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Abstract

This paper uses high frequency financial data to study the changes in diffusive stock price
volatility when price jumps are likely to have occurred. In particular, we study this effect on
two levels. Firstly, we compare diffusive volatility on jump and non-jump days. Secondly, we
study the change in diffusive volatility in local windows before and after 5-minute intervals
on which price jumps are likely to have occurred. We find evidence that market price jumps
occur simultaneously with a change in diffusive volatility with negative dependence in the
direction of the jump and the volatility change. However, a similar relationship is not

detectable in individual stock price data.

JEL Classification: G1, G19, C22

Keywords: Stock price jumps, jump tests, realized volatility, diffusive volatility



1 Introduction

Modeling the behavior of asset and derivative price movements has many applications in
financial economics, including asset pricing, portfolio management, risk management and
hedging. Historically, asset prices were assumed to follow Brownian motion with time-
varying drift and volatility with the implication that asset price movements are continuous in
nature. Merton (1976) first proposed that discontinuities, or jumps, could theoretically exist
in stock price behavior. The presence of discontinuities means that stock prices follow a
smooth diffusive motion, but exhibit jumps from time to time. Since then, a number of
empirical studies have demonstrated that the diffusive price model alone is unsatisfactory in
modeling price behavior. For instance, Drost, Nijman, and Werker (1998) first noted that a
continuous time diffusion model cannot explain the time series of dollar exchange rates
clearly. Chernov, Gallant, Ghysels, and Tauchen (2003) found that the diffusive price model
cannot approximate all the characteristics of daily observations on the S&P500 Index.
Andersen, Benzoni, and Lund (2002) showed that in contrast, allowing for jumps in equity
returns resulted in acceptable characterization of the actual data. These empirical studies have

provided strong evidence in favor of including a jump component into stock price models.

Both financial theory and market practice have both increasingly recognized the
economic importance of price discontinuities. Bakshi, Cao, and Chen (1997) showed that
incorporating jumps into the price model reduces pricing errors for call options, whereas Naik
and Lee (1990) found that dynamic hedging strategies require significant infusion of funds
when price jumps occur. Liu, Longstaff, and Pan (2003) showed that optimal portfolio
strategies can be significantly different when price jumps are taken into account in the form
of event risk. Given the important of price discontinuities, recent financial literature models
asset prices with two separate components: a continuous-time price diffusion and a jump

component.

The volatility of stock prices is an important area of study since it represents the riskiness
of an asset in standard risk-return considerations, with implications for the pricing of risk
premiums. However, true volatility of the price process cannot be observed. Since high
frequency minute-by-minute price data have become available, researchers have been able to

make use of the data to develop estimators of volatility which converge to their



corresponding true values as the frequency of data observation becomes increasingly fine.
Furthermore, modeling stock prices with both a continuous and jump component means that
the total volatility of the price process can be similarly decomposed into a diffusive volatility
component and a jump volatility component. Estimating price volatility using high frequency
data enables the separate estimation of the diffusive and jump components of volatility so that

their distinct characteristics can be studied.

At the same time, a number of statistical techniques have been developed to detect the
presence of jumps in prices. The jump test developed by Barndorff-Nielsen and Shephard
(20006) relies on the difference between an estimator of total price volatility and an estimator
of the diffusive price volatility on the same day to classify the day as containing price jumps
or otherwise. The difference between the two estimators of volatility represents the jump
component of price volatility. Therefore, a larger difference indicates a more significant jump
volatility component on the day, and a greater likelihood that price jumps were present. Jiang
and Oomen (2008) used a similar intuition to develop a jump test based on the impact of
Jjumps on the behavior of third and higher order moments of price returns. Lee and Mykland
(2008) standardized discrete observations of price returns by their instantaneous diffusive
volatility. When a price return is large relative to the instantaneous volatility, the observation
is more likely to be a price jump. The development of these jump tests has enabled the
identification of time intervals when jumps are likely to have occurred, therefore allowing

further research on the characteristics of jump versus non-jump intervals.

Price jumps are commonly explained as the incorporation of large pieces of unanticipated
and new information into stock prices by an efficient market. Barndorff-Nielsen and
Shephard (2006) noted that most jumps in market prices as indicated by jumps in the
Standard and Poor 500 Index (S&P 500 Index) that their jump test identifies are associated
with governmental macroeconomic announcements. Lee and Mykland (2008) showed that
individual stock jumps are associated with prescheduled earnings announcements and other
company-specific news events, whereas S&P 500 Index jumps are associated with general
market news announcements. In a more comprehensive study, Lee (2011) found that jumps
are likely to occur shortly after macroeconomic information releases such as Fed

announcements, nonfarm payroll reports, and jobless claims as well as market index jumps.
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She also finds firm-specific jump predictors related to earnings releases, analyst

recommendations, past stock jumps, and dividend dates.

The standard stock price model assumes independence between price jumps and diffusive
price volatility. The implication of this assumption is that when market and firm-specific
news announcements occur, price jumps fully capture the effect of the announcements on the
price process, and no changes in diffusive price volatility result. However, researchers are
currently finding evidence of possible correlation between price jumps and changes in
diffusive volatility. Todorov and Tauchen (2011) studied co-jumps in the S&P 500 Index
futures, a liquid financial instrument which is representative of movements in the S&P 500
Index and hence market price changes, and the VIX volatility index, which is based on close-
to-maturity S&P 500 Index options and reflects market volatility. It was found that volatility
jumps and market price jumps occur in most cases at the same time and exhibit high negative
dependence. Jacod and Todorov (2010) developed a new test for deciding whether jumps in
the price process are accompanied by simultaneous jumps in its volatility. When applied to
the S&P 500 Index, it was found that at least 40 percent of price jumps are accompanied by
volatility jumps. These results suggest common causes for the appearance of price jumps and

changes in diffusive price volatility.

In the case that price jumps and volatility jumps systematically occur together, the
standard price model where stochastic volatility is assumed to be independent of jumps can
no longer fully characterize the price process. This can lead to economically important
implications. In particular, dependence between price and volatility jumps will complicate
hedging. If price jumps and volatility jumps were independent, separate hedging techniques
could be employed against jump and volatility risks using common hedging instruments such
as options. However, if they share a common origin, these instruments can no longer
simultaneously hedge against both types of risks. Secondly, the risk premium associated with
price jump and volatility risks should also be modeled jointly if high dependence exists

between the two.

Motivated by these implications, this paper studies the relationship between price jumps
and changes in diffusive price volatility. Previous studies have focused on co-jumps between
price and diffusive volatility. However, since this is a relatively new area of study, there is no

simple method of detecting jumps in volatility. Therefore, we will adopt the approach of
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qualitatively studying the change in volatility when price jumps are detected. Specifically, we
first ask the question of whether diffusive price volatility is impacted by the occurrence of
price jumps in terms of a systematic increase or decrease following the occurrence of price
Jumps. If the former is true, then we look for a relationship between the direction of the price
Jumps and volatility changes; in particular we will find out whether the dependence is
negative as found by Todorov and Tauchen (2010) in market price movements. We use
existing jump tests to identify the intervals of time over which jumps are likely to have
occurred. This will then enable us to study the changes in diffusive volatility between
intervals of time when jumps are deemed to occur, as compared to when they are not. In
addition to the existing literature, we will apply the study to both the S&P 500 Index as a

proxy for market movements, as well as individual stock price movements.

The rest of the paper proceeds as follows. Section 2 introduces the theoretical framework
for a standard model of returns, and methods to estimate the variance of the process. Section
3 explains the statistical methods used in this paper, including the jump tests that were
employed and methods to compare diffusive volatility using jump test results. Section 4
introduces the empirical data that were used in the study, and handling of the data to remove
erroneous components and account for contaminating noise. Section 5 explains the results

that were obtained, and Section 6 concludes.

2 Theoretical Background

2.1 Stochastic Models for Returns

The standard model for an asset price movement is that the logarithmic price p(t) follows the

following stochastic differential equation

dp(t) = u(t)dt (1

+ a(t)dw(t),
where p(t) represents the time-varying drift in prices, while o(¢)dw(t) represents the time-
varying volatility component in which o(t) is the instantaneous volatility of the process at
time + and w(t) indicates standardized Brownian motion. In the standard model, u(t) and
o(t)dw(t) are assumed to be independent of each other. Under this model, the price of an

asset is assumed to follow Brownian motion with mean u(t) and standard deviation o (¢).



However, the model necessarily assumes that realizations of the price process are
continuous in nature. Discontinuities, or “jumps” in prices, have been observed across asset
classes since as early as Merton (1976). Jumps occur when new, unanticipated information
becomes available and is incorporated into the price process by an efficient market. Including

the price discontinuities therefore results in the model

dp(t) = p(t)dt + o(t)dw(t) + k(t)dq(t), (2)

where k(t)dq(t) introduces a jump component into the price model, in which k(t)
represents the magnitude of the jump at time ¢t and q(t) is a counting process for the number
of jumps up until time 7. The term dq(t) is therefore the number of jumps within the

infinitesimally small period of time dt.
2.2 Estimators for Variance

The asset price model suggests that volatility in the price process comes from two sources:
the diffusive volatility o(t) and jumps k(t). The quadratic variation in the price process on

day t can therefore be defined as the sum

t i (3)
— 2 2( 4.
QY= j_la (s)ds + ;}c (t‘,).

Since the variance of a continuous process cannot be directly observed, Barndorff-Nielsen
and Shephard (2004) proposed a nonparametric estimator for QV,, the realized variance

M ¢

M
RV, = Z e - a2(s)ds + Z k2(t),
E~1 =
=1

j=1

(4)

where 7 ; = pyj — P j-1 is the intraday geometric return between the (j — 1)t and j** price

observations on day ¢, and M = 1/A is the total number of returns observed on a day at
sampling interval A. As the sampling frequency approaches zero, the realized variance
converges in value to the quadratic variance of the price process in a day. Intuitively, the
square of the geometric return is an estimator of variance in a particular interval. As the
intervals between observations become infinitely small, the sum of the sequence of squared
geometric returns estimates the total variance over the entire time period. Realized variance is

therefore an asymptotically consistent estimator for the total variance in a day.



It is often useful to study the volatility of the diffusive and Jump components separately.

The integrated variance

t -
7= j a2(s)ds )
t

-1
captures solely the volatility contribution by the continuous price process. To estimate the
integrated variance, Barndorff-Nielsen and Shephard (2006) proposed the nonparametric

estimator, bipower variation

(6)

M
M t

BV, = ui? (M— 1) E ,?‘t.j”rr,qu - f o(s)ds,
= t-1

where u, = E(|Z|?) for a standard normal Z. Andersen, Dobrev and Schaumburg (2010)
introduced two additional measures of median variation and minimum variation to model

integrated variance
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The intuition behind these estimators is based on the understanding that if a geometric
return 1t ; is considerably larger in magnitude than other returns within a day, it is more likely
to be due to a jump in the interval than a continuous price movement. Since jumps are rare
and occur instantaneously, large price movements in consecutive intervals are unlikely. Each
of the three estimators seeks to reduce the contributions of these large price movements.
Bipower variation reduces the effect of the large price movements by multiplying them with a
small neighboring value. Minimum and median variations replace the large price movements
with small neighboring values. All three estimators asymptotically approach the integrated

variance as the sampling frequency approaches infinity.

Intuitively, the difference between realized variance and one of the jump-robust measures
of variance measures the contribution of price jumps to total price volatility. The relative

contributions of jumps to volatility on a particular day



RJV) = RV, = CV, €)
‘ RV, '

where CV represents one of the estimators of the continuous variance, is a standardized

measure of the difference. The relative contribution of jumps therefore indicates the

proportion of price volatility that can be attributed to jumps on that day.

3 Statistical Methods

3.1 Tests for price jumps

The estimators of variance in the previous section allow us to separate variation in the price
process due to jumps and continuous price movements. However, it is often necessary to
determine when these price jumps occur. To do so, a variety of jump tests based on different
statistical methods have been developed. These tests attempt to identify intervals of time over
which price jumps are likely to have occurred. The general intuition behind many of these
tests is that significantly large price movements relative to local price volatility are likely to
be jumps instead of diffusive movements. The use of high-frequency financial data is
essential in the implementation of these jump tests in order for test statistics to converge

towards asymptotic consistency.

Three different jump detection tests were used as part of this study. The tests proposed by
Barndorff-Nielsen and Shephard (2004, 2006) and Ait-Sahalia and Jacod (2008) are two
different methods to determine whether statistically-significant jumps have occurred in a
specific time period, such as in a day. These two tests enable the classification of “jump
days™, days on which jumps are likely to have occurred, against “non-jump days”. Using two
different jump tests enables a check for robustness, since Schwert (2009) showed that
different jump tests may be inconsistent with each other, and classify different days as
containing jumps. However, the tests will not allow us to determine the number of jumps or
the magnitude of jumps that have occurred during a day identified as a jump day. The final
test we consider by Bollerslev, Todorov and Li (2011) proposed a method to classify each
price movement observed discretely at a high frequency (e.g. a 5-minute interval) as either a
Jump or a diffusive price movement. This test offers an advantage over the former two since
it enables individual price movements that are like to be jumps to be distinctly separated out.

The direction and magnitude of the jump can also be identified.



3.1.1  Barndorff-Nielsen and Shephard (BNS) Test

Barndorff-Nielsen and Shephard (2004, 2006) developed a method for detecting the presence
of jumps using the difference between a measure of quadratic variation and a jump-robust
measure of variance, such as bipower variation. Intuitively, the presence of a jump will result
in a significant difference between the two measures over an interval of time, such as on the
day when the jump occurs. The significance of the measure of difference can be detected

using a test of the statistical difference.

The BNS test uses the relative contribution of jumps based on bipower variation in (8) to
construct the test statistic. Huang and Tauchen (2005) proposed a slight modification of the
test statistic such that

S RIEY (10)

X " Q
1Y+ 2u7?2-5) max{l, EVLE]

. . F- S . W
where A = o is the frequency of observation, u, = E(]Z|*) and Q; is a consistent estimator

of the integrated quarticity :_1 o*(s)ds. Huang and Tauchen (2005) suggested that using the
realized tripower quarticity as the estimator of integrated quarticity produces the best finite-
sample properties as compared to statistics constructed on other measures of integrated

quarticity. Therefore

5 (M A\ & & (1)
=Mty E il [7ima P iz - (s)d
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is used to construct the test statistic.

The test statistic is asymptotically standard normal under the null hypothesis that no
jumps are present in the price process. The standard normal distribution of the test statistic
enables us to test for the statistical significance of the measure. The test is applied to daily
data on the realized variance and bipower variation calculated using 5-minute data to detect
the presence of jumps on each individual day. We use a standard one-sided t-test for the null

hypothesis that a day contains no jumps at 5 percent significance level.



3.1.2  Ait-Sahalia and Jacod (AJ) Test

Ait-Sahalia and Jacod (2008) proposed a family of test statistics

B(p, kA, (12)

Stp.k); = Bp,A),

where B(p,A), = Z PPy

I

for some constant k, which is based on the ratio of some measure of volatility at a certain
high-frequency interval of observation, and a multiple of that frequency of observation.
Intuitively, if a jump were to occur at a particular time, the volatility resulting from the jump
will overwhelm any diffusive volatility in both the 5-minute and 10-minute intervals
containing the jump. Hence, the ratio of volatilities in the two intervals will converge to 1 if
there are jumps, and to another deterministic and known value if there are no jumps, as the
frequency of observation A — 0. Under the null hypothesis that no jumps are present, a
statistical test can be constructed to determine if the value of the statistic is significantly

different from the value that it is known to converge to.

In order to make statistical inferences on the test statistic, it is necessary to derive the
variance of the test statistic to construct statistical tests. The following estimator of the

variance of the test statistic can be calculated as

¢ _ AM(p,k)A(2p, A), (13)
e Alp, A2
where
1 p_ 14
M(p, k) = — (kP2(1 + Kmgp + kP=2(k = 1)m — 2677 'm ), (4
P
) aLpiz (15)
A(p,A) = Z 701" 1y, |sar=)
my, = E(|U|P|U + vk — 1V|P) for U, V independent N(0,1) variables. (16)

In this equation, «>0 and we (0, %4) are constants. The measure of volatility is then used to
calculate the critical value



p_ = 17
BSr SRE T g /V,j_,, a7

for z,. the a-quantile of N(0,1). Then the critical (rejection) region takes the form

Ciae = {SW. b, A)y < cf ). (18)

The choice of parameters is an important factor in conducting the jump test. This paper
closely follows recommendations by the authors in our selections. Ait-Sahalia and Jacod
(2008) recommended the selection of k = 2 and p =4. The choice of k reflects the
consideration that the larger the value of k, the more spaced out observations of data will be,
representing loss of information between data points. Furthermore, larger values of k lead to
a decrease in the effective sample size that can be used to estimate the numerator of the test
statistic, representing a loss of efficiency. Hence, the smallest possible value of k is chosen.
When choosing p, we consider the fact that the larger the value of p employed, the greater the
emphasis is placed on larger price movements. Since smaller jumps are much harder to study,
we try to keep p as small as possible. Nonetheless, p has to be reasonably large for the test
statistic to follow the central limit theorem without bias. Therefore, p = 4 is chosen as a
compromise. With these parameter selections, the asymptotic value of the test statistic when
no jumps are present is 1, and the asymptotic value is 2 when Jumps are present. Using

a = 0.05 and @ = 0.05 according to stimulation studies in the paper optimizes results.
3.1.3  Bollerslev, Todorov and Li (BTL) Test

Finally, Bollerslev, Todorov, and Li (2011) proposed a test that attempts to classify each
discrete observation of price movement in a day as either a jump or a diffusive price
movement. The results of this jump test are different from both previously-introduced tests,
which classify days as either jump days or non-jump days. Since multiple price observations
are made on each day, the previous tests do not allow the detection of specific times at which
Jumps are likely to have occurred on jump days. In contrast, the BTL test specifically detects
jumps on each observation of price movement. For instance, if prices were observed at 5-
minute intervals, the BTL test will then classify each 5-minute interval as a jump or a

diffusive price movement.



For all jump tests, a threshold level above which large price movements can be classified
as jumps must be determined. However, one complication to determining a suitable threshold
level for intraday intervals is the U-shaped daily diurnal volatility pattern historically
observed in asset prices. Wood, McInih and Ord (1985) observed that price volatility tends
to be higher at the beginning and end of the trading day, meaning that large diffusive price
movements are more likely during those periods. Andersen and Bollerslev (1997) confirmed
this U-shaped intraday volatility pattern. This difference in intraday volatility can be dramatic,
with the peak volatility during a day being twice the value of the minimum volatility on the
same day. This volatility pattern distorts the classification of intraday intervals as jumps. If
the volatility pattern were not taken into consideration, a large diffusive price movement
during the beginning or the end of the day can be mistakenly classified as a price jump.
Threshold levels must therefore be adjusted throughout the day to compensate for this diurnal

volatility effect.

To take the diurnal volatility pattern into account, Bollerslev et al. (2011) use a Time-of-

Day measure

2 19
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where the indicator variable takes on the value of 1 when the absolute return is less or equal
to r standard deviations of a local estimator and 0 otherwise, and @ € (0, '2) is a constant. The
Time-of-Day measure is essentially the ratio of the diffusive variation over a specific part of
the day relative to the average diffusive volatility for the day. Using the Time-of-Day
measure takes into account the local price volatility when calculating the threshold level for

jumps. The truncation level used in separating jumps from the continuous price moves is then

. (20)
a; = TJBV[i/n] A RV[U“] * TODE—[i/n]nr i = 1enl,

where observed price movements above the truncation level are classified as jumps. This

study uses 7 = 2.5 and @ = 0.49 as used in the original paper. Intuitively, this means that all



the high-frequency price movements that are beyond two-and-a-half standard deviations of a

local estimator of the corresponding stochastic volatility are classified as jumps.
3.2 Measures of changes in price volatility

The BNS and AJ jump tests enables the classification of days when jumps are likely to have
occurred, whereas the BTL jump test enables the classification of specific time intervals on
which jumps have occurred. The first set of information enables the comparison of diffusive
price volatility on jump and non-jump days. The second set of information enables the
comparison of diffusive price volatility in local windows of time before and after the price

jump.
3.2.1 Change in Daily Volatility

The study commences with a comparison of price volatilities on days when jumps are likely
to have occurred, as compared to days when it is likely that no jumps have occurred. A
simple method to do so is to compare the average difference in diffusive price volatility
between jump days and non-jump days as indicated by the BNS and AJ tests. The change in

volatility variable is defined as

1 1
cIDV™) = —Z Ve — —Z Ve,
T; T
j ¢ 21)

tef tec

where V, is the estimation of volatility as given by realized volatility in (5) or one of the three
Jump-robust measures of variance in (6), (7), and (8). ] represents the set of all jump days that
includes T; days and C represents the set of all non-jump days with T, days. In words,
CIDV™) is the difference in volatility between jump and non-jump days, where jump days

are determined by either the BNS or AJ test.

The sign of the CIDV(") variable is particularly interesting. When the variable is
calculated using a jump-robust measure of variance — BV, MedV or MinV, the resulting
value will depend on the impact of price jumps on diffusive price volatility. In particular,
price jumps can occur both in the upward or downward direction. Price jumps in different
directions may be correlated with changes in diffusive volatility in different directions. A
consistent sign in CIDVY) values across different stocks would suggest that price jumps

occur concurrently with a unidirectional change in diffusive price volatility, regardless of the



direction of the jump. However, if the CIDV(") values have significant values but different
signs between different stocks, then the direction of price jumps may affect the direction of
the change in diffusive price volatility. The CIDV(") value of a stock can then reflect the
impact of a larger number of jumps in a particular direction overwhelming the impact of
Jumps in the opposite direction. The difference in signs of CIDVY) values across different
stocks can be attributed to each stock being characterized by a different number of jumps in
the two directions. Unfortunately, since the BNS and AJ tests are unable to provide
information on the direction of jumps on jump days, the nature of the relationship between
the direction of price jumps and change in diffusive volatility cannot be made clear. Finally,
if CIDVY) were not significantly different from zero, we may postulate that price jumps do
not occur concurrently with changes in diffusive volatility. An alternative possibility is that
Jumps in both directions are equally likely across all stocks and have opposite but the same

magnitude of impact on diffusive price volatility.

When the variable is calculated using realized volatility, we may expect CIDV (") values
to be positive in all cases. Since realized volatility is an estimator of quadratic variation
which includes both a diffusive volatility and a jump volatility component, jump days are
likely to have higher realized volatility than non-jump days, when jump volatility is zero.
This is true if diffusive volatility is not significantly different between jump and non-jump

days.

Since CIDV®) values are a difference of the means of two sets of data with different
sample sizes and possibly different volatilities, a Welch’s t-test can be used to determine the

significance of the values. The t-statistic is then defined by

cIpv()

(22)

where sz and sZ are the standard errors of the volatility on Jjump days and the volatility on
non-jump days respectively. The degrees of freedom associated with this estimate is

approximated using the Welch-Satterthwaite equation
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A two-sided t-test can then be conducted using the t-distribution at the above degrees of

freedom to determine whether the CIDV") values are significantly different from zero.
3.2.2  Changes in Local Volatility

The Bollerslev, Todorov and Li (2011) Test enables the classification of individual
observations of price movements as either jumps or diffusive movements at each high-
frequency interval. This enables us to study whether the occurrence of price jumps is
correlated with changes in diffusive volatility in a local window of time around the jump

interval. The change in local volatility variable is defined as

’ (24)

1
Clvi= - Z W, = = Z Vi 5
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where [; is a local window of time before the jump with m intervals, and I, is a window of
the same length after the jump. V,, and V, are the individual elements used to calculate
realized volatility in (5) or one of the three jump-robust measures of variance in (6), (7), and
(8). It is important to note that individual values of V; are not measures of instantaneous
volatility, whereas sums of the elements over longer windows of time converge to the true
value of volatility as the frequency of sampling increases. In words, CILVI.(V) is approximately
the difference in volatility between two stipulated time intervals of the same length
immediately before and after a price jump at interval i. The volatility on the jump interval

itself is excluded from consideration so that the C!LVE(V) variable does not take the jump

volatility on the jump interval into account. Instead, C[LVE(V) measures the change in

diffusive volatility immediately before and after the jump.

To calculate C!LVE(V), only the intraday volatility is taken into account. This is because
changes in volatility overnight is related to overnight price returns, which have different

behavioral characteristics from intraday returns and are not considered in this study. The

CILVf(V) values are calculated for 15-minute, 30-minute, and 1-hour intervals before and after

17



the jumps indicated by the BTL test. Identified jump intervals which are too close to the start
of the end of the day for sufficient volatility data to be aggregated are excluded from the
study. It is also necessary to ensure that windows of time around each price jump do not
overlap, as this would result in a price jump and its associated volatility impacts to be spilt
over to the window considered for another price jump. With these considerations, the length
of the local windows to be used faces a tradeoff. Since volatility cannot be directly observed,
we use estimators which converge asymptotically to the true value of volatility as the number
of data points goes to infinity. This means that the longer the window considered, the more
data points are included in the estimator, and the better the estimation. However, the longer

the window used, the more jump intervals have to be eliminated and the greater the likelihood
that the window will contain another price jump. Hence, although C.’LVI-(V) can be calculated
across a range of time intervals, we mainly study the 30-minute interval as the best
compromise of the above considerations. The results of the BTL test show that using 30-

minute windows largely preclude window overlaps between different price jumps.

In contrast to the CIDV"? variable, we expected C!LVE(V) values to be similar for RV and

the jump-robust measures of variation. This is because the jump volatility at the jump interval
is excluded from consideration. RV then approximates diffusive price volatility in a similar

way to the jump-robust volatility estimators in the local windows of time surrounding the
price jump. Comparing the direction of price jump and the sign on the corresponding CILVE(V)

value will help to reveal the relationship between the directions of the price jump and

corresponding change in diffusive volatility. Furthermore, an aggregate mean of the
individual CILI/E(V) values, the CILV(V), could be considered separately for upward and

downward price jumps.

Since CILVY? values are measures of differences in paired samples of volatility, we can

test for its statistical significance using a dependent t-test. The t-statistic is then defined by

ciLv®
Sp/vn ' (25)

where Sp, is the standard error ofC!LVI.(V) and n is the number of jump intervals found by the

BTL test. A two-sided t-test can then be conducted using the t-distribution at the n — 1



degrees of freedom to determine whether the CIDV("Y) values are significantly different from

Zero.

4 Data

We studied the S&P500 Futures (SPFU) index and two individual stocks: Fedex Corporation
(FDX) and United Parcel Service, Inc. (UPS). The SPFU index is used as a good proxy to
market price movements as it effectively trades the basket of 500 stocks in the S&P 500
index as a single bundle. Since the futures index is more liquid than the actual index, the
SPFU is a cleaner measure of market price movements. Price data on every minute from 9:35
AM to 4:00 PM on trading days from Nov 11 1999 — Dec 30 2010 were obtained, giving a
total of 2763 days of data for each stock. Although the trading day starts at 9:30 AM, the first
5 minutes are excluded from consideration due to excessive noise contamination. Overnight
returns are also excluded, since overnight data tends to exhibit different dynamics as

compared to intraday data.

All data is adjusted for stock splits and other abnormalities such as missing price
observations. The three data sets are then aligned such that each time series contains the same
set of data points on the same time intervals. Basic stock returns and volatilities are reported

in Table 1.
4.1 Microstructure Noise

The asymptotic consistency of the estimators of variance suggests that sampling should be
done as frequently as possible. However, when prices are observed over extremely short time
intervals, the process becomes contaminated with “microstructure noise”, or market frictions
which cause a short-term deviation between the observed and efficient asset prices. The main
reason for the observation of microstructure noise is that market prices are quoted on a
discrete price grid with a spread between the asking price of sellers and the bidding price of
buyers (the bid-ask spread). Therefore, different prices may be quoted simultaneously by
competing market players due to heterogeneous beliefs, information and inventory positions.
Consequently, any observed price does not represent the efficient market price but instead an
underlying ideal price confounded by an error term reflecting the impact of the

heterogeneities, or “noise”. At high-frequency intervals, this error term becomes non-trivial.



Andersen, Bollerslev, Diebold, and Labys (2000) propose a “volatility signature plot™ which
graphs the realized variance against sampling frequency. Figure 1 shows a volatility signature
plot for UPS. From the plot, it can be seen that variance increases at short time intervals (1-,
2-minutes), indicating noise contamination, and approach a flat, constant value for
sufficiently long intervals. Using such a volatility signature plot, a 5-minute time interval was
selected for this paper to maximize the use of available data (price information is available at

every minute of the trading day) and limit the impact of microstructure noise.

5 Results

5.1  Jump Detection

The BNS Test' classified jumps to be likely on 22.8, 25.6 and 25.8 percent of days
respectively for SPFU, FDX and UPS. The relatively lower jump contribution in the index as
compared to individual stocks is likely due to the diversified nature of the index. Since
individually-occurring stock jumps would not be significant enough to cause a jump in the
index, the incidence of jumps in SPFU would reflect rarer market-wide co-jumps. Using the
Al test, we classified 24.3, 37.6 and 46.2 percent of days as jump days respectively for SPFU,
FDX, and UPS. This corroborates with the paper’s empirical finding when the test was
applied to each of the 30 stocks in the Dow Jones Industrial Average (Ait-Sahalia and Jacod,
2008). The relatively lower jump contribution in the index as compared to the stocks is
similarly observed. Both tests were conducted at the 5 percent significance level. From the
BTL test, we identified the S-minute intervals on which jumps are likely to have occurred. 1.8,
2.1 and 2.2 percent of all 5-minute intervals were classified as jumps for SPFU, FDX and
UPS respectively. This corresponds to an approximate average of 1.5 jumps per day, although
it appears that there may be some clustering of multiple jumps on days when jumps occur. Of
the detected jump intervals, upward jumps represent 51 to 52 percent of jump intervals both
SPFU and the two stocks and are therefore slightly more likely. Since the BTL test has a
different objective from the other two jump tests, jumps detected from this test are not

directly compared to the results of the other two tests.

The test results highlight a concern over the inconsistency between the BNS and AJ jump

tests. Table 2 shows the percentage of jump days identified by the jump tests that corroborate

1 See Appendix for a summary of the acronyms used in this paper



between the different jump tests used. Although the BNS and AJ tests similarly attempt to
separate jump and non-jump days, the degree of corroboration between the two tests is low.
The percentage of days classified as Jump days is similar for both tests for SPFU. However,
only around 20 percent of the jump days classified by each test have also been identified by
the other test. For the two stocks, the percentage of days identified as jump days differ
significantly between the two tests. The BNS test consistently classifies less days as jump
days than the AJ test. Less than 30 percent of the AJ Jjump days were also detected by the
BNS jump test for both stocks. Although the number of BNS Jump days that are also detected
by the Al test is higher, this result is trivial given the larger number of jump days found by
the AJ test. Since it is not possible to identify actual price jumps, it is not possible to check
which of the tests are the most accurate. Schwert (2009) suggests that using different
sampling frequencies for different tests could help in improving corroboration between the
jump days classified by the BNS and AJ tests, although the exploration of the effect is

beyond the scope of this paper.

The inconsistency across jump tests is not entirely surprising if “price jumps™ were to be
interpreted correctly. “True” price jumps cannot be observed in the asset price data, since the
price process is continuous whereas observations are discrete. The inclusion of discontinuities
in addition to a continuous price movement enables researchers to better model the observed
price data. Hence, jump tests classify price movements which are likely to be jumps as such,
based on characteristics such as the size of the Jjump relative to local volatility, but without
necessarily being able to reflect the true discontinuities in prices. In particular, large
continuous price movements and small Jumps could be misclassified. We will therefore
proceed with using the results from all three jump tests, while bearing in mind the possibility

of inaccuracies in identified jumps by the jump tests.
5.2 Change in Daily Volatility

The change in daily volatility CIDV(") values calculated from the BNS test are reported in
Table 3 along with results of the corresponding t-tests for statistical significance of the values.
CIDV®) values are not significantly different from zero for SPFU, FDX and UPS. Since
realized volatility is an estimator of the sum of jump and diffusive volatility, it is expected to
be higher on jump days if diffusive volatility is similar between jump and non-jump days.

The results therefore suggest that diffusive price volatility is lower on jump days for all three
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assets. The CIDV(") values based on jump robust measures of volatility support this result.
CIDVBV) Dy MedV) and cIDV M™MY) values are all significantly negative for SPFU and
the two stocks. Furthermore, the results appear to be robust if we look at the different
measures of volatility on jump days separately from non-jump days. As expected, RV is
significantly higher than the corresponding measures of jump-robust volatility on jump days
whereas it is similar to the measures of diffusive volatility on non-jump days. To check for
the robustness of the results between jump and non-jump days, we compare the CIDV (")

values from the BNS test with the AJ test.

CIDVY) values from the AJ test are not significantly different from zero for all 3 assets
and all measures of volatility (Table 4). However, the derived volatilities on jump and non-
jump days detected by the test reflect an irregularity in the results of the AJ jump test. In
particular, the differences between RV and the measures of jump-robust volatility on jump
and non-jump days are similar. Since this difference represents jump volatility, this indicates
that jump volatilities on jump and non-jump days detected by the AJ test are similar, contrary
to expectations. Since there was an initial lack of corroboration between jump days classified
by the Al test and the BNS test, we will primarily rely on the CIDV() values from the BNS

test.

The main finding from the CIDV") values based on the BNS test is therefore that
diffusive price volatility appears to be lower on jump days. Since the BTL test revealed an
approximately equal number of upward and downward jumps in SPFU and the two stocks,
this result is likely to be unrelated to the direction of jumps. Instead, diffusive price volatility

is systematically lower on jump days detected by the BNS test.
53  Change in Local Volatility

Given the inconsistencies in CIDV(") values, we study the mean change in local volatility
CILV®Y) values to understand the relationship between price jumps and changes in volatility.
Tables 5.1-3 show the CILVY) values for SPFU, FDX and UPS at 15-, 30- and 60-minute
intervals. We first examine CILV(") values for market price movements, as indicated by the
S&P 500 Futures Index. For downward jumps, CILV(") are consistently positive across all
the time intervals sampled and significant for all measures of diffusive volatility. For upward

jumps, CILV(Y) values are not significant at any time interval. However, they are negative
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when calculated using 15-minute windows, but become more positive when the length of the
window increases. There appears to be evidence that downward Jumps in the market price
occur together with an upward change in diffusive price volatility. In the case of upward
Jumps in the market price, the results could be explained by an initial downward change in
diffusive price volatility, which is overwhelmed by an eventual increase in volatility as time
passes following the jump. We see CILV™) values tending towards zero as longer windows
of time are considered for both upward and downward Jumps, indicating a gradual return of
volatility to original values. We therefore postulate that the price jumps occur concurrently
with a change in volatility, and that a negative dependence exists between the two changes.
However, volatility gradually tends to its original value as time passes following the price

jump.

Figure 2 shows the scatter plots of individual CILVt.(V} values on the magnitude of the

return at the price jump. The scatter for the 30-minute windows is shown, although the plots
for the different time intervals are similar. We observe a clustering of CILK(V) values around
zero, particularly when the magnitude of the jump is small. However, as the magnitudes of

Jumps increase for both upward and downward jumps, bigger C!LVE(V) values are observed. In

particular, with increasing magnitude of jumps, a larger range of 1C'."LVEU'J’J values is observed.
However, the scatter plots appear to be roughly symmetric for upward and downward jumps,
exhibiting no evidence of negative dependence between the direction of jumps and direction

of change in diffusive price volatility.

For both UPS and FDX, CILV(") values are consistently negative for upward jumps at
the 30- and 60-minute intervals, although not statistically significant. The same pattern,
however, is not observed when I5-minute intervals are used. We similarly observe the
volatilities tending towards zero in the 60-minute versus the 30-minute windows. For
downward jumps, the CILV") values are not very consistent in signs at the 15- and 30-
minute intervals. However, they become more negative as time passes. The CILV(") values
are not statistically significant. We therefore find it difficult to draw any consistent
conclusions about volatility changes during individual stock price jumps, a contrast to the

relationships found in SPFU earlier.
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Figure 3 shows the scatter plots of individual C!LVE(V) values for FDX on the magnitude
of the return at the price jump. The scatter for the 30-minute windows is shown, although the

plots for the different time intervals are similar. Results for UPS are similar. As with the

scatter plots for SPFU, we observe increased C!LVE(V) values with larger magnitudes of jumps.
However, there appears to be no evidence of dependence between the direction of jumps and

direction of change in diffusive price volatility.

The results derived from C.’LVECV) values for both SPFU and the two stocks do not appear

to directly explain the earlier result from cipvY) values, when we found diffusive volatility
to be lower on jump days detected by the BNS test. Therefore, other factors apart from an
immediate change in diffusive volatility following a price jump could account for the earlier

result.

6 Conclusion

This paper was motivated by the question of whether the occurrence of price jumps is related
to changes in diffusive volatility. To address this question, two approaches were adopted.
First, two jump tests developed by Barndorff-Nielsen and Shephard (2006) and Ait-Sahalia
and Jacod (2008) were used to classify days as jump or non-jump days. We then studied the
difference in diffusive volatility between these jump and non-jump days. Second, an intraday
jump test was used to classify each 5-minute price observation as either a jump or a diffusive
pricc movement. We then compared the diffusive volatility in local windows of time

immediately preceding and following intervals classified as containing jumps.

This paper represents a preliminary study of the relationship between price jumps and
corresponding changes in diffusive price volatility. To further investigate the relationship
between price jumps and changes in diffusive price volatility for individual stocks, additional
stocks could be studied. The methodology of this paper is unable to detect the presence of
volatility jumps in the presence of price jumps. A natural extension of this study is to
examine the instantaneous volatility during price jump intervals. In particular, the test for co-
jumps between price and volatility developed by Jacod and Todorov (2010) can be applied to
individual stocks. Nonetheless, this study has resulted in some interesting findings which may

inspire further research.



Using the BNS and AJ jump tests, we identified days during which jumps are likely to
have occurred. The BNS jump test showed that jump days have lower diffusive price
volatility than non-jump days. The direction of price jumps does not appear to factor into this
effect. However, we found irregularities in the results of the AJ Jjump test since jump
volatilities on jump and non-jump days classified by the test are similar, contrary to

expectations.

Using the intraday jump test developed by Bollerslev et al. (2011), we identified 5-
minute intervals when jumps are likely to have occurred. For market prices, we observe
evidence that price jumps occur concurrently with a change in volatility, and that a negative
dependence exists between the two changes. This is in line with the results of Todoroy and
Tauchen (2011). Furthermore, a price jump of greater magnitude is more likely to induce a
larger change in diffusive price volatility. As time passes following the price jump, price
volatility gradually tends to its original value. In contrast, for individual stock prices, there
was no consistent change in volatility when a price jump occurs, suggesting that the
relationship between price jumps and changes in diffusive price volatility are different for

market prices and individual stock prices.
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Tables and Figures

Tables
Table |
SPFU FDX UPS
RV 14.9828 24.9206 18.9037
BV 14.4576 23.8821 18.1116
MedV 14,2872 23.5663 17.9215
MinV 14.1716 23.6200 18.0231

Table 1 shows the mean values of various estimators of volatility for each stock and SPFU over the sample

period.
Table 2
SPFU FDX UPS
BNS jumps found in AJ test 0.2127 0.3994 0.5175
AJ jumps found in BNS test 0.2000 0.2714 0.2894

Table 2 shows the percentage of jump days found using the BNS or AJ jump test that are also found using the

other test. The degree of corroboration between the two tests appears to be low.
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Table 3

SPFU
Jump Days Non-Jump Days CIDV t-statistic p-value
RV 14.8626 15.0181 -0.1555 -0.3591 0.3598
BY 13.0809 14.8662 -1.7853 -4.5427 6.1424e-06
MedV 10.0120 11.6555 -1.6435 -5.2521 1.7863e-07
MinV 12.1956 14.7578 -2.5622 -6.8053 1.5722¢-11
FDX
Jump Days Non-Jump Days CIbV t-statistic p-value
RV 25,5576 24.6963 0.8613 1.6488 0.0994
BV 22:2375 24.4435 -2.206 -4.6881 3.0028e-06
MedV 16.8194 18.7270 -1.9076 -5.1357 3.1864e-07
MinV 21.0469 24.4987 -3.4518 -7.4664 1.3411e-13
UPS
Jump Days Non-Jump Days CIDV t-statistic p-value
RY 19.2517 18.7772 0.4745 1.0568 0.2908
BV 16.7392 18.5879 -1.8487 -4.5239 6.5290e-06
MedV 12.5516 14.0815 -1.5299 -4.8042 1.7068e-06
MinV 16.0759 18.7004 -2.6245 -6.5689 6.7772¢-11

Table 3 shows the mean values of various measures of volatility for each stock and SPFU, on days with or
without jumps, as determined by the Barndorff-Nielsen and Shephard (2006) test, and the corresponding
changes in volatility measures and t-test results. Statistically significant p-values for a two-sided t-test are
highlighted in bold.




Table 4

SPFU
Jump Days Non-Jump Days CIDV t-statistic p-value
RV 15.4182 14.8431 0.5751 1.0249 0.3055
BV 14.9110 14.3142 0.5968 0.3580 0.7203
MedV 11.5867 11.1826 0.4041 0.2466 0.8052
MinV 14.6372 14.0248 0.6124 0.9334 0.3507
FDX
Jump Days Non-Jump Days CIDV t-statistic p-value
RV 23.8683 24.2072 -0.3389 -0.7197 0.4718
BY 22.7779 23.3638 -0.5859 -1.2834 0.1995
MedV 17.2389 17.9178 -0.6789 -1.9190 0.0551
MinV 22.3608 23.0932 -0.7324 -1.6000 0.1097
UPS
Jump Days Non-Jump Days CIDV t-statistic p-value
RY 19.1265 18.7052 0.4213 1.0249 0.3055
BY 18.1874 18.0449 0.1425 0.3580 0.7203
MedV 13.7275 13.6516 0.0759 0.2466 0.8052
MinV 18.2237 17.8507 0.3730 0.9334 0.3507

Table 4 shows the mean values of various measures of volatility for cach stock and SPFU, on days with or

without jumps, as determined by the Ait-Sahalia and Jacod (2008) test, and the corresponding changes in

volatility measures and t-test results. Statistically significant p-values for a two-sided t-test are highlighted in

bold.
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Table 5

Table 5.1: 15-minute interval
SPFU
Upward jumps Downward jumps
CILV t-statistic p-value CILV t-statistic p-value
RV -0.0027 -0.9830 0.3258 0.0027 0.6396 0.5226
BV -0.0009 -0.6475 0.5174 0.0033 1.6663 0.0960
MedV -0.0008 -0.8674 0.3858 0.0015 1.9890 0.0470
MinV 0.0014 1.1115 0.2666 0.0042 23022 0.0216
FDX
Upward jumps Downward jumps
CILV t-statistic p-value CILV t-statistic p-value
RV -0.0019 -0.9849 0.3248 -0.0007 -0.1534 0.8782
BV 0.0003 0.3572 0.7210 -0.0001 -0.0227 0.9818
MedV -0.0001 -0.1999 0.8416 -0.0022 -1.0356 0.3006
MinV 0.0021 2.1919 0.0286 0.0007 0.2707 0.7866
UPS
Upward jumps Downward jumps
CILV t-statistic p-value CILV t-statistic p-value
RV 0.0002 0.1632 0.8704 -0.0002 -0.0802 0.9362
BY 0.0014 1.7951 0.0730 0.0005 0.2910 0.7710
MedV 0.0002 0.4158 0.6776 -0.0015 -1.2186 0.2232
MinV 0.0023 2.8971 0.0038 0.0006 0.3504 0.7262

Table 5.1 shows the CILV values for cach stock and SPFU calculated using 15-minute windows before and after

jump intervals identified by the Bollerslev, Todorov and Li (2011) test, and the corresponding t-test results.

Results are separated for upward and downward jumps, as indicated by the sign on the stock return during the

jump interval. Statistically significant p-values for a two-sided t-test are highlighted in bold.

29




Table 5.2: 30-minute interval

SPFU
Upward jumps Downward jumps
CILV t-statistic p-value CILV t-statistic p-value
RY -0.0019 -0.9849 0.3248 0.0034 1.2970 0.1950
BY 0.0003 0.3572 0.7210 0.0032 2.3513 0.0190
MedV -0.0001 -0.1999 0.8416 0.0015 2.0157 0.0442
MinV 0.0021 2.1919 0.0286 0.0038 2.9624 0.0032
FDX
Upward jumps Downward jumps
CILV t-statistic p-value CILV t-statistic p-value
RV -0.0046 -1.6833 0.0926 -0.0010 -0.3337 0.7388
BV -0.0025 -0.9316 0.3518 0.0000 -0.0202 0.9838
MedV -0.0029 -2.2785 0.0228 -0.0020 -1.3007 0.1936
MinV -0.0012 -0.4267 0.6696 0.0008 0.4194 0.6750
UPS
Upward jumps Downward jumps
CILV t-statistic p-value CILV t-statistic p-value
RV -0.0037 -1.7642 0.0780 0.0007 0.4146 0.6786
BV -0.0025 -1.9023 0.0574 0.0015 0.8433 0.3992
MedV -0.0018 -1.8525 0.0642 -0.0014 -1.4297 0.1532
MinV -0.0023 -1.5760 0.1152 0.0015 0.9209 0.3574

Table 5.2 shows the CILV values for cach stock and SPFU calculated using 30-minute windows before and after

jump intervals identified by the Bollerslev, Todorov and Li (2011) test, and the corresponding t-test results.

Results are separated for upward and downward jumps, as indicated by the sign on the stock return during the

jump interval. Statistically significant p-values for a two-sided t-test are highlighted in bold.
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Table 5.3: 60-minute interval

SPFU
Upward jumps Downward jumps
CILV t-statistic p-value CILV t-statistic p-value
RV 0.0002 0.1632 0.8704 0.0024 1.5633 0.1184
BV 0.0014 1.7951 0.0730 0.0025 2.7617 0.0058
MedV 0.0002 0.4158 0.6776 0.0011 2.2745 0.0232
MinV 0.0023 2.8971 0.0038 0.0027 3.2737 0.0010
FDX
Upward jumps Downward jumps
CILV t-statistic p-value CILV t-statistic p-value
RV -0.0035 -1.8395 0.0662 -0.0037 -1.8011 0.0720
BV -0.0017 -1.1179 0.2638 -0.0029 -1.8258 0.0682
MedV -0.0025 -2.3599 0.0184 -0.0035 -3.2433 0.0012
MinV -0.0010 -0.6338 0.5264 -0.0024 -1.5502 0.1214
upPs
Upward jumps Downward jumps
CILV t-statistic p-value CILV t-statistic p-value
RV -0.0002 -0.1701 0.8650 -0.0007 -0.5357 0.5922
BY -0.0016 -1.3233 0.1860 -0.0005 -0.4139 0.6790
MedV -0.0013 -1.4287 0.1534 -0.0020 -2.4751 0.0134
MinV -0.0024 -1.53975 0.1104 -0.0005 -0.4087 0.6828

Table 5.3 shows the CILV values for each stock and SPFU calculated using 60-minute windows before and after

jump intervals identified by the Bollerslev, Todorov and Li (2011) test, and the corresponding t-test results.

jump interval. Statistically significant p-values for a two-sided t-test are highlighted in bold.

Results are separated for upward and downward jumps, as indicated by the sign on the stock return during the
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Figures

Figure |

UPS: Annualized Volatility Signature
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Figure 1 shows the volatility signature plot for UPS. The horizontal axis shows the frequency of sampling, and
the vertical axis shows the corresponding Realized Volatility measured using at the frequency. From the graph,
it can be seen that volatility is higher at shorter intervals below 10-minutes due to contamination with
microstructure noise, but flattens out as the frequency of sampling increases. The 5-minute frequency of
sampling appears to give a reasonable measure of volatility while enabling relatively little wastage of data.
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Figure 2 shows the scatter plot of the CILV values on the magnitude of identified jumps for SPFU, measured at
30-minute windows before and after jump intervals identified by the BTL jump test. Scatter plot for CILV
calculated using RV, BV, MedV and MinV are shown. There is no apparent relationship between the change in
volatility and direction of the jump. Scatter plots at 15-, and 6s0-minute intervals are similar and therefore not

shown.
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Figure 3
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Figure 3 shows the scatter plot of the CILV values on the magnitude of identified jumps for FDX, measured at
30-minute windows before and after jump intervals identified by the BTL jump test. Scatter plot for CILV
caleulated using RV, BV, MedV and MinV are shown. There is no apparent relationship between the change in
volatility and direction of the jump. Scatter plots at 15-, and 60-minute intervals are similar and therefore not
shown. Results for UPS are similar,
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Appendix
Throughout the paper, the following acronyms were used:

Al test: Jump test by Ait-Sahalia and Jacod (2008) (3.1.2)

BNS test: Jump test by Barndorff-Nielsen and Shephard (2004, 2006) (3.1.1)
BTL test: Jump test by Bollerslev et al. (2011) (3.1.3)

CIDV: Change in Daily Volatility (3.2.1)

CIDV: Change in Local Volatility (3.2.2)

RV: Realized Volatility (2.2)

BV: Bipower Variation (2.2)

MedV: Median Variation (2.2)

MinV: Minimum Variation (2.2)



