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Abstract 

 

We modify a method introduced in Fox and Bajari (2013) which structurally estimates the 

deterministic component of bidder valuations in FCC spectrum auctions based on a pairwise 

stability condition: two bidders cannot exchange two licenses in a way that increases the sum of 

their valuations, and we apply it to C block auctions 5, 22, 35 and 58. Our modifications improve 

the fit of the Fox and Bajari (2013)’s estimator especially in similar auctions involving big bidders. 

We find that there is evidence of significant “cross-auction” complementaries between licenses 

sold in a particular auction and those already owned by these endowed bidders.  

 

JEL Codes : D44, D45, H82, L82 
 

Keywords: auction theory, structural efficiency estimation, pairwise stability, 

telecommunications, regulation, spectrum auctions, welfare, FCC, broadband, small bidders, 

geographic complementarities 
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1.   Introduction 

 

Prior to the passing of the Omnibus Budget Reconciliation Act by Congress in 1993, the Federal 

Communications Commission (FCC) relied on comparative hearings and lotteries to allocate 

civilian rights to use non-overlapping segments of the electromagnetic spectrum in the United 

States. The Omnibus Budget Reconciliation Act gave the FCC the additional “authority to use 

competitive bidding to choose from among two or more mutually exclusive applications for an 

initial license.”2 Since 1994, the FCC has consistently exercised this authority by making auctions 

the primary means of distributing spectrum licenses. While these auctions are generally open to 

any eligible company or individual, the FCC imposes additional rules and access restrictions to 

fulfill the Congressional mandate to supporting smaller or underrepresented bidder3. The Balanced 

Budget Act of 19974 officiated the use of auctions as the default method of spectrum license 

allotment; it required that the FCC to use auctions to resolve mutually exclusive applications for 

initial licenses unless specific exemptions have been legally granted (FCC 2017).  

 

These FCC auctions are ascending auctions which Klemperer (1999) defines as an allocative 

process where “the price is successively raised until only one bidder remains, and that bidder wins 

the object at the final price.”5 All auctions generally sell to the bidder with the highest signal. 

Insofar as an efficient auction can be described as one which allocates a resource to the individual 

                                                                                                      
2 Omnibus Budget Reconciliation Act (1993), Sec. 6002 
3 These bidders are defined in the FCC's rules and regulations located in Title 47 of the Code of Federal Regulations 
(CFR) as “designed entities.” Designed entities are “small businesses (including businesses owned by members of 
minority groups and/or women), rural telephone companies, and eligible rural service providers.” The specific 
requirements to qualify as a “designed entity” are outlined clearly in CFR 1.2110.    
4 Balanced Budget Act (1997), Title III 
5 Klemperer (2007), pp 14.  



Structural Estimation of FCC Bidder Valuation  

   5 

able to extract the highest marginal revenue from that particular good6 and an auction which is 

ascending, as compared to those which are Dutch, first-price sealed-bid or second-price seal-bid 

types, more greatly incentivizes players to bid their true values as signals (Klemperer 19997; Smith 

1987;  Milgrom 1987), FCC auctions are designed to allocate spectrum licenses in a relatively 

efficient manner.  

 

The FCC also employs a simultaneous multiple-round (SMR) auction structure designed to 

adequately capture the value of complementaries among licenses sold in an auction. Brunner et al 

(2009) explained that, as a result of these complementaries, “the value of a collection of spectrum 

licenses for adjacent areas can be higher than the sum of the values for separate licenses” and 

“bidders with value complementarities may have to bid more for some licenses than they are worth 

individually, which may result in losses when only a subset is won.” 8 To address this, the 

simultaneous feature of FCC auctions allows for all licenses to remain available for bidding 

throughout the entire auction process. Bidders can vary their bidding strategies across their entire 

desired set of licenses according to public bids placed by other bidders. 

 

Auction efficiency is important because it affects socioeconomic outcomes. In its 2016 Broadband 

Progress Report, the Federal Communications Commission (FCC) highlights that a digital divide 

remains prevalent.9 There are two ways auction efficiency can help to reduce this digital divide. 

                                                                                                      
6 Myerson (1981) and Bulow and Roberts (1989). 
7 Klemperer (1999) argues that “it is a clearly dominant strategy to stay in the bidding until the price reaches your 
value […] the next-to-last person will drop out when her value is reaches, so the person with the highest value will 
win at the price equal to the value of the second-highest bidder”. Based on such an auction design, “truth telling is a 
dominant strategy equilibrium”.  
8 Brunner et al (2009) argues that geographical complementaries arise because “if a telecommunications company is 
already operating in a certain area, the cost of operating in adjacent areas tends to be lower […] and consumers may 
value larger networks that reduce the cost and inconvenience of roaming.” 
9 2016 Broadband Progress Report, FCC, 2016, p. 3. 
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Firstly, auction efficiency allows for the effective differentiation of spectrum access fees based on 

varied demands. For example, pricing can be adjusted to allow for access to advanced 

telecommunications capability from rural areas without necessarily underpricing spectrum for 

those living in urban areas. Secondly, by removing the need for license re-sales, an efficient auction 

eliminates transaction costs associated with secondary markets (Coase 1959) and hence improves 

overall access to telecommunication. Connolly, Lee and Tan (2016) argues that equal access to 

telecommunications is important to the extent that it allows for more equal access to economic 

opportunities and “unequal access to such technological tools can maintain or even worsen existing 

inequalities.”  

 

There are economic theories which posit that simultaneous English auctions can, under specific 

circumstances, fail to be perfectly efficient. Some potential sources of inefficiencies include: 

bidder intimidatory collusion and predatory pricing (Caillaud and Jehiel 1998; Engelbrecht-

Wiggans and Kahn 2005), 10  unilateral demand reduction to order to drive prices lower (Ausubel 

and Cramton 200211; Cramton and Schwartz 2001); difficulties in attaining aggregates of licenses 

which have complementaries12 (Cramton 1998). 

 

                                                                                                      
10 Particularly disappointing were the results of the 1997 auction of supplemental wireless communication service 
spectrum, in which many licenses sold for only nominal amounts of money (Gruley 1997). The auction, which had 
been expected to raise $1.8 billion, raised only $13.6 million (Economist 1997). A common feature of these 
disappointing auctions is that a relatively small number of bidders competed against each other on a relatively larger 
number of items. 
11 Ausubel and Cramton (2002) pp. 0 argues “In auctions where bidders pay the market-clearing price for items won, 
large bidders have an incentive to reduce demand in order to pay less for their winnings. This incentive creates an 
inefficiency in multiple-item auctions.” 
12 Cramton (1998) pp. 8 argues “Another source of inefficiency in the spectrum auctions comes from the difficulties 
firms may have in piecing together efficient sets of licenses.” 
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To study these possible efficiency variations, Fox and Bajari (2013) proposed the use of a 

maximum rank correlation estimator first introduced in Fox (2010a) to examine the determinants 

of a bidder’s valuation of a license. According to Fox and Bajari (2013), their new approach of 

efficiency evaluation improved upon existing economic analysis of spectrum auctions in these 

crucial ways– it 

 

1.   structurally estimates bidder valuation functions in a spectrum auction, enabling qualitative 

measurement of different valuation components;  

2.   does not determine a bidder’s valuation using first-order condition which implicitly 

assumes that bids are already good reflections of valuations;  

3.   allows for the inclusion of unobserved heterogeneity in bidder valuations; 

4.   does not use bid values data; 

5.   accommodates a large choice set for all bidders;   

6.   examines pairwise stability which has a definite solution even though a noncooperative, 

dynamic game has multiple Nash equilibria; and  

7.   measures complementarities among licenses and does not assume additive separability in 

valuation.  

 

Fox and Bajari (2013) test this estimator in a single Broadband Personal Communication Services 

(PCS) C Block auction in 1995-1996. A recent extension to Fox and Bajari’s work is the 

application of their model to the AWS-1 (2008) Auction in Canada by Hyndman and Parameter13 

                                                                                                      
13 Hyndman and Parmeter (2015), pp. 31 concludes “… in the absence of the set-aside was a spectrum allocation with 
no new entry and pre-existing market shares of the incumbents being largely unchanged. In this case, our results 
suggest an efficiency loss on the order of $400-500 million.” 
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(2015), in which the authors find that in the absence of a set-aside rule, upwards of $400 million 

in efficiency loss could have been avoided. The objective of our paper is to extend the work of 

Fox and Bajari (2013) by applying the same estimator to four other PCS C Block auctions held by 

the FCC between 1996 and 2007. Our work contributes directly to the empirical analysis first 

initiated by Fox and Bajari (2013). Furthermore, it attempts to improve upon the structural 

estimation of bidder valuation proposed by them by including a dummy variable which, we argue, 

could relate to cross-auction complementaries between licenses in a current auction and licenses 

that a bidder already owns. In addition to reducing bias in unobserved heterogeneity, our new 

estimation allows for the analysis of the differences in valuation between big and small players 

within an auction.  

  



Structural Estimation of FCC Bidder Valuation  

   9 

 
2.   Background of Chosen Auctions 

Broadband PCS refers to spectrum in the 1850 MHz to 1990 MHz range that are most commonly 

used in mobile voice and data services, including cell phone, text messaging and Internet services. 

Broadband PCS spectrum is similar in utility to the 700 MHz Service, Advanced Wireless Service, 

800 MHz Cellular and Specialized Mobile Radio spectrums. Broadband PCS auctions originated 

in 1993 when the FCC became aware of the need for rulemaking for the 1850 MHz to 1990 MHz 

spectrum. The FCC announced service rules for Broadband PCS and licensed 120 MHz of 

spectrum in 1993, with the remaining 20 MHz of unlicensed spectrum in the 1910 – 1915 and 1990 

– 1995 MHz range later becoming available under Block G for licensed used in 2015.   

  

  

Figure 1.  Block Classifications by the FCC based on Spectrum Frequencies 
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Our paper applies Fox (2010a)’s maximum rank correlation estimator to determine the relative 

significance of different components of bidder valuation for Auction 5, Auction 22, Auction 35 

and Auction 58. We have chosen to specifically examine only C-block auctions so as to hold 

constant both the type of spectrum being auctioned and the scope of the market being considered. 

It is particularly important that the latter is unchanged because part of Fox and Bajari (2013)’s 

structural estimation of bidder valuation is based on within-auction complementaries.  For example, 

in Auction 5, this within-auction complementaries would be that among C-block frequencies. If 

we had not taken out F-block license from Auction 35, then estimated values of within-auction 

complementaries in Auction 35 could include those between C-Block and F-Block licenses since 

a bidder could bid and win licenses from both blocks within the same auction. In these cases, the 

relative importance of within-auction complementaries in Auction 35 would be artificially inflated.   

 

Auction Dates 
Number 

of 
Licenses 

Number 
of 

Bidders 
Blocks 

Total 
Auction 
Revenue 

5 December 18th 1995 – 
May 6th 1996 493 89 C $13.4B 

22 March 23rd 1999 – April 
15th 1999 294 56 C $410M 

35 December 12th 2000 – 
January 26th 2001 355 33 C $13.9B 

58 January 26th 2005 – 
February 15th 2005 173 19 C $1.86B 

 

Table 1.  Information on the four PCS Broadband Auctions examined in this paper 
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A.   Auction No. 5 (1995-1996) 

 

Fox and Bajari (2013) apply their model solely on Auction 5. In this auction, all the licenses were 

specifically reserved for bidders that are classified as entrepreneurs, and to qualify as such, these 

bidders were typically small businesses required to have gross revenues of not more than $125 

million in each of the previous two years and total assets of not more than $500 million at point in 

time when the bidders file their FCC Form 175.14  Bidders were eligible for a bidding credit, which 

is a subsidy that depends on the average gross revenues for the previous three years of the bidder 

and installment payments were offered. A total of 255 bidders qualified for the auction, of which, 

89 of them won all 493 licenses in a total of 184 rounds, raising $13.4 billion. The largest single 

winner was NextWave Personal Communication, winning 56 licenses for a total of $4.2 billion.15  

 

B.   Auction No. 22 (1999) 

 

Auction No. 22 was a Broadband PCS C, D, E and F Block auction that began on 23 March 1999 

and closed on 15 April 1999, offering a total of 347 licenses (206 30 MHz C block, 133 15MHz C 

block, six 10 MHz E block and two 10MHz F block) for ten-year terms. The C and F block 

spectrum licenses were classified as Entrepreneur’s Blocks and specifically reserved for those who 

met the entrepreneur requirements, similar to Auction No. 5. Bidding credits were offered only for 

the C and F license blocks and no installment payment plans were offered. A total of 67 bidders 

qualified for the auction, of which, 57 of them won 302 licenses in a total of 78 rounds, raising 

                                                                                                      
14 In this case, the FCC Form 175, which requires bidders to disclose basic information about themselves, was due 
on November 6, about a month before the commencement of the auction.  
15 Kwerel and Rosston (2000) points out that all “top three bidders in the auction (NextWave, Pocket and GWI) have 
declared bankruptcy and the fourth largest bidder (BDPCS) failed to make the initial down payment. Their bids 
represented 75% of the $10 billion in C block net bids [in Auction 5].”  
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$533 million. Of these 57 winning bidders, 48 of them are small bidders. The largest single winner 

was VCook Inlet/VoiceStream PCS, winning 28 licenses for a total of $192 million.  

 

C.   Auction No. 35 (2000-2001) 

 

Auction No. 35 was a Broadband PCS C and F Block auction that began on 12 December 2000 

and closed on 26 Jan 2001, offering a total of 422 licenses (312 10 MHz C block, 43 15MHz C 

block and 67 10MHz F block) for a ten-year term. These license blocks were divided according to 

the nature of bidding (open or closed to large bidders) and its tiers (Tier 1 blocks were those with 

population more than 2.5 million and Tier 2 blocks were the remaining), which is shown in Table 

2. 
 

Channel 
Block 

Eligibility Status 

Tier 1 Tier 2 

C1 Open Closed 

C2 Open Closed 

C3 Closed Closed 

C4 Open Closed 

C5 Open Open 

 
Table 2. Breakdown of all C blocks based on tiered eligibility status (“Open” or “Close”) 

  
  
Some licenses were reserved only to entrepreneurs in “closed” bidding, while the rest were open 

to all bidders in “open bidding.” Similar to Auction No. 5 and 22, bidding credits were offered to 

small businesses that satisfied stipulated gross revenues requirements and no instalment payment 
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plans were offered. A total of 87 bidders qualified for the auction, of which, 35 of them won 422 

licenses in a total of 101 rounds, raising $17.6 billion. The largest single winner was Cellco 

Partnership, winning 113 licenses for a total of $8.8 billion.  

 

 

D.  Auction No. 58 (2005) 

 

Auction No. 58 was a Broadband PCS A, C, D, E and F Block auction that began on 26 January 

2005 and closed on 15 February 2005, offering a total of 242 licenses (two 30 MHz A block, 188 

10 and 15MHz C block, eleven 10 MHz D block, 20 10 MHz E block and 21 10MHz F block) for 

ten-year terms. These license blocks were divided according to the nature of bidding (open or 

closed) and their population size (Tier 1 blocks were those with population more than 2.5 million 

and Tier 2 blocks were the remaining).  

 

Specific C block licenses were reserved for entrepreneurs (qualifying requirements similar to 

previous auctions) in a “closed” bidding, while the rest are available to all bidders in “open” 

bidding. Bidding credits were offered only for the C and F license blocks and no instalment 

payment plans were offered. A total of 35 bidders qualified for the auction, of which, 24 of them 

won 217 licenses in a total of 91 rounds, raising $2.3 billion. The largest single winner Cellco 

Partnership, winning 26 licenses for a total of $365 million.  
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3.   Structural Estimation of Bidder Valuation 

 

A.   Fox and Bajari (2013)’s Valuation Function16 

 

We now introduce the component of a bidder’s profit function as proposed in Fox and Bajari 

(2013). Bidders of an auction are defined as:  

𝑥 = 1,… , 𝑋	   ∈ 𝕏 

and licenses for sale are noted as  

𝑗 = 1,… , 𝐿	   ∈ 𝕃. 

Any subset of licenses can be rewritten as 

𝑗 = 1,… , 𝐽	   ∈ 𝕁	    

where 𝕁	   ⊂ 𝕃. A bidder 	  𝑥’s valuation of any set of licenses 𝕁 is dependent on its own bidder 

characteristics and also characteristics of those licenses within the package, and will be written 

generally as 𝜋1(	  𝕁	  ). This can be expressed as  

 

(1)  	   	   	   	   𝜋1 	  𝕁	   = 	  𝜋𝜷 𝑥, 𝕁	   +	   𝜉77∈𝕁 + 𝜖1,77∈𝕁 	  	  	  

 

where 𝜋𝜷 𝑥, 𝕁	    is parameterized by a finite vector of parameters 𝛽 constant within each auction 

and is depended deterministically on characteristics of the bidder x and the set of licenses being 

considered	  	  𝕁.  𝜉7 represents the additive separable fixed effect which captures the component of 

valuation assigned to the each license common to all bidders, and 𝜖1,7 is a private idiosyncratic 

value specific to license j and bidder x not known to the researcher.  

                                                                                                      
16 See Fox and Bajari (2013) Sec. II B for a list of assumptions and their corresponding justifications implicit 
in their model.  
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In particular, Fox and Bajari (2013) chose for 𝜋𝜷 𝑥, 𝕁	    to be described as follows 

 

(2)                 𝜋: 𝑥, 𝕁	   = 	  𝛽;. 𝑒𝑙𝑖𝑔1	  . ( 𝑝𝑜𝑝7)7∈𝕁 +	  𝛽C. 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁 + 𝛽F. 𝑡𝑟𝑎𝑣𝑒𝑙𝑐𝑜𝑚𝑝𝕁	  	  	  	     

 

where 𝑒𝑙𝑖𝑔1 is the population that a bidder is eligible to bid for based on their eligibility 

downpayment, 𝑝𝑜𝑝7 is the population size of each license, 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁 is a variable which 

measures the total within-auction geographical complementaries of license set 𝕁, and 

𝑡𝑟𝑎𝑣𝑒𝑙𝑐𝑜𝑚𝑝	  𝕁 is a similar variable which measures the total within-auction ease-of-travel 

complementaries of license set  𝕁.  

 

Fox and Bajari (2013) find that initial eligibility strongly correlates to the size of the bidder and 

the likelihood of the bidder winning a license. Initial eligibility is therefore chosen as a variable to 

interact with 𝑝𝑜𝑝77∈𝕁  in order to “…capture [the] assortive matching between bidders with 

higher values and packages of licenses with more population.”17  	  𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁 and 𝑡𝑟𝑎𝑣𝑒𝑙𝑐𝑜𝑚𝑝	  𝕁 

are nonlinear and non-additive constructions of license and bidder characteristics as follow– 

 

(3)                    𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁 = 	   𝑝𝑜𝑝K 	  

LMLNLMLO
PNQRN,O

SO	  ∈	  𝕁,T	  UV	  

LMLNLMLO
PNQRN,O

SO	  ∈	  𝕃,T	  UV	  
K	  ∈	  𝕁 	    

and  

 

(4)     𝑡𝑟𝑎𝑣𝑒𝑙𝑐𝑜𝑚𝑝	  𝕁 = 	   𝑝𝑜𝑝K 	  
WXKYZ([XK\K]	  KZ	  K,^_ZWK]`WK[]	  KZ	  7)O	  ∈	  𝕁,T	  UV	  

WXKYZ([XK\K]	  KZ	  K,^_ZWK]`WK[]	  KZ	  7)O	  ∈	  𝕃,T	  UV	  
K	  ∈	  𝕁 	   , 

                                                                                                      
17 Fox and Bajari (2013), pp. 10 
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where 𝑑𝑖𝑠𝑡K,7 is the geographical distance between the population-weighted centroid of each 

license, and 𝑡𝑟𝑖𝑝𝑠(𝑜𝑟𝑖𝑔𝑖𝑛	  𝑖𝑠	  𝑖, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛	  𝑖𝑠	  𝑗) is the total number of air-travel from 

geographical region of license i to geographical region of license j in a given year.18  

 

B.   Omission of Travel Complementaries 

 

Our paper has omitted the 𝑡𝑟𝑎𝑣𝑒𝑙𝑐𝑜𝑚𝑝	  𝕁 in the application of Fox and Bajari (2013)’s structural 

estimation and pairwise stability estimator on Auction 5, 22, 35 and 58. This is justified on three 

grounds. Firstly, we found no reliable and complete data on American travel for periods after 1998 

to accurately measure travel frequencies. Secondly, existing air travel data are based on locales 

which do not correspond exactly to the geographical boundaries of spectrum licenses; this means 

that it is possible for a license located 100 kilometers from the airport to have the same travel 

complementaries measure as one located right next to the airport. Lastly, when Fox and Bajari 

omitted 𝑡𝑟𝑎𝑣𝑒𝑙𝑐𝑜𝑚𝑝	  𝕁  and reapplied their amended model on the same dataset, i.e. Auction 5, 

there was no significant change in maximum pairwise stability score attained;19 this implied that a 

large part of the variation in 𝑡𝑟𝑎𝑣𝑒𝑙𝑐𝑜𝑚𝑝	  𝕁 which relates to variations in bidder valuation was 

                                                                                                      
18 An intuitive way to think about geographical complementaries is to think of it as a cumulative total of licenses in a 
set, each multiplied by a respective weight. This weight gives a proxy of the valuation of that license derived from its 
“geographic synergy” with other licenses that same set. For example, we would expect a similar license to be of 
highest “geographic synergy” when this license is owned in conjunction with all other licenses and of lowest 
“geographic synergy” if this license is owned in isolation. As explained by Fox and Bajari (2013), the complementary 
proxy can be motivated as follows. “Consider a mobile phone user in a home market i. That mobile phone user 
potentially wants to use his phone in all other markets. He is more likely to use his phone if there are more people to 
visit, so his visit rate is increasing in the population of the other license, j. The user is less likely to visit j if j is far 
from his home market i, so we divide by the distance between i and j. We care about all users equally, so we multiply 
the representative user in i’s travel experience by the population of i. 
19 With the inclusion of 𝑡𝑟𝑎𝑣𝑒𝑙𝑐𝑜𝑚𝑝	  𝕁,	  Fox and Bajari found a maximum rank correlation estimate of 0.960. Without 
𝑡𝑟𝑎𝑣𝑒𝑙𝑐𝑜𝑚𝑝	  𝕁,	  the estimate was 0.956.  
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already explained by variations in either 𝑒𝑙𝑖𝑔1	  . ( 𝑝𝑜𝑝7)7∈𝕁 	   or  𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁, and we do not lose 

much explanatory power when omitting 𝑡𝑟𝑎𝑣𝑒𝑙𝑐𝑜𝑚𝑝	  𝕁. 

 
 

C.   Replacement of eligibility with downpayment 
 
Our paper has chosen to replace 𝑒𝑙𝑖𝑔1, expressed in terms of population in Fox and Bajari (2013), 

with the downpayment amount 𝑑𝑜𝑤𝑛1 required to attain that 𝑒𝑙𝑖𝑔1. In Auction 5, the required 

downpayment amount is calculated as 1.5 cents per MHz-individual for any license, and all 

licenses are fixed at 30MHz. As such, in Auction 5, 𝑑𝑜𝑤𝑛1 and 𝑒𝑙𝑖𝑔1	  are related to each other by 

a fixed scalar multiple. However, in subsequent auctions, it is difficult to convert the downpayment 

number into a population figure. In these later auctions, licenses are segmented into 10Mhz, 15Mhz 

and 30MHz blocks, and there is no way to know ex-ante for which licenses a bidder is putting his 

downpayment. This replacement of variable is appropriate for us to compare across auctions, 

without losing the intended effects captured by initial eligibility in the first place.   

 

D.  Modified Valuation Function  

 

While Fox and Bajari (2013)’s description of πf x, 𝕁	    is consistent in providing a deterministic 

structural estimation for bidder valuation in Auction 5, we anticipate that it would have difficulties 

accommodating open auctions which involve bigger players. This is because Fox and Bajari (2013) 

considers within-auction geographical complementaries, but not those complementaries between 

licenses sold in the particular auction and those already owned by the bidder. In Auction 5 which 

is open only to small bidders, the impact of these cross-auction complementaries is likely to be 
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small, and could therefore be absorbed into the private exogenous term ϵi,j without creating much 

problem.  

 

Our paper posits that such a setup would however have lower maximum pairwise stability 

matching when used to estimate valuation functions in auctions involving bigger players. This is 

because, based on Fox and Bajari (2013)’s model, a big bidder who does not buy much from an 

auction but nonetheless values a license because it complements many of their pre-existing 

spectrum ownership would be assigned a low bid valuation 𝜋𝜷 𝑥, 𝕁	   . If the big bidder eventually 

wins the license following a high bid that accurately signals the high cross-auction 

complementaries, Fox and Bajari (2013)’s scoring estimator would still likely count such an 

outcome as pairwise unstable.  

 

Expanding the existing 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁 variable to include the set of licenses already owned by the 

bidder would most accurately endogenize the cross-auction complementaries. However, while this 

is conceptually simple, it is empirically extremely difficult. This is because pre-auction ownership 

is a mixed result of bids in multiple past auctions, private purchases in secondary spectrum license 

markets and corporate mergers or acquisitions–all of which are difficult to accurately keep track 

of. Instead, we introduce a dummy variable 𝛿1,7 which is bidder- and license-specific as a proxy 

term indicating the existence of significant cross-auction complementaries. It is defined as follows   

 

(5)                   𝛿1,7 = 	  

	  	  	  	  	  1	  	  	  	  	  	  	  	  	  	  	  if	  bidder	  x	  made	  a	  bid	  for	  license	  j	  and	  
is	  not	  eligibile	  for	  bid	  credit

	  
	  

	  	  	  	  	  0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  otherwise	  	  	  	  	  	  

	   . 
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The modified valuation function then becomes 

 

(6)                    𝜋: 𝑥, 𝕁	   = 	  𝛽;. 𝑑𝑜𝑤𝑛1	  . ( 𝑝𝑜𝑝7)7∈𝕁 +	  𝛽C. 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁 + 𝛽F. 𝛿1,77∈𝕁 	  	  	  	     

 

in which the cross-auction complementaries dummy 𝛿1,7	  can be motivated as such. A big bidder, 

one who is not eligible for bid credit, would more likely have existing ownership of spectrum. This 

means that, compared to small player, a big bidder is likely to enjoy a significant degree of cross-

auction complementaries. Still, a bidder does not enjoy cross-auction complementaries for all 

licenses simply by virtue of being big. Instead, similarly to within-auction complementaries, a 

bidder only enjoys complementaries for licenses which are geographically close to those it already 

owns. We make the assumption that one key way in which that big bidder reveals the existence of 

these license-specific cross-auction complementaries is when it places some bid for that particular 

license. Therefore, we assign 𝛿1,7 to be 1 only if both conditions are met. Consequently, we think 

that a significant part of the estimation of 𝛽F. 𝛿1,77∈𝕁 	  would theoretically be composed of these 

cross-auction complementaries.  
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4.   Data and Methodology 

 

A.   Data for the Covariates 

 
Our paper uses FCC auction data obtained from the Center for Study of Auctions, Procurements 

and Competition Policy at Pennsylvania State University20 to generate license- and bidder- specific 

variables such as 𝑑𝑜𝑤𝑛1	  [in dollars], 𝑝𝑜𝑝7 [in persons] and 𝛿1,7	   for all 𝑗 ∈ 	  𝕃	  and  𝑥	   ∈ 𝕏.   We 

have also intentionally removed all licenses that are not in the C block for each of the auctions for 

reasons detailed earlier in this paper. To generate geographical complementary 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁, the 

latitude and longitude coordinates for each of the licenses are generated using the Christos 

Samaras’s VBA Google Geocoding Functions21 based on market descriptions provided by the FCC, 

and distances 𝑑𝑖𝑠𝑡K,7	  [in kilometers] are calculated using a Haversine function we wrote to account 

for the Earth’s spatial curvature.   

 

For the purpose of testing pairwise stability, it is necessary to find the respective license sets won 

by each bidder x. We define the license set won by bidder x to be a specific	  𝕁 noted as 𝕁	  𝒙 ⊂ 𝕃. 

Accordingly, 𝕁	  𝒙 are non-overlapping for all x, and if all licenses are sold, then 

 

𝕁	  𝒙 = 𝕃	  1	  ∈	  𝕏 .	  

	  

                                                                                                      
20 These FCC auction data can be accessed online directly at http://capcp.psu.edu/data-and-software/fcc-
spectrum-auction-data.  
21  Christo Samaras’s VBA Google Geocoding Functions is published for public use at 
http://www.myengineeringworld.net/2014/06/geocoding-using-vba-google-api.html.  
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Utilizing this new notation, 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁	  𝒙  would be defined as the specific geographical 

complementaries of the set of licenses won by bidder x. The summary statistics of the three key 

covariates in the proposed bidder valuation function– 𝑑𝑜𝑤𝑛1,	   𝑝𝑜𝑝7, and	  𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁	  𝒙	  	  is outlined 

in Table 3.22  

 
Variable Auction Mean StandardDev Minimum Maximum 

𝑑𝑜𝑤𝑛1  

5 305 million 8.35 x 108 0.83 million 79.23 million 

22 5.08 million 1.06 x 107 33,000 50.0 million 

35 39.0 million 6.35 x 107 6,400 239 million 

58 11.6 million 1.19 x 107 0.14 million 36.9 million 

𝑝𝑜𝑝7
7∈𝕁	  𝒙

 

5 2.83 million 1.08 x 106 2,500 93.8 million 

22 1.89 million 4.13 x 106 316,700 18.9 million 

35 10.41 million 2.46 x 107 687,000 118.9 million 

58 10.41 million 1.14 x 107 989,200 37.0 million 

𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁	  𝒙  

5 0.92 million 4.75 x 106 0 42.6 million 

22 0.48 million 1.50 x 106 0 8.24 million 

35 2.06 million 7.24 x 106 0 41.3 million 

58 1.36 million 1.98 x 106 0 7.09 million 
 
Table 3.  Summary statistics of 𝑑𝑜𝑤𝑛1,	   𝑝𝑜𝑝77∈𝕁	  𝒙 𝑎𝑛𝑑	  𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁	  𝒙 across winning bidders in Auctions 

5, 22, 35 and 58 
 

 

To normalize the data, we divide values of 𝑑𝑜𝑤𝑛1 by the total downpayment required to obtain 

all licenses in each specific auction. This number is released by the FCC in an information package 

prior to every auction. Next, we divide all values of 𝑝𝑜𝑝7 by the total population size in each 

specific auction. We divide 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁	  𝒙 by the geographical complementaries exhibited for a set 

                                                                                                      
22 The statistics based on the (x x j) matrix for 𝛿1,7 can be found in the Appendix.  
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encompassing all licenses each specific auction, i.e. 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕃; it is useful to note that 

𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕃	  in each specific auction is also equivalent to the total population size of that auction. 

Lastly, we divide 𝛿1,7 by the total number of licenses for sale in each auction. The summary 

statistics of the three normalized key covariates in the proposed bidder valuation function– 

𝑑𝑜𝑤𝑛1,	   𝑝𝑜𝑝7, and	  𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁	  𝒙	  	  is outlined in Table 4.23  

 

Variable Auction Mean StandardDev Minimum Maximum 

𝑑𝑜𝑤𝑛1  

5 0.040 0.110 0.000 0.697 

22 0.032 0.066 0.000 0.314 

35 0.194 0.315 0.000 1.187 

58 0.114 0.117 0.001 0.362 

𝑝𝑜𝑝7
7∈𝕁	  𝒙

 

5 0.0112 0.00426 0.00001 0.3714 

22 0.0179 0.0391 0.003 0.1786 

35 0.0303 0.0716 0.002 0.3462 

58 0.0526 0.0576 0.005 0.1868 

𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁	  𝒙  

5 0.004 0.019 0.000 0.169 

22 0.005 0.014 0.000 0.078 

35 0.006 0.021 0.000 0.120 

58 0.007 0.010 0.000 0.036 
 

Table 4. Summary statistics of normalized values of 𝑑𝑜𝑤𝑛1,	   𝑝𝑜𝑝77∈𝕁	  𝒙 𝑎𝑛𝑑	  𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁	  𝒙 across 
winning bidders in Auctions 5, 22, 35 and 58 

 
 
 
 
 
 
 
 
 

                                                                                                      
23 The statistics based on the normalized (x x j) matrix for 𝛿1,7 can be found in the Appendix.  
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B.  Pairwise Stability  

 

Consider two bidders, 𝑥C, 𝑥F 	  ∈ 𝕏, who won license sets 𝕁	  𝒙𝟏and 𝕁	  𝒙𝟐 respectively. Their valuation 

of their won sets are defined as 𝜋1� 𝕁	  𝒙𝟏	    and 𝜋1S 𝕁	  𝒙𝟐	   . The allocation of resources between 

these two bidders is defined to be pairwise stable if–  

(7)           πi� 𝕁	  i�	   + 	  πiS 𝕁	  iS	   	  ≥ 	  πi� 𝕁	  i� 	  ∖ i ∪ j +	  πiS 𝕁	  iS 	  ∖ j ∪ i 	   

 

for all 𝑖	   ∈ 	   𝕁	  𝒙𝟏	  and 𝑗	   ∈ 	   𝕁	  𝒙𝟐. 24   This means that there must be no possible way for these two 

bidders to exchange one-for-one their licenses in order to increase their collective profits. Since 

fixed effects 𝜉7	  are additively separable and common to both bidders, and since further private 

values 𝜖1,7	  are assumed to be random, they cancel out on both sides of the inequality. (7) can 

therefore be equivalently expressed as 

 

(8)     𝜋: 𝑥C, 𝕁	  𝒙𝟏	   + 	  𝜋: 𝑥F, 𝕁	  𝒙𝟐	   	  ≥ 	  𝜋: 𝑥C, 𝕁	  𝒙𝟏 	  ∖ 𝑖 ∪ 𝑗 + 𝜋: 𝑥F, 𝕁	  𝒙𝟐 	  ∖ 𝑗 ∪ 𝑖 	   

 

We note that pairwise stability only considers the pairwise exchange of one license and not 

multiple licenses simultaneously. It does not consider the possibility of a bidder	  “donating” a 

license to another bidder without receiving a license in return. It also does not allow for more than 

two players to swap licenses among themselves simultaneously. Hence, pairwise stability has been 

sometimes criticized as a weak concept.25   

                                                                                                      
24 The definition follows from Jackson and Wollinsky (1996). 
25 Jackson (2003), pp. 19 “First, it is a weak notion in that it only considers deviations on a single link at a time. This 
is part of what makes it easy to apply. However, if other sorts of deviations are viable and attractive, then pairwise 
stability may be too weak a concept.” 
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While there are stronger definitions of stability or efficiency that allow for larger groups of players 

to deviate from the allocation such as those mentioned by Dutta and Mutuswami (1997), it is not 

computationally feasible to consider every configuration of licenses among the bidders of each 

auction26.  Jackson (2003) considered the interactions between pairwise stability and different 

forms of efficiency and found cases in which networks that are pairwise stable are also efficient. 

While pairwise stability is certainly a weaker condition than allocative efficiency, Fox (2010b) 

proved that nonparametric identification of the valuation function can work equally well from 

conditions of pairwise stability as conditions of efficiency.  

 

C.  Scoring Algorithm and Structural Estimator 

 
Using this definition of pairwise stability, for each auction, we find the vector of parameters 𝛽 that 

maximizes the total number of pairwise stable configurations among all bidders. Similar to how a 

regression finds the optimal parameterization of covariates to best-fit a set of observable outcomes, 

Fox (2010a)’s structural estimator finds the optimal parameterization of valuation components to 

best-fit the observed auction pairwise outcomes. In the case of a regression, “best-fit” could be 

defined, say, as the minimization of sum of the squares of the difference between an observed 

value and the value by the structural estimation. In the case of Fox (2010a)’s estimator, “best-fit” 

is defined as the maximization of pairwise stable configurations.  

 

 

 

                                                                                                      
26 See Appendix C for a breakdown of estimated runtimes for different definitions of pairwise stability.  
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Specifically, in Fox and Bajari (2013), the scoring objective function to be maximized is defined 

as– 

 

(9)   F β = 	   𝟏	   popjj	  ∈	   𝕁	  ��	  ∖ � ∪ j ≤	  
j∈	  𝕁	  �S

	  
�∈	  𝕁	  ��

�
iS�i��C

��C
i��C

elig	  i�, popjj	  ∈	   𝕁	  �S	  ∖ j ∪ � ≤ elig	  iS	  	   . 𝟏	  [πf xC, 𝕁	  i�	   + 	  πf xF, 𝕁	  iS	   	  ≥ 	  πf xC, 𝕁	  i� 	  ∖

i ∪ j + πf xF, 𝕁	  iS 	  ∖ j ∪ i ]	   

 

where 𝟏[.] is an indicator function and H is the number of winning bidders. The objective function 

counts the number of pairwise stable configurations which do not violate the initial population 

eligibility limit of each bidder. Cases where, say, both bidder 𝑥C	  and bidder 𝑥F are not able to be 

collectively better off if they swap one-to-one, but where at least one of them is unable to 

accommodate the new license due to initial eligibility constraints, would not count as a stable pair. 

This logical interaction of 𝟏	   popjj	  ∈	   𝕁	  ��	  ∖ � ∪ j ≤ elig	  i�, popjj	  ∈	   𝕁	  �S	  ∖ j ∪ � ≤

elig	  iS	  	   . 𝟏	  [πf xC, 𝕁	  i�	   + 	  πf xF, 𝕁	  iS	   	  ≥ 	  πf xC, 𝕁	  i� 	  ∖ i ∪ j + πf xF, 𝕁	  iS 	  ∖ j ∪

i ]	   is presented in Figure 2.  

 Both bidder better 
off after swap [0] 

Both bidder worse off 
after swap [1] 

Eligibility limits 
allow for swap to 

happen [0] 
0 1 

Eligibility limits do 
not allow for swap 

to happen [1] 
0 0 

 

Figure 2. Value of Fox and Bajari (2013)’s interacting indicator functions under different cases 
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In Figure 2, a value of 1 signifies pairwise stability and a value of 0 signifies the lack thereof. In 

our paper, we have chosen instead to relax the latter assumption, and consider bottom-right cases 

in Figure 2 as pairwise stable. Intuitively, we think this new methodology allows for a fairer 

assessment of pairwise stability; if a pair of bidders was already not going to swap their licenses 

because the new collective valuation is poorer, an external imposition of a restriction which 

prevent them from doing what they do not want to do in the first place should not make them 

pairwise unstable.   

 

Therefore, we use a modified scoring objective function defined as follows–  

 

(10)    F β = 	   𝟏	  [πf xC, 𝕁	  i�	   + 	  πf xF, 𝕁	  iS	   	  ≥
	  
j∈	  𝕁	  𝒙𝟐

	  
�∈	  𝕁	  𝒙𝟏

�
iS�i��C

��C
i��C

	  πf xC, 𝕁	  i� 	  ∖ i ∪ j + πf xF, 𝕁	  iS 	  ∖ j ∪ i ]	   

 

and the logical interactions of 𝟏	  [πf xC, 𝕁	  i�	   + 	  πf xF, 𝕁	  iS	   	  ≥ 	  πf xC, 𝕁	  i� 	  ∖ i ∪ j +

πf xF, 𝕁	  iS 	  ∖ j ∪ i ] is represented in Figure 3.  

 Both bidder better 
off after swap 

Both bidder worse off 
after swap 

Eligibility limits 
allow for swap to 

happen 

0 1 
Eligibility limits do 
not allow for swap 

to happen 

 

Figure 3.  Value of this paper’s pairwise scoring indicator function under different cases 
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Computationally, we design an algorithm which considers each distinct pair of owners, and iterates 

through every possible one-for-one exchange between the owners’ license sets. After the swap is 

conducted, the new result obtained from the valuation function is compared to the value before the 

swap. Whenever we find that the new result does no better than the old one, we add one to the 

score counter.  The final value of the score counter after all swaps are considered is then divided 

by the total number of swaps to give us a score between 0 and 1 that reflects the pairwise stability–

or degree of “best-fit”–of the actual allocation of licenses. 

 

The algorithm is run repeatedly for different guesses of 𝛽. We normalize 𝛽0  to be ±1	  so as to limit 

the range that the estimator 𝛽 can be found. This does not materially change the validity of our 

estimator as the scaling factor would be canceled out on both sides of the inequality in (8). A 

noteworthy observation is that the scores were neither strictly decreasing nor increasing with 

changes in guesses of 𝛽 , so it is possible to have a range of non-unique values of 𝛽  which 

maximizes the objective function.  

 

 
There are a few things to note when designing 𝜋: 𝑥, 𝕁	   . It is prudent to ensure that each 

parameterized component of the valuation function varies to both bidder- and license- 

characteristics in a nonlinear manner.  For instance, suppose that we design a structural estimation 

valuation function to be 𝜋: 𝑥, 𝕁	   = 	  𝛽;. 𝑑𝑜𝑤𝑛1	  	  such that the component is not dependent on 

license characteristics. Then 𝛽;. 𝑑𝑜𝑤𝑛1	   would not change for all possible one-to-one swaps. It 

follows that if 𝑑𝑜𝑤𝑛1� > 𝑑𝑜𝑤𝑛1S,	   then 𝜋: 𝑥C, 	  	  𝕁1�	   > 	  𝜋: 𝑥F, 	  	  𝕁1S 	  always; we will find that 

there are infinitely many possible estimation of 𝛽;. Now, suppose that the valuation function is 
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𝜋: 𝑥, 𝕁	   = 	  𝛽;. 𝑝𝑜𝑝77∈𝕁  instead. Then, 𝛽;. 𝑝𝑜𝑝77∈𝕁 	  becomes a license fixed effect common to 

all bidders; this means that all bidders will value the license equally. This fixed effect would be 

canceled out on both sides of the inequality (8). Obviously, both problems would still exist even 

if we define the valuation function as  𝜋: 𝑥, 𝕁	   = 	  𝛽;. 𝜉1,	  	  	  𝕁	  , where 𝜉1,	  	  	  𝕁 is some covariate that is 

a linear combination of a bidder-only characteristic and a license-only characteristic, e.g. 𝜉1,	  	  	  𝕁 =

𝑑𝑜𝑤𝑛1 + 2	   𝑝𝑜𝑝77∈𝕁 . 
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5.   Results 

A.   Estimating Fox and Bajari (2013)’s model27 

 

Our paper tests the explanatory power of the following adapted structural estimation first proposed 

by Fox and Bajari (2013): 

 

(11)                   𝜋: 𝑥, 𝕁	   = 	  ±1. 𝑑𝑜𝑤𝑛1	  . ( 𝑝𝑜𝑝7)7∈𝕁 +	  𝛽C. 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁.  

 

The results of the estimation are outlined in Table 5. The parameters are those which best optimizes 

the scoring objective function. The pairwise stability score is the corresponding percentage of 

pairwise stable configuration based on the optimized parameters.  

 

Auction ±𝟏 𝜷𝟏 Percentage of Pairwise 
Stable Configurations  

5 +1 13.4 96.3% 

22 +1 9.3 90.6% 

35 +1 10.3 72.2% 

58 +1 1.4 67.3% 

 
Table 5.  Results of Fox and Bajari (2013) estimator when applied on Auctions 5, 22, 35 and 58  

 

 

 

 

                                                                                                      
27 See Fox and Bajari (2013) Sec. II B for a list of assumptions and their corresponding justifications implicit in their 
model.  
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B.   Estimating our Modified Valuation Function 

 

We then test the explanatory power of the modified structural estimation proposed earlier in this 

paper: 

 

(12)                    𝜋: 𝑥, 𝕁	   = 	  ±1. 𝑑𝑜𝑤𝑛1	  . ( 𝑝𝑜𝑝7)7∈𝕁 +	  𝛽C. 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁 + 𝛽F. 𝛿1,77∈𝕁 	  	  	     

 

Similarly, the results of the new estimation are outlined in Table 6.  

 

Auction ±𝟏 𝛃𝟏 𝛃𝟐 Percentage of Pairwise 
Stable Configurations  

5 +1 13.4 -28 96.3% 

22 +1 6.8 20.0 92.1% 

35 +1 7.4 19.2 87.0% 

58 +1 1.2 10.2 79.5% 

 
Table 6.  Results of our modified estimator when applied on Auctions 5, 22, 35 and 58  

  
 

 
  

                                                                                                      
28 Note that Auction 5 has a βF value that is undefined because the entire auction is closed, meaning only small bidders 
are allowed in the auction.   
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6. Discussion 

A.  Modifying Scoring Algorithm  

 

As discussed earlier, our paper modifies the scoring objective function used in Fox and Bajari 

(2013) in order to employ a less restrictive definition of pairwise stability. We explain in Section 

4 that this would better capture the true valuation of the bidder–one which is independent of auction 

mechanics. As a result, even without the inclusion of the dummy variable 𝛿1,7, our estimates for 

𝛽Cin Auction 5 differs from that found in Fox and Bajari (2013).  

 

Objective Function 
Used ±1 𝛽C Percentage of Pairwise 

Stable Configurations 

With eligibility 
restrictions +1 1.06 0.956 

Without eligibility 
restrictions +1 13.4 0.963 

 
Table 7.  Comparing estimator results for Auction 5 with and without eligibility restrictions in scoring  

 

Both scoring objective functions give roughly similar maximum pairwise stability scores. 

However, our methodology results in a higher coefficient for geographical complementaries as a 

component in bidder valuation. We can interpret the higher 𝛽C to be indicating the existence of 

pairs consisting of bidders who (i) derive significant valuation from geographical complementaries 

such that they (ii) would not collectively do better after swapping one-for-one with another bidder, 

and (iii) could not swap even if they had wanted to due to eligibility constraints. Dissimilar to Fox 

and Bajari (2013), we think that these bidder pairs should count towards the the pairwise stability 

score.  
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Since we normalized the coefficient of 𝑑𝑜𝑤𝑛1	  . ( 𝑝𝑜𝑝7)7∈𝕁  to be ±1, 	  𝛽C  represents the relative 

importance of the geographical complementaries valuation component 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁	  vis-à-vis that 

of the assortive matching between bidders who paid higher levels of downpayment and packages 

with more population, 𝑑𝑜𝑤𝑛1	  . ( 𝑝𝑜𝑝7)7∈𝕁 . Using the new scoring objective function, our 

estimated 	  𝛽C is 13 times that of Fox and Bajari (2013)’s. We think that Fox and Bajari (2013)’s 

methodology of scoring pairwise stability may have understated the importance of geographical 

complementaries in determining Auction 5 bidder valuation.  

 

B.   Relationship of Auction Estimator to the Number of Licenses 

 

Based on the replicated Fox and Bajari (2013) structural estimation of bidder valuation (without 

the inclusion of dummy variable 𝛿1,7), as the number of licenses in an auction decreases, the 

importance of 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁 falls. This is observed from the positive correlation between 𝛽C and the 

number of licenses.  

 

Figure 4.  Relationship of Fox and Bajari (2013) within-auction geographical complementarity estimator 
𝛽C	  to the number of licenses  in Auctions 5, 22, 35 and 58 
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We normalize our data by dividing 𝑑𝑜𝑤𝑛1, 𝑝𝑜𝑝7, 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁 by their respective theoretically-

attainable maxima specific to each auction, in order to be able to interpret the relative importance 

of variables across auctions. It is to be expected that the average value of within-auction 

complementaries would fall when the number of licenses decreases; this is because in auctions 

where only a small subset of total license set is up for sales, there are going to be many missing 

pieces when a bidder tries to build geographical complements. In other words, the average quality 

of within-auction geographical complementaries falls.  

 

We posit that much of this missing within-auction geographical complementaries would instead 

be consigned to what our paper classifies as cross-auction geographical complementaries. An 

analysis of the estimators obtained in our modified structural estimator gives support to this 

hypothesis, assuming that 	  𝛿1,7 is indeed correlated to the unobserved cross-auction 

complementaries valuation component. Figure 5 shows the relationship between the ratio of the 

estimated coefficient of the big bidder dummy, 	  𝛿1,7, to that of 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁 and the number of 

licenses across the auctions we have tested. 
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Figure 5. Illustration of how the 𝛽2
𝛽1

 changes with the number of licenses in an auction  

 

As shown, the relative importance of cross-auction complementaries increases as the number of 

licenses decreases. In Auction 58, for a theoretical big bidder who bid and bought all 173 licenses, 

their total valuation based on our model is 1*1*1 + 1.2*1 + 10.2*1 = 12.4. Out of the bidder’s total 

valuation, 82% comes from the supposed cross-auction complementaries and about 10% comes 

from within-auction complementaries. In contrast, in the bigger Auction 35, a theoretical big 

bidder who bid and bought all 355 licenses, would have a total valuation of 1*1*1 + 7.4*1 + 19.2*1 

= 27.6, of which only approximately 70% comes from the supposed cross-auction 

complementaries and 27% comes from within-auction complementaries. 
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C.   Goodness-of-fit Improvement 

 

While the replicated structural estimation used in Fox and Bajari (2013) is strong in explaining 

much of the pairwise configurations observed in Auction 5, it was considerably weaker in 

explaining subsequent auctions which included big bidders, i.e. Auction 22, 35 and 58. We observe 

that the weakness of the model worsens as the proportion of big bidders to small bidder’s increases.  

 

Auction Percentage of 
Big Bidders 

Maximum 
Pairwise Stability 

5 0% 96.30% 

22 13.79% 90.60% 

35 18.18% 72.20% 

58 26.32% 67.30% 

 
Table 8. Percentage of big bidders and pairwise stability score based on Fox and Bajari (2013) 

 

The inclusion of the dummy variable 𝛿1,7 which supposedly correlates to the existence of cross-

auction complementaries increases the strength of the structural estimation. The improvement in 

maximum pairwise stability score is presented graphically in Figure 6.  
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Figure 6.  Pairwise stability improvements upon inclusion of big bidder dummy variable  
 

Our results show significant variation in the inherent valuation structure between small and big 

bidders in C block auctions. In our discussion, we have presented some evidence that these 

valuation differentials could be due to cross-auction complementaries. However, more work needs 

to be done to verify if the same trends can be observed in other spectrum auctions and to test 

competing hypotheses of what the big bidder dummy could represent. Where these differentials 

come from has particularly consequential implications for FCC auction design. If big bidders are 

valuing licenses more because they have better access to cross-auction complementaries or wider 

economies of scale, then the FCC should ideally design auctions to provide incentives for these 

bigger players to signal their value differentials. In this way, licenses can be allocated to these 

bigger players such that cross-auction complementaries would not be lost from total welfare.   

However, if big bidders are valuing licenses more as means of intimidatory pricing or to 

unilaterally enact high barriers of entry in the spectrum market to further their own profit motives, 

then the FCC might want to eliminate these differentials from auction bids so as to countervail 

monopoly power and protect end consumers.    
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To supplement policy analysis, we run counterfactual simulations on the auctions involving big 

bidders (i.e. Auctions 22, 35 and 58) where we assume that a tax on big bidders is imposed by the 

FCC. Note that this is isomorphic to small bidders receiving bid credits in open auctions including 

big bidders.  In these simulations, we use the estimated parameterizations of valuation components 

for each auction to generate numerical bidder valuations before subtracting a tax amount. A single 

unit of tax is measured as a percentage 𝛼 of the maximum valuation of a monopolist bidder who 

bids and wins all licenses in an auction, divided by the total population represented in all licenses 

won by big bidders– 

 

(13)                       𝑢𝑛𝑖𝑡𝑇𝑎𝑥 = 𝛼	   ±C�	  :�	  �:S	  	  
Y[YOO∈𝕁��∈𝕏𝒃𝒊𝒈

	     

 

where 𝕏�K\ is the set of all big bidders in an auction.  

 

 

For all bidders, their new post-tax valuation function then becomes as follows 

 

(14)            𝜋:′ 𝑥, 𝕁	   = 	  𝜋: 𝑥, 𝕁	   – 	  𝑢𝑛𝑖𝑡𝑇𝑎𝑥	   𝑝𝑜𝑝77∈𝕁 . 𝟏[if	  bidder	  is	  big]	  	     

 

The tax, which only a big bidder has to pay, is the 𝑢𝑛𝑖𝑡𝑇𝑎𝑥 multiplied by the population size of 

the license set in which it wins.  The percentage of pairwise stable configurations using the new 

post-tax valuation function, for different values of tax rate 𝛼 between 0 and 1, are shown in Figure 

7. 
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Figure 7. Counterfactual simulations of the impact of taxation of big bidders on pairwise stability 
  
 

The results can be interpreted as the relative sensitivities of the auction allocation outcomes to 

changing degrees of taxation on big bidders. When the tax rate 𝛼 = 0, the post-tax bidder valuation 

for all bidders is exactly the same as their initial bidder valuation; at this pre-tax level, a large part 

of observed auction outcomes can be explained by the model. As the tax rate increases, the 

deviations between observed auction and the outcome predicted by the new post-tax valuation 

increase. The results of these counterfactual simulations are particularly useful in informing 

policymakers of the varied disruptive effective associated with the taxation of big bidders (or 

equivalently the subsidization of small bidders).  
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Appendix A: Graphs of Results and Variables 

 

In the first part of this section, we show the plotted graphs of pair-wise stability scores F β 	   

against estimated 𝛽C  under the Fox and Bajari’s model across Auction 5, 22, 35 and 58. The 

structural estimation is restated below- 

 

𝜋: 𝑥, 𝕁	   = 	  ±1. 𝑑𝑜𝑤𝑛1	  . ( 𝑝𝑜𝑝7)7∈𝕁 +	  𝛽C. 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁. 

 

 

 

 
 

Figure A1 – Relationship of Fox and Bajari (2013) estimator to estimated betas for Auction 5 
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Figure A2 – Relationship of Fox and Bajari (2013) estimator to estimated betas for Auction 22 

 

Figure A3– Relationship of Fox and Bajari (2013) estimator to estimated betas for Auction 35 
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Figure A4 – Relationship of Fox and Bajari (2013) estimator to estimated betas for Auction 58 
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In the second part of this section, we show the plotted graphs of pair-wise stability scores F β 	   

against 𝛽Cand 𝛽F under the modified structure estimation across Auction 5, 22, 35 and 58. The 

modified structural estimation is restated below- 

𝜋: 𝑥, 𝕁	   = 	  ±1. 𝑑𝑜𝑤𝑛1	  . ( 𝑝𝑜𝑝7)
7∈𝕁

+	  𝛽C. 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁 + 𝛽F. 𝛿1,7
7∈𝕁

 

 

 

Figure A6 – Relationship of modified estimator to estimated betas for Auction 22 
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Figure A7 – Relationship of modified estimator to estimated betas for Auction 35 
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Figure A8 – Relationship of modified estimator to estimated betas for Auction 58 

 

 
In the third part of this section, we show the scatter plots of each of our normalized covariates 

(𝑑𝑜𝑤𝑛1	  , 𝑝𝑜𝑝77∈𝕁 , 𝑑𝑜𝑤𝑛1	  . ( 𝑝𝑜𝑝7)7∈𝕁 , 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁	  , 𝛿1,77∈𝕁 ) across Auction 5, 22, 35 and 58. 

For 𝑑𝑜𝑤𝑛1	  , 𝑝𝑜𝑝77∈𝕁 , 𝑑𝑜𝑤𝑛1	  . ( 𝑝𝑜𝑝7)7∈𝕁 	  
 , we use logarithmic plots to address skewness 

towards large values. 
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Scatter Plots of 𝒅𝒐𝒘𝒏𝒙  
 
 
 

 

Figure A9 – Scatter plot of log (normalized down payment) for Auction 5 

 
 

Figure A10 – Scatter plot of log (normalized down payment) for Auction 22 
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Figure A11 – Scatter plot of log (normalized down payment) for Auction 35 

 
 

Figure A12 – Scatter plot of log (normalized down payment) for Auction 58 
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Scatter Plots of 𝒑𝒐𝒑𝒋𝒋∈𝕁   
 
 

 
 

Figure A13 – Scatter plot of log (bidder’s normalized total population) for Auction 5 

 
 

Figure A14 – Scatter plot of log (bidder’s normalized total population) for Auction 22 
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Figure A15 – Scatter plot of log (bidder’s normalized total population) for Auction 35 

 

 
 

Figure A16 – Scatter plot of log (bidder’s total population) for Auction 58 
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Scatter Plots of 𝒅𝒐𝒘𝒏𝒙	  . 𝒑𝒐𝒑𝒋𝒋∈𝕁   
 

 

 
 

Figure A17 – Scatter plot of log (normalized down * bidder’s total population) for Auction 5 

 

 
 

Figure A18 – Scatter plot of log (normalized down * bidder’s total population) for Auction 22 
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Figure A19 – Scatter plot of log (normalized down * bidder’s total population) for Auction 35 

 

 
 

Figure A20 – Scatter plot of log (normalized down * bidder’s total population) for Auction 58 
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Scatter Plots of 𝒈𝒆𝒐𝒄𝒐𝒎𝒑𝕁	    
 

 
 

Figure A21 – Scatter plot of log (normalized geocomp) for Auction 5 

 

 
 

Figure A22 – Scatter plot of log (normalized geocomp) for Auction 22 
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Figure A23 – Scatter plot of log (normalized geocomp) for Auction 35 

 

 

 
 

Figure A24 – Scatter plot of log (normalized geocomp) for Auction 58 
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Bar Graphs of 𝜹𝒙,𝒋𝒋∈𝕁   
 

Lastly, we show graphs of big bidders and their corresponding total 𝜹𝒙,𝒋. There will be no graph 

for Auction 5 as there is no big bidder present.  

 

 
 

Figure A26 – Bar graph of big bidder’s total delta for Auction 22 
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Figure A27 – Bar graph of big bidder’s total delta for Auction 35 
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Figure A28 – Bar graph of big bidder’s total delta for Auction 58 
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We present the summary statistics of the 𝛿1,77∈𝕁  below. There will be no data for Auction 5 since 

there are no big bidders in that auction. 

 Average Standard Deviation Min Max 

5 n/a n/a n/a n/a 

22 0.0310 0.0309 0.0034 0.0986 

35 0.256 0.185 0.006 0.564 

58 0.121 0.123 0.006 0.347 

 

Table A1 – Summary Statistics for  𝛿1,77∈𝕁  of big bidders 
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Appendix B: Documentation of Algorithm Code 
 
Script 1. Data 
 
% License Data 
Let = Data(:,3+Adj); % Latitude of license location 
Lat = deg2rad(Lat); % Converting to radians 
Long = Data(:,4+Adj); % Longitude of license location 
Long = deg2rad(Long); % Converting to radians 
Pop = Data(:,5+Adj); % Population of license location 
LicenseElig = Data(:,6+Adj); % Eligibility required for license 
NumLicense = length(Lat); % Total number of licenses 
  
% Bidder Data 
Elig = Data(:,12); % Eligibility of better 
Elig = Elig(Elig>0); % Removing entries with non-valid eligibility  

 

Notes 

The data we imported were categorized into license specific data and bidder specific data. The 

Latitude and Longitude numbers were generated using Christos Samaras’s VBA Google 

Geocoding Functions in Microsoft Excel.  
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Script 2. Indexing 
% The following indexing allow us to identify ownership of licenses 
IndexStart = Data(:,10);  
IndexStart = IndexStart(IndexStart>0); 
IndexEnd = Data(:,11); 
IndexEnd = IndexEnd(IndexEnd>0); 
IndexPure = zeros(length(Elig),2); % IndexPure for non-repeated indexes 
Index = zeros(length(Lat),1); % Index for repeated indexes 
NumOwner = length(IndexPure); % Number of owners 
% Creation of IndexPure 
for k = 1:length(Elig) 
    IndexPure(k,1) = IndexStart(k); 
    IndexPure(k,2) = IndexEnd(k); 
end 
counter = 1; 
% Creation of Index 
for l = 1:length(Elig) 
    NumLicEachBidder = IndexPure(l,2)-IndexPure(l,1)+1; 
    for m = 1:NumLicEachBidder 
        Index(counter,1) = IndexPure(l,1); 
        Index(counter,2) = IndexPure(l,2); 
        counter = counter +1; 
    end 
end 

 

Notes 

IndexPure has m rows and two columns, with m representing the number of bidders winning at 

least one license in the auction. (Row J, column 1) tells us the first license on the list of licenses 

won by bidder J, and (Row J, column 2) tells us the last license on the list of licenses won by bidder 

J. 

 

Index has n rows and two columns, with n representing the number of licenses in the auction. (Row 

j, column 1) tells us the first license on the list of licenses won by the bidder who won license j 

and (Row J, column 2) tells us the last license on the list of licenses won by the bidder who won 

license j. 
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Script 3. Matrix Construction 
% PopMatrix construction 
PopMatrix = meshgrid(Pop)'; 
for g=1:NumLicense 
    PopMatrix(g,g)=0; 
end 
DistanceCheck = zeros(NumLicense); 

  

% GeoMatrix Construction 
GeoMatrix = zeros(NumLicense); 
for k=1:NumLicense 
   for l=1:NumLicense 
       DistanceNum = haversine(Lat(k),Long(k),Lat(l),Long(l)); 
       DistanceSquared = power(DistanceNum,2); 
       DistanceCheck(k,l) = DistanceNum; 
       if DistanceNum == 0 
           GeoMatrix(k,l) =0; 
       else 
           GeoMatrix(k,l) = Pop(k).*Pop(l)./DistanceSquared; 
end end end 
for m=1:NumLicense 
    GeoMatrix(m,m)=0; 
End 

% Bigsmall Matrix Data 
BigSmallMatrix = Data(:,14:14+NumOwner-1); 
 

 

Notes 

PopMatrix is constructed as a symmetrical matrix with the diagonals having a value of zero. It is 

used later on in the calculation of geocomplementarity. GeoMatrix is a helper matrix constructed 

to help us generate two more matrices, the Numerator and the Denominator matrices that will help 

us calculate the  

LMLNLMLO
PNQRN,O

SO	  ∈	  𝕁,T	  UV	  

LMLNLMLO
PNQRN,O

SO	  ∈	  𝕃,T	  UV	  
 term in the geocomp function. BigSmallMatrix helps us calculate 

the 𝛿1,77∈𝕁 	  	  	    term in the valuation function.  
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Script 4. Geocomplementarity calculation 

Numer = zeros(NumLicense); 
for n=1:NumLicense 
    Numer(n) = sum(GeoMatrix(Index(n,1):Index(n,2),n)); 
end 
% Transposing Numer to operate on it later 
Numer = Numer(:,1)'; 
Denom = sum(GeoMatrix); 

  

% GeoComp by license j 
GeoCompj = zeros(1,NumLicense); 
for p=1:NumLicense 
    GeoCompj(p) = Pop(p).*Numer(p)./Denom(p); 
end 
% GeoComp by bidder J 
GeoCompJ = zeros(1,NumOwner); 
for q=1:NumOwner 
    GeoCompJ(q) = sum(GeoCompj(IndexPure(q,1):IndexPure(q,2))); 
end 
  

Notes 

In Numer we sum across the set J for each bidder, with set J representing the licenses the particular 

bidder owns. In Denom we sum across the set L for each bidder, which set L representing the 

universal set of licenses in the auction. GeoComp J is the array containing all the 

geocomplementarity values for each bidder that we want to find: 

𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁 = 	   𝑝𝑜𝑝K 	  

LMLNLMLO
PNQRN,O

SO	  ∈	  𝕁,T	  UV	  

LMLNLMLO
PNQRN,O

SO	  ∈	  𝕃,T	  UV	  
K	  ∈	  𝕁   
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Script 5. Loop Construction 
for run =1:1 
    count = 0; 

Score = 0; 

Beta1 = 0+0.2*(run1); 
    Beta2 = 9+0.2*(run2); 
    for a = 1:NumOwner-1 
        for b = a+1:NumOwner 
            Owner1 = IndexPure(a,:); 
            Owner2 = IndexPure(b,:); 
            % Size tells us how many license each owner has 
            Size1 = Owner1(2)-Owner1(1)+1; 
            Size2 = Owner2(2)-Owner2(1)+1; 
            for c =1:Size1 
                for d = 1:Size2 
                    count = count +1; 
                    % k for bidder 1, l for bidder 2, k and l indicate the 
                    % index of the cth license of owner a and dth license of 
                    % owner b,  
                    k = IndexPure(a,1)+c-1;  
                    l = IndexPure(b,1)+d-1; 

… 

Notes 

The number of runs to guess Beta is determined by the loop containing the index run. Different 

Beta 1 and Beta 2 values are guessed with each iteration of the loop. Loops with indices a and b 

consider all the possible combinations of bidder pairs. Loops with indices c and d consider all the 

possible combinations of license pairs to be swapped between any two bidders.  
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Script 6. Eligibility Check 
 

% Eligibility Check 
Bidder1Elig = Elig(a); 
Bidder2Elig = Elig(b); 
License1Elig =LicenseElig(k); 
License2Elig = LicenseElig(l); 

                     

% Current Elig minus Elig being considered 
Bidder1RemainingElig = Elig(a)-

sum(LicenseElig(IndexPure(a,1):IndexPure(a,2)))+License1Elig; 
Bidder2RemainingElig = Elig(b)-

sum(LicenseElig(IndexPure(b,1):IndexPure(b,2)))+License2Elig; 
                     

Notes 

The number of runs to guess Beta is determined by the loop containing the index run. Different 

Beta 1 and Beta 2 values are guessed with each iteration of the loop.  Loops with indices a and b 

consider all the possible combinations of bidder pairs.  Loops with indices c and d consider all the 

possible combinations of license pairs to be swapped between any two bidders.  
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Script 7. Swapping Mechanism 
%Create temporary matrix for geocomp 
GeoMatrixTemp = GeoMatrix; 
%Swapping of rows for geocomp 
TempGeoRow1 = GeoMatrixTemp(k,:); 
TempGeoRow2 = GeoMatrixTemp(l,:); 
GeoMatrixTemp(k,:) = TempGeoRow2; 
GeoMatrixTemp(l,:) = TempGeoRow1; 
  
%Swapping of columns for geocomp 
TempGeoCol1 = GeoMatrixTemp(:,k); 
TempGeoCol2 = GeoMatrixTemp(:,l); 
GeoMatrixTemp(:,k) = TempGeoCol2; 
GeoMatrixTemp(:,l) = TempGeoCol1; 
  
%Create temporary matrix for population column vector 
PopTemp = Pop; 
%Swapping of rows for pop 
TempPopRow1 = PopTemp(k); 
TempPopRow2 = PopTemp(l); 
PopTemp(k) = TempPopRow2; 
PopTemp(l) = TempPopRow1; 
                     
%Create temporary matrix for bigsmall column vector 
BigSmallTemp = BigSmallMatrix; 
%Swapping of rows for pop 
TempBidRow1 = BigSmallTemp(k,:); 
TempBidRow2 = BigSmallTemp(l,:); 
BigSmallTemp(k,:) = TempBidRow2; 
BigSmallTemp(l,:) = TempBidRow1; 
                     
Notes 

Swapping licenses translates to swapping rows l and k and swapping columns l and k in the script 

for the matrices we constructed. We performed it for the geocomp matrix, pop matrix and bigsmall 

matrix. The temp matrices represent the values after the swap took place.  
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Script 8. Calculations after swapping 
NewNumer = Numer; 
NewDenom = Denom; 
NewGeoCompjTemp = GeoCompj; 
NewGeoCompJTemp = GeoCompJ; 
                     
for n=Owner1(1):Owner1(2) 

NewNumer(n) = sum(GeoMatrixTemp(Index(n,1):Index(n,2),n)); 
NewDenom(n) = sum(GeoMatrixTemp(1:NumLicense,n)); 
NewGeoCompjTemp(n) = PopTemp(n).*NewNumer(n)./NewDenom(n); 

end 
                     
for n=Owner2(1):Owner2(2) 

NewNumer(n) = sum(GeoMatrixTemp(Index(n,1):Index(n,2),n)); 
  NewDenom(n) = sum(GeoMatrixTemp(1:NumLicense,n)); 

NewGeoCompjTemp(n) = PopTemp(n).*NewNumer(n)./NewDenom(n); 
end 
                     
NewGeoCompJTemp(a) =sum(NewGeoCompjTemp(IndexPure(a,1):IndexPure(a,2))); 
NewGeoCompJTemp(b) =sum(NewGeoCompjTemp(IndexPure(b,1):IndexPure(b,2))); 
                     
%Making Comparisons, stating new variables 
Bidder1OrigGC = GeoCompJ(a)/USPOP; 
Bidder2OrigGC = GeoCompJ(b)/USPOP; 
Bidder1NewGC = NewGeoCompJTemp(a)/USPOP; 
Bidder2NewGC = NewGeoCompJTemp(b)/USPOP; 
Bidder1Elig = Elig(a)/ELIG; 
Bidder2Elig = Elig(b)/ELIG;           
Bidder1OldBig = 
sum(BigSmallMatrix(IndexPure(a,1):IndexPure(a,2),a))/NumLicense; 
Bidder2OldBig = 
sum(BigSmallMatrix(IndexPure(b,1):IndexPure(b,2),b))/NumLicense; 
Bidder1NewBig = 
sum(BigSmallTemp(IndexPure(a,1):IndexPure(a,2),a))/NumLicense; 
Bidder2NewBig = 
sum(BigSmallTemp(IndexPure(b,1):IndexPure(b,2),b))/NumLicense; 
Bidder1OldPop = sum(Pop(IndexPure(a,1):IndexPure(a,2)))/USPOP; 
Bidder2OldPop = sum(Pop(IndexPure(b,1):IndexPure(b,2)))/USPOP; 
Bidder1NewPop = sum(PopTemp(IndexPure(a,1):IndexPure(a,2)))/USPOP; 
Bidder2NewPop = sum(PopTemp(IndexPure(b,1):IndexPure(b,2)))/USPOP; 
 

Notes 

Adjustments were first made to recalculate the Numer, Denom and GeoComp matrices after the 

swapping took place. The GeoComp (GC), Eligibility (Elig), Dummy variable (Big) and 

Population (Pop) terms were calculated for both bidder 1 and bidder 2 for the cases before the 

swap and after the swap.  
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Script 9. Scoring Mechanism 

 
%Making Valuation Function 
Bidder1OldValue= 
Bidder1Elig.*Bidder1OldPop+Beta1.*Bidder1OrigGC+Beta2.*Bidder1OldBig; 
Bidder2OldValue= 
Bidder2Elig.*Bidder2OldPop+Beta1.*Bidder2OrigGC+Beta2.*Bidder2OldBig; 
Bidder1NewValue= 
Bidder1Elig.*Bidder1NewPop+Beta1.*Bidder1NewGC+Beta2.*Bidder1NewBig; 
Bidder2NewValue= 
Bidder2Elig.*Bidder2NewPop+Beta1.*Bidder2NewGC+Beta2.*Bidder2NewBig; 
  
if (Bidder1OldValue + Bidder2OldValue) >= (Bidder1NewValue + Bidder2NewValue) 
                            Score = Score +1;  
                        end 
                end  
            end 
        end 

end 
 
 

ScorePercent = Score/count; 
Results(run1+1,1) = Beta1; 
Results(1,run2+1) = Beta2; 
Results(run1+1,run2+1) = ScorePercent; 
end 
end 
 

Notes 

The combined valuation of bidder 1 and bidder 2 before the swap was compared to the combined 

valuation of bidder 1 and bidder 2 after the swap. If the pre-swap combined valuation was larger 

than or equal to the post-swap valuation, we added one to the score. 

  

The percentage score was calculated by taking the number of cases in which pre-swap valuation 

did at least as well as post-swap valuation divided by the number of swaps that were considered 

overall.  
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Appendix C: Analysis of Alternative Estimator 

 

In our paper, our estimator examines the case of a one-to-one matching transfer, where bidder a 

adds a single license j to its license set J after giving up a single license i to bidder b. It is defined 

as a matching transfer because the quantity of licenses exchanged is equal in both parties. It is 

possible to examine alternative estimators by using inequalities based on different theoretical 

conditions so as to better reflect bidders’ actions and improve upon the definition of pair-wise 

stability. As an extension, our paper will provide a precursory understanding to the expected 

computational intensity of using these alternative estimators, namely, a non-matching transfer and 

a multi-degree transfer. We show a summary of expected inequalities and corresponding runtime 

for a single guess of beta for each alternative estimator. 

 

It is important to note that the algorithm runtime is largely determined by the number of 

inequalities compared in each auction, which is further determined by the number of owners and 

the number of licenses each owner owns respectively. By extrapolating the number of inequalities 

expected when an alternative estimator is used, one can arrive at a predicted runtime. 
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The table below provides a summary of one-to-one matching swap, the case we have studied. 

Auction Number of Inequalities Approximate runtime for 1 loop 

5 117,300 ~38s 

22 39,407 ~12s 

35 54,535 ~26s 

58 13,150 ~3s 

Table C1 – Number of inequalities and approximate runtime of Auction 5, 22, 35 and 58 for 
one-to-one swap only 

  
In the case of a two-to-two matching swaps, where bidders exchange a set of two licenses instead 

of a single license, we found out that the number of inequalities and runtime increased 

exponentially. 

Auction 
Expected number of 

Inequalities 
Predicted runtime for 1 loop 

5 6,258,786 ~34min 

22 4,495,587 ~24min 

35 18,620,859 ~100min 

58 1,074,801 ~6min 

 
Table C2 – Number of inequalities and approximate runtime of Auction 5, 22, 35 and 58 for 

two-to-two matching swap  
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The primary reason behind this is that a single owner now has a larger number of possible 

combinations of a set of two licenses, specifically, for an owner holding x number of licenses, he 

will have a total of 1!
F! 1�F !

 possible combinations of a set of two licenses. It is important to note 

that the presence of owners with a large set of licenses will greatly increase the number of 

inequalities being considered because there are now much more possible combinations of  a set of 

two licenses.  

 

Non-matching swaps 
 
The imposition of a strictly matching swap can also be relaxed to allow owners to exchange 

licenses with one another for a non-equal return. A non-matching swap is thus defined as an 

exchange of licenses between owners, where the quantity given and received for each owner is 

not the same. In this scenario, we would explore the case where each owner is allowed to give 

one license to another without anything in return and the case where each owner is allowed to 

give two license to another without anything in return. The results are reported in the table 

below: 
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Auction 
Expected number of 

Inequalities 
Predicted runtime for 1 loop 

5 43,384 ~14s 

22 16,170 ~5s 

35 11,649 ~3s 

58 3,460 ~1s 

 
Table C3 – Number of inequalities and approximate runtime of Auction 5, 22, 35 and 58 for 

give-one only 
 

Auction 
Expected number of 

Inequalities 
Predicted runtime for 1 loop 

5 230,724 ~75s 

22 128,240 ~41s 

35 182,232 ~59s 

58 25,920 ~8s 

 
Table C4 – Number of inequalities and approximate runtime of Auction 5, 22, 35 and 58 for 

give-two only 
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n-degree swap  

 

Lastly, we allow for the possibility of a n-degree swap. A n-degree swap is defined as an exchange 

of licenses among a party of n+1 owners where n > 1. As a form of simplification, we study the 

case of a two-degree swap of a single license. A two-degree swap will then be an exchange between 

three owners where Owner 1 first swaps a specific license X with Owner 2, who then accept the 

swap, knowing that he can further swap it with Owner 3. The results are reported in the table 

below: 

 
Auction Number of Inequalities Approximate runtime for 1 loop 

5 36,909,493 ~3hrs 

22 6,990,689 ~37min 

35 672,327 ~3min 

58 1,360,113 ~7min 

 
Table C5 – Number of inequalities and approximate runtime of Auction 5, 22, 35 and 58 for a 

two-degree swap of a single license 
 
 

The primary reason for this large increase in runtime is that the possibilities compound every time 

an owner transfers the license to the next. Given this, a n-degree swap will be the most 

computationally intensive as n increases.  

 

The algorithm employed in this paper is brute-force in nature and works by exhausting all 

possibilities to determine the estimator. Given this, it is unlikely that such an algorithm will be 

feasible to solve for the estimator in the case of a n-degree swap, especially for large auctions. 
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Appendix D: Valuations of bidders in different auctions 

 

In the section, we show cumulative distribution plots for the normal and modified valuation 

functions of bidders across all auctions. We use the betas reported in the Results to generate a 

cumulative plot of bidders’ valuations. 

 

We first show the plots for the normal valuation function, which is restated below-  

𝜋: 𝑥, 𝕁	   = 	  ±1. 𝑑𝑜𝑤𝑛1	  . ( 𝑝𝑜𝑝7)7∈𝕁 +	  𝛽C. 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁. 

  

Figure D1 – Cumulative distribution plot for valuation functions of bidders in Auction 5 
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Figure D2– Cumulative distribution plot for valuation functions of bidders in Auction 22 

 

 
 

Figure D3 – Cumulative distribution plot for valuation functions of bidders in Auction 35 
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Figure D4 – Cumulative distribution plot for valuation functions of bidders in Auction 58 

 

We then show the cumulative plots for the modified valuation function, which is restated below- 

𝜋: 𝑥, 𝕁	   = 	  ±1. 𝑑𝑜𝑤𝑛1	  . ( 𝑝𝑜𝑝7)
7∈𝕁

+	  𝛽C. 𝑔𝑒𝑜𝑐𝑜𝑚𝑝	  𝕁 + 𝛽F. 𝛿1,7
7∈𝕁

 

 
 

Figure D5 – Cumulative distribution plot for modified valuation functions of bidders in Auction 

22 
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Figure D6– Cumulative distribution plot for modified valuation functions of bidders in Auction 

35 

 

 
 

Figure D7 – Cumulative distribution plot for modified valuation functions of bidders in Auction 

58 
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