwner);
for g=1:NumOwner
GeoCompJ(q) = sum(GeoCompj(IndexPure(q,1)
end

Notes

:IndexPure(q,2)));

In Numer we sum across the set J for each bidder, with set J representing the licenses the particular

bidder owns. In Denom we sum across the set L for each bidder, which set L representing the

universal set of licenses in the auction. GeoComp J is the array containing all the

geocomplementarity values for each bidder that we want to find:

LML\MLG
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Script 5. Loop Construction
for run=1:1
count = 0;
Score = 0;
Betal = 0+0.2*(runl);
Beta2 = 9+0.2*(run2);
for a=21:NumOwner -1
for b =a+1:NumOwner
Ownerl = IndexPure(a,:);
Owner2 = IndexPure(b,:);
% Size tells us how many license each owner has
Sizel = Owner1(2) - Ownerl1(1)+1;
Size2 = Owner2(2) - Owner2(1)+1;
for c=1:Sizel
for d=1:Size2
count = count +1;
% k for bidder 1, | for bidder 2, k and | indicate the

% index of the cth license of owner a and dth license of

% owner b,

k = IndexPure(a,1)+c -1;
| = IndexPure(b,1)+d -1;
E

Notes

The number of runs to guess Beta is determined by the loop containing the index run. Different
Beta 1 and Beta 2 values are guessed with each iteration of the loop. Loops with indices a and b
consider all the possible combinations of bidder pairs. Loops with indices ¢ and d consider all the

possible combinations of license pairs to be swapped between any two bidders.
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Script 6. Eligibility Check

% Eligibility Check
BidderlElig = Elig(a);
Bidder2Elig = Elig(b);
LicenselElig =LicenseElig(k);
License2Elig = LicenseElig(l);

% Current Elig minus Elig being considered

BidderlRemainingElig = Elig(a) -
sum(LicenseElig(IndexPure(a,1):IndexPure(a,2)))+LicenselElig;

Bidder2RemainingElig = Elig(b) -

sum(LicenseElig(IndexPure(b,1):IndexP ure(b,2)))+License2Elig;

Notes

The number of runs to guess Beta is determined by the loop containing the index run. Different
Beta 1 and Beta 2 values are guessed with each iteration of the loop. Loops with indices a and b

consider all the possible combinations of bidder pairs. Loops with indices ¢ and d consider all the

possible combinations of license pairs to be swapped between any two bidders.
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Script 7. Swapping Mechanism

%Create temporary matrix for geocomp
GeoMatrixTemp = GeoMatrix;
%Swapping of rows for geocomp
TempGeoRowl = GeoMatrixTemp(k,:);
TempGeoRow2 = GeoMatrixTemp(l,:);
GeoMatrixTemp(k,:) = TempGeoRow2;
GeoMatrixTemp(l,:) = TempGeoRow1;

%Swapping of columns for geocomp
TempGeoColl = GeoMatrixTemp(  :,k);
TempGeoCol2 = GeoMatrixTemp(:,l);
GeoMatrixTemp(:,k) = TempGeoCol2;
GeoMatrixTemp(:,l) = TempGeoColl;

%Create temporary matrix for population column vector
PopTemp = Pop;

%Swapping of rows for pop

TempPopRowl = PopTemp(k);

TempPopRow?2 = PopTemp(l);

PopTemp(k) = TempPopRow?2;

PopTemp(l) = TempPopRow1;

%Create temporary matrix for bigsmall column vector
BigSmallTemp = BigSmallMatrix;

%Swapping of rows for pop

TempBidRow1 = BigSmallTemp(k,:);

TempBidRow2 = BigSmallTemp(l,:);
BigSmallTemp(k,:) = TempBidRow2;
BigSmallTemp(l,:) = TempBidRow1;

Notes
Swapping licenses translates to swapping rows | and k and swapping columns | and k in the script

for the matrices we constructed. We performed it for the geocomp matrix, pop matrix and bigsmall

matrix. The temp matrices represent the values after the swap took place.
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Script 8. Calculations after swapping

NewNumer = N umer,

NewDenom = Denom;
NewGeoCompjTemp = GeoCompj;
NewGeoCompJTemp = GeoCompJ;

for n=Ownerl(1):Ownerl(2)
NewNumer(n) = sum(GeoMatrixTemp(Index(n,1):Index(n,2),n));
NewDenom(n) = sum(GeoMatrixTemp(1:NumLicense,n));
NewGeoCompjTemgn) = PopTemp(n).*NewNumer(n)./NewDenom(n);
end

for n=0Owner2(1):Owner2(2)
NewNumer(n) = sum(GeoMatrixTemp(Index(n,1):Index(n,2),n));
NewDenom(n) = sum(GeoMatrixTemp(1:NumLicense,n));
NewGeoCompjTemp(n) = PopTemp(n).*NewNumer(n)./NewD enom(n);
end

NewGeoCompJTemp(a) =sum(NewGeoCompjTemp(IndexPure(a,1):IndexPure(a,2)));
NewGeoCompJTemp(b) =sum(NewGeoCompjTemp(IndexPure(b,1):IndexPure(b,2)));

%Making Comparisons, stating new variables

Bidder1OrigGC = GeoCompJ(a)/USPOP;

Bidder20rigGC = GeoCompJ(b)/USPOP;

BidderlNewGC = NewGeoCompJTemp(a)/USPOP;

Bidder2NewGC = NewGeoCompJTemp(b)/USPOP;

BidderlElig = Elig(a)/ELIG;

Bidder2Elig = Elig(b)/ELIG;

Bidder1OldBig =

sum(BigSmallMatrix(Ind exPure(a,1):IndexPure(a,2),a))/NumLicense;
Bidder20IdBig =
sum(BigSmallMatrix(IndexPure(b,1):IndexPure(b,2),b))/NumLicense;
BidderlNewBig =
sum(BigSmallTemp(IndexPure(a,1):IndexPure(a,2),a))/NumLicense;
Bidder2NewBig =

sum(BigSmallTemp (IndexPure(b,1):IndexPure(b,2),b))/NumLicense;
Bidder1OIldPop = sum(Pop(IndexPure(a,1):IndexPure(a,2)))/USPOP;
Bidder20IldPop = sum(Pop(IndexPure(b,1):IndexPure(b,2)))/USPOP;
BidderlNewPop = sum(PopTemp(IndexPure(a,1):IndexPure(a,2)))/USPOP;
Bidder2NewPop =  sum(PopTemp(IndexPure(b,1):IndexPure(b,2)))/USPOP;

Notes

Adjustments were first made to recalculate the Numer, Denom and GeoComp matrices after the
swapping took place. The GeoComp (GC), Eligibility (Elig), Dummy variable (Big) and
Population (Pop) terms were calculated for both bidder 1 and bidder 2 for the cases before the

swap and after the swap.
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Script 9. Scoring Mechanism

%Making Valuation Function

Bidder1OldValue=
BidderlElig.*Bidder1OldPop+Betal.*Bidder1OrigGC+Beta2.*Bidder10IldBig;
Bidder20IldValue=
Bidder2Elig.*Bidder20ldPop+Betal.*Bidder20rigGC+Beta2.*Bidder20IldBig;
Bidder1NewValue=
BidderlElig.*Bidder1NewPop+Betal.*BidderlNewGC+Beta2.*Bidder1NewBig;
Bidder2NewVal ue=
Bidder2Elig.*Bidder2NewPop+Betal.*Bidder2NewGC+Beta2.*Bidder2NewBig;

if (BidderlOldValue + Bidder20OldValue) >= (Bidder1NewValue + Bidder2NewValue)
Score = Score +1;
end
end
end
end
end

ScorePercent = Score/count;
Results(runl1+1,1) = Betal,;
Results(1,run2+1) = Beta?2;
Results(runl+1,run2+1) = ScorePercent;
end

end

Notes
The combined valuation of bidder 1 and bidder 2 before the swap was compared to the combined
valuation of bidder 1 and bidder 2 after the swap. If the pre-swap combined valuation was larger

than or equal to the post-swap valuation, we added one to the score.

The percentage score was calculated by taking the number of cases in which pre-swap valuation
did at least as well as post-swap valuation divided by the number of swaps that were considered

overall.
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Appendix C: Analysis of Alternative Estimator

In our paper, our estimator examines the case of dcomee matching transfer, where bidder

adds a single licengdo its license set J after giving up a single licarntsebidderb. It is defined

as a matching transfer because the quantity of kseegchanged is equal in both parties. It is
possible to examine alternative estimators by using inequalities based on different theoretical
conditions so as to better reflect biddersO actions and improve upon the definitionvigepair
stability. As an gtension, our paper will provide a precursory understanding to the expected
computational intensity of using these alternative estimators, namely;raatohing transfer and

a multidegree transfer. We show a summary of expected inequalities and cadregpantime

for a single guess of beta for each alternative estimator.

It is important to note that the algorithm runtime is largely determined by the number of
inequalities compared in each auction, which is further determined by the number of amdhers
the number of licenses each owner owns respectively. By extrapolating the number of inequalities

expected when an alternative estimator is used, one can arrive at a predicted runtime.



Structural Estimation of FCC Bidder Valuatlon

The table below provides a summary of -to®ne matching swa the case we have studied.

Auction Number of Inequalities Approximate runtime for 1 loop
5 117,300 ~38s
22 39,407 ~12s
35 54,535 ~26s
58 13,150 ~3s

Table C1- Number of inequalities and approximate runtime of Auction 5, 22, 35 and 58 for
one-to-one swap only

!
In the case of a twito-two matching swaps, where bidders exchange a set of two licenses instead
of a single license, we found out that the number of inequalities and runtime idcrease

exponentially.

Expected number of
Auction Predicted runtime for 1 loop
Inequalities
5 6,258,786 ~34min
22 4,495,587 ~24min
35 18,620,859 ~100min
58 1,074,801 ~6min

Table C2 DNumber of inequalities and approximate runtiméuo€tion 5, 22, 35 and 58 for
two-to-two matching swap
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The primary reason behind this is that a single owner now has a larger number of possible

combinations of a set of two licenses, specifically, for an owner haokdmgnber of licenses, he

will have a total ofFa(llian)a possible combinations of a set of two licenses. It is important to note

that the presence of owners with a large set of licenses will greatly increase the number of
inequalities being considered because there are now much mat#eosmbinations of a set of

two licenses.

Non-matching swaps

The imposition of a strictly matching swap can also be relaxed to allow owners to exchange
licenses with one another for a non-equal return. A non-matching swap is thus defined as an
exchange of licenses between owners, where the quantity given and received for each owner is
not the same. In this scenario, we would explore the case where each owner is allowed to give
one license to another without anything in return and the case where each owner is allowed to
give two license to another without anything in return. The results are reported in the table

below:
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Expected number of
Auction Predicted runtime for 1 loop
Inequalities
5 43,384 ~14s
22 16,170 ~bs
35 11,649 ~3s
58 3,460 ~1s

Table C3- Number of inequalities and approximate runtime of Auction 5, 22, 35 and 58 for
give-one only

Expected number of
Auction Predicted runtime for 1 loop
Inequalities
5 230,724 ~75s
22 128,240 ~41s
35 182,232 ~59s
58 25,920 ~8s

Table C4- Number of inequalities and approximate runtime of Auction 5, 22, 35 and 58 for
give-two only
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n-degree swap

Lastly, we allow for the possibility of a n-degree swap. A n-degree swap is defined as an exchange
of licenses among a party of n+1 owners where n > 1. As a form of simplification, we study the
case of a two-degree swap of a single license. A two-degree swap will then be an exchange between
three owners where Owner 1 first swaps a specific license X with Owner 2, who then accept the

swap, knowing that he can further swap it with Owner 3. The results are reported in the table

below:
Auction Number of Inequalities Approximate runtime for 1 loop
5 36,909,493 ~3hrs
22 6,990,689 ~37min
35 672,327 ~3min
58 1,360,113 ~7min

Table C5- Number of inequalities and approximate runtime of Auction 5, 22, 35 and 58 for a
two-degree swap of a single license

The primary reason for this large increase in runtime is that the possibilities compound every time
an owner transfers the license to the next. Given this, a n-degree swap will be the most

computationally intensive as n increases.

The algorithm employed in this paper is brute-force in nature and works by exhausting all
possibilities to determine the estimator. Given this, it is unlikely that such an algorithm will be

feasible to solve for the estimator in the case of a n-degree swap, especially for large auctions.
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Appendix D: Valuations of bidders in different auctions

In the section, we show cumulative distribution plots for the normal and modified valuation
functions of bidders across all auctions. We use the betas reported in the Results to generate a

cumulative plot of bidders’ valuations.

We first show the plots for the normal valuation function, which is restated below-
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Figure D1 - Cumulative distribution plot for valuation functions of bidders in Auction 5
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Auction 22
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Figure D2- Cumulative distribution plot for valuation functions of bidders in Auction 22

Auction 35
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Figure D3 - Cumulative distribution plot for valuation functions of bidders in Auction 35
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Auction 58
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Figure D4 — Cumulative distribution plot for valuation functions of bidders in Auction 58

We then show the cumulative plots for the modified valuation function, which is restated below-
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Figure D5 - Cumulative distribution plot for modified valuation functions of bidders in Auction

22
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Auction 35
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Figure D6- Cumulative distribution plot for modified valuation functions of bidders in Auction

35
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Figure D7 — Cumulative distribution plot for modified valuation functions of bidders in Auction

58
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