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Abstract

This paper identi�es systematic patterns within the trading day by analyzing high frequency

data from a market index and nine individual stocks. Empirical results expand on the previously

documented U -shape in intraday equity volatility by implementing non-parametric statistics to

test for patterns in the jump and di�usive components of volatility. Additional results indicate

that a recently developed non-parametric jump detection scheme may under-report the number

of returns �agged as statistically signi�cant jumps in the middle of the day while exaggerating

the number of statistically signi�cant jumps in the early morning and late afternoon. The

paper concludes by investigating whether incorporating the observed patterns into a historical

forecasting model can improve performance.
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1 INTRODUCTION

1 Introduction

In �nancial markets there are rare events during which asset prices exhibit volatile and unexpected

movements. These occurrences are of utmost concern for traders and portfolio managers. Commonly

referred to as jumps, they correspond to abrupt shifts in the expectation of market participants that

underscore new risks and uncertainties about the future of the economy or the future of an individual

�rm.

There are many alleged explanations for why jumps occur. Some suggest that jumps are infor-

mation driven. Among �nancial practitioners it is well known that scheduled macroeconomic and

idiosyncratic announcements that di�er signi�cantly from expectations can have dramatic e�ects on

stock prices, equity indices, �xed-income securities and foreign exchange rates. Another hypothesis

is suggested by the popular literature in behavioral �nance. Shiller (2002) argues that market par-

ticipants tend to create unsustainable situations that result in volatile and highly correlated changes

in asset prices. Others believe that jumps are a product of the so-called �Black Swan� events. Taleb

(2007) cites unpredictable occurrences for having a large impact on asset prices.

Recent research in �nancial econometrics has placed an increasing emphasis on studying jumps.

In part this a response to a long-standing criticism of the asset pricing literature. Despite the fact

that papers as early as Merton (1976) motivate the importance of including jumps into models

for valuing derivatives such as option prices, many of the continuous time models for asset price

evolution have sample paths that do not allow for jump discontinuities. Andersen, Bollerslev and

Diebold (2006) note that the assumption of a continuous sample path in theoretical models for

asset pricing is clearly violated in practice. Eraker, Johannes, and Polson (2003) and Eraker (2004)

expand upon this point. They detail the importance of including jumps into models for stochastic

volatility and the pricing of derivatives.

The interest in jumps has also been apparent in developments made by the non-parametric

literature. Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and Labys (2001), and

Barndor�-Nielsen and Shephard (2002a,b) recommend the use of high-frequency �nancial data to

compute the non-parametric realized variance as a method for estimating, forecasting, and modeling

volatility. They conclude that the realized variance maintains much of the information in intraday

data while eliminating many of the complications related to working with parametric models. A series

of papers by Barndor�-Nielsen and Shephard (2004, 2006) expand on this result by introducing the

bi-power variation as a non-parametric statistic that provides a consistent estimator for the di�usive

component in volatility. They go on to show that the di�erence in the realized variance and the
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1 INTRODUCTION

bi-power variation provides a consistent estimator of the jump component in volatility. Their result

provides the theoretical framework to study jumps. Huang and Tauchen (2005) implement this idea

to develop a new statistic that they validate through extensive Monte Carlo analysis. It tests for

statistically signi�cant trading days under the null hypothesis that there are no jump discontinuities

in asset prices. Lee and Mykland (2006) introduce a new test that builds on the results from Huang

and Tauchen (2005) and the framework in Barndor�-Nielsen and Shephard (2004). The Lee-Mykland

statistic di�erentiates itself from the other jump detection schemes in that it tests individual returns

for statistically signi�cant jump discontinuities under the null hypothesis that there are no jumps

in asset prices. The advantage of the Lee-Mykland statistic is that it identi�es when jumps occur

throughout the trading day.

This paper identi�es systematic patterns that persist in equity prices within the trading day.

It expands on the non-parametric literature in �nancial econometrics in several ways. First, it is

among the earliest attempts to implement the Lee-Mykland statistic to a high frequency data set to

investigate the arrival of statistically signi�cant jump discontinuities within the trading day. It also

includes the most extensive application of the Lee-Mykland statistic to individual stocks. Whereas

Lee and Mykland (2006) use a three month sample for three individual stocks and the market, this

paper implements the statistic over a �ve year sample for nine individual stocks and the market. The

empirical results con�rm the intuition from Lee and Mykland (2006). They indicate that statistically

signi�cant jump discontinuities are most frequent in the �rst hour of trading. This is particularly

noted for the idiosyncratic jumps in individual stocks that appear to cluster around 10:00am.

Further analysis reveals that the results using the Lee and Mykland statistic may be spurious.

There is evidence the Lee-Mykland statistic over-speci�es the number of statistically signi�cant

jumps in the morning and late afternoon while under reporting the number of jumps in the middle

of the day. This discussion relates to intraday patterns in volatility. Wood, McInish and Ord (1985)

document a U -shaped pattern in intraday equity volatility where the morning corresponds to the

most volatile period of the day. This paper builds upon their result. The bi-power variation de-

veloped by Barndro�-Nielsen and Shephard (2004) provides a consistent estimator for the di�usive

component in volatility whereas the di�erence between the realized variance and the bi-power varia-

tion provides a consistent estimator for the jump component in equity volatility. These statistics are

computed in the �rst attempt to test for intraday patterns in decomposition of equity volatility into

its di�usive and jump components. The results con�rm the U -shaped pattern observed in Wood,

McInish and Ord (1985) for the realized variance and indicate that the di�usive component exhibits

a similar pattern. The pattern in the jump component is more skewed. It is particularly volatile
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2 MODELING JUMP COMPONENTS

during the �rst hour of trading. These results have important implications for the Lee-Mykland

statistic. The Lee-Mykland statistic compares individual returns to a backward looking average of

di�usive component in volatility. At the recommended window sizes for the statistic in Lee and

Mykland (2006) it seems that local patterns in volatility are eliminated by taking the average of

the di�usive component in volatility over a relatively long period of time. This may result in Type

I errors that exaggerate the reported number of statistically signi�cant jumps in the morning and

afternoon and Type II errors that reduce the reported number of statistically signi�cant jumps in

the middle of the day.

The intraday patterns in volatility are then incorporated into a historical forecasting model to

see whether they can improve performance. Andersen, Bollerslev, Diebold, and Labys (2003) report

that forecasting with realized variance outperforms the well known GARCH and a variety of more

complicated stochastic volatility models in out-of-sample forecasting. This paper considers the HAR-

RV-CJ forecasting model introduced in Andersen, Bollerslev, and Diebold (2006). A modi�cation

to the model tests whether there is informational content in the jump component of equity volatility

during the �rst hour of trading. The informational content is measured by its ability to improve the

performance of the HAR-RV-CJ forecast over daily, weekly and monthly horizons.

The remainder of the paper will proceed as such: Section 2 presents the model for stock price

evolution and the statistical measures considered throughout the subsequent discussion; Section 3

describes the data; Section 4 discusses systematic patterns in the arrival of statistically signi�cant

jump discontinuities and equity volatility; Section 5 investigates whether the observed patterns are

helpful in improving historical forecasts of volatility; Section 6 concludes. All references, tables and

�gures can be found at the back of the paper.

2 Modeling Jump Components

2.1 Log-Price Stock Evolution

To motivate our discussion of jump discontinuities in stock prices we will begin by investigating a

standard model of stock price evolution. Consider the stochastic di�erential equation for log-price

dp(t) de�ned as

dp(t) = µ · dt+ σ · dW (t). (1)
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The �rst term, µ·dt, is a deterministic drift component in the stock price. The second term, σ·dW (t),

is a random component in the stock price de�ned as volatility multiplied by a standard Brownian

motion. The model represents the limiting case of one of the most simple models for stock price

evolution. In particular, the equation de�ned above is merely the continuous time interpretation of

a Binomial model in which the stock price has a positive probability of moving up or down over

small time intervals. The drift term and the standard Brownian motion are merely the mathematical

consequences of adding the independent identically distributed log-returns over in�nitesimally small

time periods. When viewed over longer periods of time it will seem that stock prices in this model

tend to drift higher with a considerable amount of random behavior or noise, an example can be

found in Figure 9 in the Technical Appendix.

This model is a good starting point for investigation because it has played an important role

in the �nancial literature for its intuitive appeal and mathematical simplicity. A notable example

would be its use in deriving the well known Black-Scholes option pricing formula in Merton (1973)

and Black and Scholes (1973). Of course, the disadvantage of simple models is that they often fail

to encompass the complexities of the real world. One of the �rst criticisms of the standard model

above is its failure to allow for the time varying volatility clustering found in Engle (1982) and

Bollerslev (1986). The random component of the stock price merely multiplies a real number σ by

a normal random variable with mean 0 and standard deviation t. A more recent criticism of the

standard model is that it also fails to account for jumps discontinuities or large price moves. Again

this is a mathematical consequence. Standard Brownian motions have continuous sample paths with

probability one. The implication is that the model restricts stock price movements in a manner that

does not seem to be aligned with the real world.

One example that comes to mind is risk-arbitrage. In many situations there are signi�cant price

movements associated with the success of deals or lawsuits. Outcomes can result in large price moves

that would practically be zero probability events under the standard model described above. As a

result, we introduce a new model that takes into consideration these complications and allows for

more dramatic price movements. Here we de�ne log-price evolving in continuous time as

dp(t) = µ(t)dt+ σ(t)dW (t) + dLJ(t). (2)

Note that both the drift and instantaneous volatility are re-de�ned so they are time-varying. As

before W (t) is a standard Brownian motion. The new term, LJ(t), is a particular class of the pure

jump Lévy process with increments LJ(t) − LJ(s) =
∑
s≤τ≤t κ(τ). Our notation is adopted from
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Basawa and Brockwell (1982). The jump process we consider is a compound Poisson process. It

allows for discontinuities or jumps in stock prices with constant jump intensity λ and independent

identically distributed jump size κ(τ). This is the model we will consider throughout the rest of

our discussion. It underlies all of the work in the upcoming section where we introduce statistical

measures that will allow us to study jump discontinuities or large price moves in stocks.

2.2 Realized Variance and Bipower Variation

It may seem logical that a good place to begin looking for jump discontinuities is by investigating the

level of stock prices over our sample period. Figure 10 found in the Technical Appendix motivates

this idea by plotting the closing price from 2001 through 2005 for Standard and Poor's Depository

Receipt, a well known exchange-traded fund that tracks the performance of the S&P 500. The

plot reveals that it is actually quite di�cult to visually isolate days where a large price move may

have occurred, at least when su�ciently large sample periods are considered. From this elementary

analysis it is possible to surmise that we will need to develop more sophisticated tools for identifying

jump discontinuities in stock prices.

To begin we shift our focus from investigating the level of stock prices to analyzing stock returns,

or the changes in stock prices over speci�ed periods of time. Stock returns are computed by sampling

high frequency �nancial data at a constant frequency. On a particular day t we have prices p(t −

1 + 1
M ), p(t − 1 + 2

M ), ..., p(t − 1 + M
M ) where M is the within day sampling frequency. As before

p(t) refers to a log-price whereas P (t) will be used for the level price at some time t. The intraday

geometric returns on day t is de�ned as,

rt,j = p(t− 1 +
j

M
)− p(t− 1 +

j − 1
M

), j = 1, 2, . . . ,M ; (3)

rt,j = ln

(
P (t− 1 + j

M )

P (t− 1 + j−1
M )

)
, j = 1, 2, . . . ,M.

Figure 10 also found in the Technical Appendix plots geometric returns from the SPY sampled at

a daily frequency. By looking at the changes in stock prices instead of the level it is easier to spot

days when large price moves occur.

Nonetheless, a visual selection of jump discontinuities is neither rigorous nor convincing. In

what follows stock returns are used to compute two measures of integrated volatility that allow for
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the study jumps in a more formal manner. Both measures are discussed in Barndor�-Nielsen and

Shephard (2004) to analyze the realized or historical price variance.

The �rst measure will be referred to as the realized variance,

RVt =
M∑
j=1

r2t,j . (4)

It sums the squared geometric returns over intraday periods. This provides a consistent estimator

for the integrated variance. Andersen, Bollerslev, Diebold (2002) expands upon this idea by noting

that the realized variance for a particular day t satis�es

lim
m→∞

RVt =
ˆ t

t−1

σ2(s)ds+
Nt∑
j=1

k2
t,j (5)

where
´ t
t−1

σ2(s)ds is a consistent estimator of the integrated variance, Nt is the number of jumps,

and kt,j is the jump size. The second measure to be considered is the realized bipower variation. It

is de�ned as

BVt = µ−2
1

(
M

M − 1

) M∑
j=2

|rt,j−1| |rt,j | =
π

2

(
M

M − 1

) M∑
j=2

|rt,j−1| |rt,j | (6)

where µa = E(|Z|a), Z ∼ N(0, 1), a > 0.1 This statistic sums the absolute value of the intraday

return at time j multiplied by the absolute value of the preceding return at time j − 1 over the

course of the trading day. The π
2 adjustment is a technical consideration so the statistics that will

be de�ned later are distributed N(0, 1). The sum is multiplied by M
M−1 so it is possible to directly

compare the bipower variation which has M − 1 terms and the realized variance which has M terms

for each trading day.

The rationale for computing both of these non-parametric statistics is to use their di�erence as

a consistent estimator for the jump component in equity volatility. As was previously noted, the

realized variance is a consistent estimator for the integrated variance plus the jump contribution.

The bipower variance provides a consistent estimator of the integrated variance una�ected by jumps.

Under what Huang and Tauchen (2005) describe as reasonable assumptions about Equation 2,

Barndor�-Nielsen and Shephard (2004, 2006) imply that the di�erence RVt −BVt can be used as a

consistent estimator of the pure jump component. To be speci�c,

1µp ≡ 2
p
2

Γ( 1
2 (p+1))

Γ( 1
2 )

= E(|Zp|). We use µ−2
1 so the bipower variation and realized variance are directly comparable.

The term
(

M
M−1

)
is a degrees of freedom adjustment in bipower variation. Further explanations can be found in

Barndor�-Nielsen and Shephard (2004).
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lim
m→∞

BVt =
ˆ t

t−1

σ2(s)ds; (7)

lim
m→∞

(RVt −BVt) =
Nt∑
j=1

k2
t,j . (8)

This result is the basis for all of our subsequent work. In the upcoming section it will be used

to discuss two non-parametric jump detection schemes that will be used to compute statistically

signi�cant jump discontinuities in stock prices.

2.3 Jump Test Statistics

The theoretical framework presented by Barndor�-Nielsen and Shephard (2004) has been imple-

mented to study jump discontinuities and create detection schemes that will �ag statistically signif-

icant jumps. One example can be found in Andersen, Bollerslev, Diebold (2006). They use realized

variance and bipower variation to investigate jumps in equity, �xed income, and foreign exchange

markets. Their research suggests that the standard continuous-time stochastic volatility model,

dp(t) = µ(t)dt+ σ(t)dt,

fails to explain the number of large intraday price moves. Huang and Tauchen (2005) expand

upon these results by performing extensive Monte Carlo analysis on a series of non-parametric test

statistics. They conclude that the average contribution of jumps to total daily price variance is 4.5%

to 7.0%. Their preferred statistic will be considered in this paper as a starting point for �agging

jumps. It is de�ned as,

zt =
RJt√

(νbb − νqq) 1
M max(1, TPt

BV 2
t

)
; (9)

RJt = max(
RVt −BVt

RVt
, 0);

TPt = Mµ−3
4/3

(
M

M − 2

) M∑
j=3

|rt,j−2|
4
3 |rt,j−1|

4
3 |rt,j |

4
3 ;

νqq = 2, νbb =
(π

2

)2

+ π − 3.
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2.3 Jump Test Statistics 2 MODELING JUMP COMPONENTS

The numerator or relative jump component, RJt, makes use of the di�erence between the realized

variance and bipower variation to test for large contributions in the jump component of equity returns

over the course of a trading day. The denominator studentizes the statistic. Tri-Power Quarticity,

TPt, is a jump robust estimator for the integrated quarticity
´ t
t−1

σ4(s)ds that Huang and Tauchen

(2005) conclude is preferred to other estimators for integrated quarticity such as the Quad-Power

Quarticity. The modi�cations to the statistic are made for technical considerations. To be speci�c,

the max adjustments correct for the fact that asymptotically TPt ≥ BV 2
t and RVt ≥ BVt. Finite

sampling frequencies do not guarantee that these conditions will always be met. The coe�cients in

the denominator assure that zt ∼ N(0, 1) as M → ∞ under the null hypothesis that there are no

jumps in equity prices. As a result, the interpretation for statistically signi�cant zt is evidence for

at least one jump occurring over the course of the trading day.

The zt statistic is a good starting point for investigating jumps because it is easy to compute

and it has been rigorously validated. Huang and Tauchen (2005) �nd that the statistic computed

on a daily basis does �an outstanding job of identifying the days on which jumps occur.� If we are

thus convinced that jumps in stock prices do occur and they account for a non-trivial 4.5% to 7.0%

of total price variation, it is logical to delve deeper into researching when jumps occur.

Lee and Mykland (2006) elaborate on this idea by presenting a new jump detection scheme.

Using the same principle of comparing realized variance and bipower variation they de�ne a statistic

that �ags individual returns as statistically signi�cant events under the null hypothesis that there

are no jump discontinuities in stock prices. As the sampling frequency is increased to compute

returns over smaller time periods the Lee-Mykland statistic presents the opportunity to test when

statistically signi�cant jumps occur within the trading day. This di�ers from the zt statistic which

�ags entire trading days as statistically signi�cant events in which a jump may have occurred. The

Lee-Mykland statistic will be de�ned as

`t,j =
rt,j√
BVt,j

; (10)

BVt,j =
1
k

(π
2

) j∑
i=j−k+1

|rt,i−1| |rt,i| .

By dividing individual returns by a trailing average of the bipower variation the `t,j statistic in-

troduces a test that will �ag individual returns as statistically signi�cant jumps.2 The notation is

2Note that negative values for the index i will refer to previous days. In particular, rt,0 = rt−1,M , rt,−1 =
rt−1,M−1, etc.
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analogous to the zt statistic. The subscript t refers to a particular trading day while j refers to

the within day return. As before the bipower variation is multiplied by π
2 so `t,j ∼ N(0, 1). The

only di�erence from the previous de�nition is that `t,j and BVt,j have subscripts for both t and j.

This is the case because the `t,j statistic is computed for individual returns. The modi�cation to

the bipower variation is necessary because the `t,j statistic computes a local average for the bipower

variation where the variable k determines the degree to which the average of the bipower variation

is backward looking. From here on the variable k will be referred to as the window size. Lee and

Mykland recommend window sizes of 7 weeks, 16 days, 12 days, 8.5 days, 6 days, and 3.5 days for

sampling intervals of 1 week, 1 day, 1 hour, 30 minutes, 15 minutes, and 5 minutes, respectively.

Both the choice of window size and the perceived advantage that the `t,j statistic can �ag individual

returns as jumps will be discussed later in the paper.

The next section will brie�y digress to discuss the data set. It is important to note that the

data is an integral component of the analysis performed later in this paper. The statistical measures

de�ned in the previous paragraphs are intended for high frequency �nancial data from heavily traded

stocks. The objective to study when jump discontinuities occur within the trading day would not

be possible without an extensive price series that includes intraday data over a substantial amount

of time. This will be accomplished by computing RVt, BVt, zt, and `t,j using the high frequency

data to be described. Any additional modi�cations to the statistical measures will be introduced as

necessary.

3 Data

High frequency �nancial data from the New York Stock Exchange will be considered in the sub-

sequent sections of this paper. The focus will be placed on analyzing the Standard and Poor's

Depository Receipt or SPDR. The SPDR is an exchange-traded fund that launched in 1993 to track

the performance of the S&P 500. It is an extremely liquid instrument that allows individual traders

to buy or sell a basket of stocks. From here on the SPDR will serve as our proxy for the market

portfolio and it will be referred to by its ticker symbol: SPY. Nine individual stocks will also be

considered from the consumer goods, services, basic materials, healthcare, �nancial, and technology

industries. The speci�c stocks and their ticker symbols are included in Table 1.

The high frequency data was obtained from the Trade and Quote Database (TAQ) via Wharton

Research Data Services (WRDS). It was then formatted in Law (2007) into a thirty second price
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series using an adapted version of the previous tick method from Dacorogna, Gencay, Müller, Olsen,

and Pictet (2001). The �nal price series excludes non-full trading days and the �rst �ve minutes of

each trading day in order to ensure uniformity of trading and information arrival.3 The result for

each stock is a data set with 771 prices from 9:35am to 4:00pm over 1241 days between January 1,

2001 and December 31, 2005.4

The selection of stocks is highly motivated by liquidity. Each stock is among 40 of the most

heavily traded stocks on the NYSE as de�ned by their 10-day trading volume. This is an important

criterion for the statistics implemented in Section 4. The primary concern with illiquid stocks and

high frequency price sampling is the e�ect of market microstructure noise. The literature on market

microstructure noise dates back to Black (1976) and discusses a variety of sources that bias prices

when sampling at a high frequency, including trading mechanisms and discrete prices. Some of these

concerns have been mitigated in recent years. During the late 1990s the trading frequency increased

signi�cantly at the NYSE and by 2001 almost all of the stock prices were converted from fractional

to decimal trading.

Figure 12 in the Technical Appendix includes the volatility signature plots recommended in

Andersen, Bollerslev, Diebold, and Labys (2000). Volatility signature plots provide a visual tool for

understanding the e�ect of the sampling frequency on the market-microstructure noise. For the SPY

and each of the individual stocks the volatility signature plots indicate the average realized variance

in units of annualized volatility when computed at various sampling frequencies.5 The expectation

is that the average of the realized variance will increase in response to market-microstructure noise

as prices are sampled at progressively smaller intervals. This is noted in all of the stocks except MO

and LOW. Their behavior is unexpected and for the purposes of this discussion will not be explored

further. Rather, the volatility signature plots are used as a means to balance the preference for a �ne

sampling frequency with the visible e�ects of market-microstructure noise. Based on these grounds

a 17.5 minute sampling frequency is selected and is used in subsequent analysis.

The �nal consideration that needs to be made with respect to the data is the potential for errors.

First, the data is checked for outliers by plotting the price series and daily returns for each stock.

No data points are removed by this method. Afterward a simple algorithm is applied to the data

to detect for suspicious behavior. In particular, sequential returns are set equal to zero if they are

3Excluding the prices from 9:30 to 9:35am is also notable because Lee and Mykland (2006) report the majority of
the statistically signi�cant jumps in their data set during this time period.

4A more detailed discussion of how the data was formatted into a thirty second price series can be found in Law
(2007).

5To annualize the realized variance the computation

√(
252
1241

)∑1241

t=1
RVt is made where RVt is calculated at

di�erent sampling frequencies for each day in the �ve year sample.
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more than 1.5% in opposite directions over the span of one minute. A likely explanation for this

phenomenon is data entry error. Of course, what appears to be irrational behavior is not always the

case. One curious example is found in the thirty second price series of Pepsi on April 25th 2005 and

is included in Figure 11 in the Technical Appendix. At approximately 10:00am there is a trade that

appears to be unreasonably low. It is the lowest price that Pepsi trades at for the entire day and it

seems to be out of sync with the other trades around 10:00am. However, further inspection reveals

that the volume on the trade is actually 37 times greater than the average volume over the 5 year

sample. A rational explanation for the phenomenon is an investor who agrees to sell a signi�cant

number of shares at a discounted price to compensate the buyer for taking on the risk of a large

order. This example is helpful in that it alludes to the advantage and disadvantage of our data set.

The ability to zoom in on �nancial markets using high frequency data adds to the complexity of

research at the same time it allows us to better decipher the on-goings of the real world.

4 Intraday Jump Components

4.1 Patterns in the Lee-Mykland Statistic

One of the underlying goals in using the high frequency data is to better understand how �nancial

markets behave. To address this objective the Lee-Mykland statistic is computed using the data

described in the previous section. The analysis focuses on the fundamental advantage of the Lee-

Mykland statistic over the statistic proposed by Huang and Tauchen. Namely, the `t,j statistic

a�ords the ability to �ag individual returns as statistically signi�cant jump discontinuities. This is

a natural extension in the literature on non-parametric jump statistics. It provides the opportunity

to investigate when large price moves occur within the trading day and detect whether there are

patterns in the arrival of jump discontinuities. The intuition is that jumps in the SPY are more

likely to occur near the market's open than at other times of the day. This hypothesis is supported

by the fact that information �ow is high in the morning. Ederington and Lee (1993) suggest that

a large volume of information is released after the market closes that is subsequently priced into

securities at the start of the subsequent trading day. An additional source of new information

can be found in macroeconomic data releases. Chaboud et al. (2004) note that foreign exchange

volatility and volume increase signi�cantly for 8:30am data releases such as Nonfarm Payrolls and

the Consumer Price Index. Admittedly it seems these announcements would have a more direct

impact on over-the-counter products that trade before the equity markets open. Of course, there is
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4.1 Patterns in the Lee-Mykland Statistic 4 INTRADAY JUMP COMPONENTS

a second round of macroeconomic data releases at 10:00am which occurs after the New York Stock

Exchange opens at 9:30am. Furthermore, the observations from Chaboud et al. (2004) underscore

the high information �ow that traders face in the early hours of the day.

In addition to information �ow, the hypothesis that there are more jumps in the morning is

motivated by the empirical results of Lee and Mykland (2006). Their paper analyzes high frequency

data obtained from the Trade and Quote database for three stocks and the SPY over the period

from September 1, 2005 to November 30, 2005 using a �ve minute sampling frequency. They �nd

that statistically signi�cant jumps in the market portfolio and individual stocks are most frequent

in the morning, particularly between 9:30am and 9:35am. Their conclusion is that statistically

signi�cant jumps in equity price series often correspond with scheduled announcements. In the

case of the market portfolio they observe that �agged jumps tend to coincide with macroeconomic

announcements in the morning and the Federal Open Market Committee announcements in the

early afternoon. This di�ers from individual stocks. Jumps in individual stocks tend to correspond

with unannounced idiosyncratic news releases that tend to occur early in the morning.

This paper expands upon the results of Lee and Mykland (2006) by computing the `t,j statistic

over a �ve year data set for the SPY and nine individual stocks. Trades from 9:30am to 9:35am are

excluded from the analysis to ensure uniformity of trading. This consideration is made to account for

the �ndings such as Ederington and Lee (1993) that suggest overnight information may be priced

into stocks during the �rst minutes of trading. If the period from 9:30am to 9:35am was to be

included in the analysis it would serve to exaggerate the �ndings, yielding similar results to those

reported in Lee and Mykland (2006). As a result, excluding the �rst �ve minutes of trading from

the analysis can be viewed as a conservative decision that strengthens the results repoted later.

Statistically signi�cant or �agged jumps are de�ned as |`t,j | > Φ−1(.999). In other words, the

null hypothesis that there are no jumps in equity prices is rejected when the absolute value of the

statistic `t,j ∼ N(0, 1) is greater than Φ−1(.999) ≈ 3.09. The number of �agged jumps are then

counted over the course of the �ve year sample for each intraday period. In particular, Jump is

de�ned below

Jump(j, k) =
Days∑
t=1

I
[
|`t,j | ≥ Φ−1(.999)

]
, (11)

j ε {1, 2, . . . , 22} , k ε {1, 2, . . . , 150} . (12)

Jump is a function of the window size k and the intraday interval j that reports the number of �agged
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jumps during each intraday period. I[·] is the indicator function. Figure 1 reports the results for the

SPY data set. The independent axes correspond to the window size and the intraday interval. The

window size takes on integer values in the set {1, 2, . . . , 150} which permits the trailing average of the

bipower variation to be as far as 6.7 days backward looking. From the plot it is clear that the statistic

stabilizes for a su�ciently high window size. The plot also highlights the total number of �agged

jumps between particular times during the trading day. At the 17.5 minute sampling frequency there

are 22 intraday returns. As an example, when j = 1 the variable Jump(1, k) reports the number of

statistically signi�cant returns between 9:35am and 9:52:30am for each day in the �ve year period

computed using the window size k. The intraday pattern is striking. Across all window sizes the `t,j

statistic �ags more returns in the morning than later parts of the day. For a window size of 4.5 days

approximately 41% of the total �agged jumps for the SPY occur before 11:00am. This period includes

the 10:00am macroeconomic announcements including Consumer Con�dence, Factory Orders, the

ISM Index, and New Existing Home Sales. The number of �agged jumps also begins to increase

later in the trading day, a potential response to the Federal Open Market Committee statements

that are released at approximately 2:15pm. Figure 13 in the Technical Appendix plots the same

data but collapses the curves corresponding to di�erent window sizes onto two axis. From this plot

it is easy to see the pattern in �agged jumps converges to a �smile� or �smirk.� As the window

size increases the local average of volatility becomes progressively more backward looking and the

number of �agged jumps stabilizes.

Figure 16 plots the number of �agged jumps computed using a window size of 4.5 days for each of

the individual stocks. The �rst observation is that all of the individual stocks exhibit a similar pattern

to the SPY. The vast majority of �agged idiosyncratic jumps occur before 11:00am. The results are

distinct from the SPY in that the number of �agged idiosyncratic jumps does not noticeably increase

during the afternoon. As an example, 67% of the �agged jumps for Lowes Companies occur during

the �rst 1.5 hours of trading while only 10% of the �agged jumps occur during the last 1.5 hours

of trading. The speci�c number of �agged jumps over each intraday period is reported in Table 2

using a 4.5 day window size for the nine individual stocks and the SPY. More empirical analysis

is included in the Technical Appendix. Figures 14 and 15 show the Quantile-Quantile plots and a

non-parametric kernel density estimation for the probability density function of `t,j computed using

the SPY data across various window sizes.

16



4.2 Patterns in Realized Variance and Bipower Variation4 INTRADAY JUMP COMPONENTS

4.2 Patterns in Realized Variance and Bipower Variation

In this section the focus shifts from investigating patterns in the arrival of �agged jump disconti-

nuities by the `t,j statistic to analyzing whether intraday patterns persist in the jump and di�usive

components of equity volatility. As a brief aside, it is important to note that the literature on intra-

day patterns in volatility dates back to a paper from Wood, McInish, and Ord (1985) documenting

U -shaped patterns in both intraday volatility and volume for equities. There is also an extensive

literature that investigates intraday patterns in foreign exchange volatility and volume, including

studies such as Chaboud et al. (2004) and Andersen and Bollerslev (1998). They document increases

in volatility and volume around data releases at 8:30am. This paper expands on the literature by

testing for intraday patterns in the decomposition of equity volatility into its di�usive and jump

components. To the author's knowledge, this is the �rst attempt to test for intraday patterns in

the decomposition of equity volatility. The intuition is that the di�usive and jump components

will follow a U -shape. This hypothesis is supported by the empirical results from computing the

`t,j statistic in the previous section. Further con�rmation is found by rigorously testing the real-

ized variance and bipower variation introduced earlier. Ultimately, the objective in separating the

pattern between the di�usive and jump components in equity volatility is to better understand the

evolution of stock prices.

To begin the analysis the realized variance and bipower variation are rede�ned from their previous

de�nition in Section 2.2. In particular, both measures are computed over seven intraday periods

instead of using the entire trading day. Each period within the day is approximately 52.5 minutes

and is de�ned in the following manner6

RV ∗t,i =
3i∑

j=3i−2

r2t,j ; (13)

BV ∗t,i =
(π

2

) 3i∑
j=3i−1

|rt,j−1| |rt,j | . (14)

The decision to consider seven intraday intervals implies that iε {1, 2, · · · , 7} . The jump component

is then de�ned as the di�erence between the realized variance and bipower variation or J∗t,i =

RV ∗t,i − BV ∗t,i. Empirical results are recorded in a series of Tables and Figures in the back. Figure

2 provides an interesting series of plots to begin the discussion. It compares weekly averages of the

6Because a 17.5 minute sampling frequency results in computing 22 returns per day we do not have each data
point correspond to exactly 52.5 minutes. In particular, the last data point corresponds to the last 70 minutes of each

trading day. It is de�ned as RV ∗t,7 = 3
4

∑22

j=19
r2
t,j and BV ∗t,7 = 3

4

∑22

j=20
|rt,j−1| |rt,j | . As a result, we scale each

term appropriately so it can be compared to the other intraday periods. We also report all computations in terms of
annualized volatility for ease of comparison.
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volatility, the di�usive component of volatility and the jump component of volatility during two

intraday periods for the SPY. One can note from the three plots that all measures of volatility tend

to be higher between 9:35am and 10:27am than 12:13pm and 13:05pm. Figure 17 in the Technical

Appendix reports the same plots for Citigroup where a similar conclusion can be reached. The

results indicate that the total level of volatility, the di�usive component of volatility and the jump

component of volatility are higher in the morning than the middle of the day.

Table 2 reports the averages of the intraday realized variance, bipower variation and jump com-

ponent across the sample. The numbers are annualized and reported in terms of standard deviation.

For example, the value of 20.49 from 9:35am to 10:27am for the SPY intraday realized variance

can be interpreted as 20.49% annualized volatility between 9:35am and 10:27am. The data for the

SPY is plotted in Figure 3. The results indicate that the average of the realized variance, bipower

variation and jump component for the SPY are all higher in the morning than the middle of the

day. To be speci�c, the average for the realized variance between 9:35am and 10:27am is 20.49%

annually whereas the the average for realized variance between 12:30pm and 1:05pm is 11.81%. This

breaks down into 17.00% and 3.49% for the bipower variation and jump component between 9:35am

and 10:27am compared to 9.65% and 2.16% for the bipower variation and jump component between

12:30pm and 1:05pm. This di�erence is certainly signi�cant. It constitutes over a 33% decrease in

the realized variance from morning to midday. Figure 3 also indicates that the realized variance and

bipower variation exhibit what are commonly referred to as �smiles� or �smirks� in the literature.

They tend to have their highest values in the morning, lowest values in the middle of the day, and

intermediate values near the close. The jump component is distinct in that it falls during the last

hour of trading and it appears to be even more skewed toward the start of the trading day. In fact,

the drop in the average jump component of volatility between 9:35am and 10:27am to 12:30pm and

1:05pm is 38%. Figure 18 plots the data for some of the individual stocks. One can observe virtually

identical patterns to those noted in the market portfolio. For all stocks the realized variance, bipower

variation and jump component take on their highest value in the �rst hour of the trading day. With

the exception of the last hour of trading where the jump component tends to decrease, it generally

constitutes about 20% to 25% of the realized variance as measured by J∗t,i/RV
∗
t,i.

These results con�rm the intuition in regard to the di�usive and jump component of equity

volatility. By looking at intraday averages across our sample in a similar manner to the Wood,

McInish, and Ord (1985) it is clear that the di�usive component of volatility exhibits behavior that

resembles the previously documented U -shaped patterns in equity volatility. The jump component

is distinct from the realized variance and bipower variation in that it does not increase at the end
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of the trading day. Rather, it is highest at the start of the day and generally decreases during the

last hour of trading. The next section investigates the implications of these patterns for the `t,j

statistic. It �nds that the U -shaped pattern in the di�usive component of volatility has an impact

on the ability of `t,j statistic to properly identify jumps.

4.3 Implications for the Lee-Mykland Statistic

The previous section suggests that patterns seem to persist in the bipower variation and jump

component of equity returns within the trading day. This has important implications for the `t,j

statistic. Namely, the `t,j statistic de�ned in Equation 18 divides individual returns by a trailing

average of the bipower variation. As the window size for computing the average bipower variation is

increased the intraday patterns in local volatility are eliminated. A potential result is that individual

returns in the morning may be compared to an average of the bipower variation that is actually lower

than the true bipower variation during the morning, with the consequence of overstating the number

of �agged jumps in the morning and afternoon and understating the number of �agged jumps in

the middle of the day. To pursue this idea further a theoretical example is considered and later

compared to empirical results.

The theoretical example is derived from Figure 3. The primary concern for the `t,j statistic is

whether the bipower variation included in the denominator will behave properly. To that end, a

simple scenario is investigated. In a situation without stochastic volatility one might argue that the

bipower variation behaves as a periodic function over the trading day. When taking the average

over su�ciently large window sizes one would eliminate all of the periodicity seen in true bipower

variation potentially leading to Type I errors in the morning and afternoon and Type II errors in

the middle of the day. To explore this idea from a theoretical standpoint Figure 4 plots the average

bipower variation and a polynomial �t to the data. In the context of the theoretical example the

polynomial represents the true value for the bipower variation,

Truet,j = −.000171 · j4 + .00243 · j3 − .00456 · j2 − .0381 · j + .0211. (15)

As usual t refers to the day and j refers to 1 of 22 intraday periods. The next step is to compute

the lagged values for the bipower variation over various window sizes. They are calculated in the

following manner
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Lagt,j =
1
n

j∑
i=j−n+1

Truet,i. (16)

Figure 5 plots the lagged values for window sizes of 1 hour, 3 hours, 4.5 hours, and 1 day. In this

particular case it is clear that any intraday patterns are eliminated after the window sizes reaches 1

day. Of course, the window size used for calculating `t,j in the previous section is 4.5 days. If the

theoretical example being considered is representative of the sample period than one might expect

to �nd some of the errors alluded to above.

One way to investigate the degree to which the `t,j statistic misidenti�es jumps in the real data

is to compare how the original statistic compares to a new statistic where the bipower variation

in the denominator is centered at the current time. In the context of our theoretical example this

means computing lagged values de�ned as

Lagct,j =
1

n+ 1

j+ n
2∑

i=j−n
2

Truet,i. (17)

7 Figure 6 notes that the newly de�ned Lagct,j does a better job of approximating the true value

for low window sizes. For example, at the 4.5 hour window size it is clear that Lagt,j < Lagct,j in

the morning whereas Lagt,j > Lagct,j in the middle of the day. This can be seen in Figure 7 which

plots the di�erence Lagt,j − Lagct,j . Another note from Figure 6 is that Lagct,j and Lagt,j approach

the average of the periodic function Truet,j as the window size is increased to a su�ciently high

level. This concept is applied to the real data by re-de�ning the Lee-Mykland statistic such that the

original statistic can be compared to a new statistic where the average of local volatility is centered

at the current time. Formally the new statistic `ct,j is de�ned as

`ct,j =
rt,j√
BV ct,j

; (18)

BV ct,j =
1

K + 1

(π
2

) j+K/2∑
i=j−K/2

|rt,i−1| |rt,i| .

Both `t,j and `
c
t,j are computed for the SPY and PEP data. The di�erence in the number of �agged

jump discontinuities reveals an interesting di�erence between the two statistics.

Figures 8 plots the data for the SPY while Figure 19 in the Technical Appendix plots the data for

7When n is odd Lagc
t,j is de�ned as Lagc

t,j = 1
n

∑j+ n
2−

1
2

i=j−n
2 + 1

2
Truet,i.
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PEP. Table 3 reports the number of �agged jumps for the SPY data at the 3 and 4.5 hour window

sizes. To begin analyzing the data consider the start of the trading day. At small window sizes

like 4.5 hours the theoretical example in Figure 7 suggests that the average of the bipower variation

centered at the current time will provide a better approximation to the bipower variation than the

backward looking average. This results in BVt,j < BV ct,j for small window sizes and suggests that

`t,j would �ag more jumps than `ct,j . This is observed in the data. Table 3 shows that `t,j statistic

�ags more large price moves than the `ct,j statistic in the early hours of trading when the window

size is 3 or 4.5 hours. This is particularly notable for the �agged jumps computed between 9:52 and

10:10am. During this period the `t,j statistic �ags 46 jumps compared to the `ct,j statistic which �ags

24 jumps at a 3 hour window size using the SPY data. As the window size is increased beyond one

day the number of statistically signi�cant jumps �agged by `t,j and `
c
t,j tends to converge. This is

what one would expect from the theoretical example. A su�ciently high window size will eliminate

intraday patterns in the local volatility in both statistics. This suggests both statistics will �ag the

same number of jumps. The minor di�erences that are observed in the number of �agged jumps by

`ct,j and `t,j can be explained by stochastic volatility. The `ct,j statistic is both trailing and forward

looking so it will pick up changes in the level of realized variance earlier than the `t,j statistic,

providing an explanation for the small discrepancies in the number of statistics they �ag at high

window sizes like 6.7 days. During the early hours of trading the conclusion is that intraday patterns

in the bipower variation may result in Type I errors when using the `t,j statistic.

The expected e�ect of intraday patterns in the bipower variation is also observed in the middle

and end of the trading day. For example, at a 3 hour window size one would expect that the trailing

average of the bipower variation to over estimate the average of the bipower variation centered at

the current time, BVt,j > BV ct,j , resulting in the `ct,j �agging more statistically signi�cant jumps

than the `t,j statistic. At the end of the day one would expect the relationship to reverse such that

the `t,j statistic �ags more statistically signi�cant jumps than the `ct,j statistic. This is observed

in the SPY data. Table 2 con�rms the intuition that the statistic `ct,j will �ag more jumps in the

middle of the day and less jumps at the end of the day. The additional observation can be made

that the di�erence between `t,j and `
c
t,j is more pronounced in the morning and the late afternoon.

Continuing with the SPY data at a 3 hour window size as the example, one notes that between

9:52am and 10:10am the `t,j statistic �ags 22 more jumps than the `ct,j statistic, between 12:47 and

13:05pm the `ct,j statistic �ag 2 more jumps than the `t,j statistic and between 15:42 and 16:00 the

`t,j statistic �ag 28 more jumps than the `ct,j statistic.

A plausible explanation for why intraday patterns in the bipower variation have a more visible
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e�ect on the number of �agged jumps in the morning and late afternoon is that large price movements

seem to be more frequent in the morning and late afternoon. As noted in the previous section, both

the di�usive component and jump component of equity volatility are lowest in the middle of the

trading day. This may indicate that there aren't as many large price movements for the `ct,j statistic

to �ag as signi�cant during the middle of the day. It is also important to note that this observation

does not contradict the previous results. In fact, it actually strengthens the hypothesis that large

price movements are not as frequent in the middle of the trading day. Regardless of how the bipower

variation is de�ned there are only a few returns �agged as statistically signi�cant jump discontinuities

in the middle of the trading day. The additional conclusion from this section is that the number of

jumps �agged by the `t,j statistic may be spurious. While it is clear from the results in Section 4.1

that �agged jumps are more frequently in the morning and late afternoon, it appears that taking a

trailing average of the bipower variation will lead to Type I errors that exaggerate the number of

statistically signi�cant jumps in the morning and late afternoon and Type II errors that result in

understating the number of statistically signi�cant jumps in the middle of the day.

5 Forecasting

After observing patterns in both intraday volatility and the `t,j statistic a natural question to ask

is whether the empirical results are useful in forecasting the future volatility of equity returns. It

is feasible that informational content from the patterns observed in high frequency �nancial data

could improve the e�ciency and performance of historical models from the �nancial econometrics

literature. This is an important question to resolve regardless of the outcome. In addition to

the research interest in the academic community, forecasting and risk management have become

increasingly important for investors and major corporations as evidenced by the growing demand

for derivative products based on equity volatility.

Recent papers from Müller et al. (1997) and Corsi (2003) develop heterogeneous autoregressive

realized variance (HAR-RV) models that are particularly relevant. These models use exclusively

historical data that would be readily available to a trader or an academic researcher, for example.

They signify the expectation of future volatility for a representative agent who ignores all infor-

mation except for the historical data used to compute the forecast. Empirical tests performed by

Andersen, Bollerslev, Diebold, and Labys (2003) and Andersen, Bollerslev, and Meddahi (2004) use

the HAR-RV class of volatility models to show that simple linear forecasts can outperform the more
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complicated GARCH and stochastic volatility models that incorporate long-memory dependence of

�nancial markets.

HAR models are included in this paper to forecast the average future value of realized variance

over di�erent horizons using lagged averages of realized volatility. The notation is borrowed from

Andersen, Bollerslev, and Diebold (2006). The average future value of realized variance, what ABD

(2006) refers to as the multi-period normalized realized variation, is de�ned as

RVt,t+h = h−1[RVt+1 +RVt+2 + . . .+RVt+h] (19)

where h = 1, h = 5 and h = 22 correspond to averages over daily, weekly and monthly time

intervals. The HAR-RV model introduced in Corsi (2003) to forecast daily realized variance can

then be denoted as

RV tt,t+1 = βo + βdRVt−1,t + βwRVt−5,t + βmRVt−22,t (20)

where the horizons for the lagged explanatory variables are chosen for their intuitive appeal and

natural economic interpretation. ABD (2006) extends this model to forecast the realized variance

over longer horizons and presents one of the �rst attempts to decompose the realized variance into

its di�usive and jump components for forecasting purposes. The manner they divide the realized

variance into its di�usive and jump component relates to this paper because the non-parametric

statistic they implement is the zt statistic introduced in Section 2 and the bi-power variation inves-

tigated in Section 4. The question at hand is whether the performance of their regression can be

enhanced by incorporating the observed intraday patterns in volatility into the proposed model for

dividing the realized variance into its continuous sample path variability and jump variation.

ABD (2006) introduces the heterogeneous autoregressive realized variance continuous jump

model, hereafter referred to as HAR-RV-CJ, to decompose the realized variance into its contin-

uous and sample path variability. The model de�nes RVt,α as

RVt,α = Ct,α + Jt,α, (21)

Ct,α = I[zt ≤ Φ−1(α)] · [RVt] + I[zt > Φ−1(α)] · [BVt], (22)

Jt,α = I[zt > Φ−1(α)] · [RVt −BVt]. (23)
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This is a natural separation of the realized variance using the indicator function I[.]. Note that RVt

and BVt are the same non-parametric statistics that are introduced in Section 2 and later studied in

Section 4. The �rst component, Ct,α, corresponds to the continuous sample path variability which

is computed as RVt on any trading day where the zt statistic from Huang and Tauchen (2005) does

not reject the null hypothesis of no jumps at the 1−α signi�cance level. On days that are �agged as

statistically signi�cant jumps the continuous component Ct,α corresponds to the bipower variation

BVt and the jump component Jt,α is de�ned as the di�erence between realized variance and bi-power

variation RVt,α −BVt,α. The value of α is set equal to .999 as in ABD (2006) and is omitted in the

subsequent references to Ct and Jt.

The explanatory variables in HAR-RV-CJ model are introduced in an analogous manner to the

HAR model. Over di�erent horizons the continuous and jump sample path variability are de�ned

as

Ct,t+h = h−1[Ct+1 + Ct+2 + . . .+ Ct+h] (24)

and

Jt,t+h = h−1[Jt+1 + Jt+2 + . . .+ Jt+h], (25)

resulting in the de�nition of the HAR-RV-CJ model as

RVt,t+h = βo+βCDCt−1,t+βCWCt−5,t+βCMCt−22,t+βJDJt−1,t+βJWJt−5,t+βJMJt−22,t+εt,t+h.

(26)

A consideration needs to made for the error term which will generally be serially correlated at least

to the order h− 1. While this will not a�ect the consistency of regression coe�cient estimates, the

estimates for standard errors are adjusted by using the Newey-West heteroskedasticity covariance

matrix estimator with a lag of 60 days. The results from the regression are reported in Tables 5

and 6. Coe�cient estimates for the explanatory jump variables are negative in all the statistically

signi�cant cases. One can interpret this as signifying that �agged jumps in the zt statistic forecast

lower levels of future volatility over daily, weekly and monthly horizons for the S&P 500.

To incorporate the intraday patterns in the jump component of equity volatility into the HAR-

RV-CJ model a modi�cations is introduced for the de�nition of the explanatory jump variable. The

modi�cation is fairly analogous to Jt. An indicator function de�nes the jump component to be zero

on days that are not �agged as statistically signi�cant by the zt statistic. On days that are �agged
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as statistically signi�cant the jump component is the di�erence in the realized variance and the

bipower variation during the �rst hour of trading. In other words,

J1
t,α = I[zt > Φ−1(α)] · [RV ∗t,1 −BV ∗t,1]. (27)

Results are reported in Table 5. The �rst observation is that none of the coe�cient estimates for

the newly de�ned explanatory variable J1
t are statistically signi�cant from zero. This contrasts

from using Jt where several of the coe�cient estimates for the explanatory jump variables are

negative and statistically signi�cant. However, the additional observation can be made that the

performance of the regressions as measured by R2 and adj −R2 is practically the same both cases.

It is notable that the performance is highest using Jt as an explanatory variable. This signi�es

that the informational content relevant for forecasting the average future value of realized volatility

over di�erent horizons is higher in the explanatory variable Jt than in the variable J1
t . However,

the di�erence in informational content between these variables is marginal and not particularly

important from the perspective of a �nancial practitioner or forecaster.

6 Conclusion

The empirical results in this paper expand on the non-parametric literature in �nancial econometrics.

The hypothesis is that large moves in stock prices occur most frequently in the morning. This

conjecture is tested by using high frequency data from nine individual stocks and the SPY to

investigate whether there are patterns in jump discontinuities and volatility throughout the trading

day.

Lee and Mykland (2006) introduce a new statistic that �ags individual returns as statistically

signi�cant jump discontinuities under the null hypothesis that there are no jumps in asset prices.

They report that jumps are most frequent in the �rst hour of trading using a three month sample

of high frequency data for the SPY. This paper expands on their result by using a �ve year sample

of high frequency data. It is also the most extensive attempt to apply the Lee-Mykland statistic

to individual stocks and the �rst paper to analyze the number of statistically signi�cant jumps

across di�erent window sizes of the Lee-Mykland statistic. The results are included in Section

4.1. They con�rm the intuition from Lee and Mykland (2006). Figure 1 shows that the statistic
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stabilizes for a su�ciently high window size and Table 2 indicates that statistically signi�cant jumps

in both individual stocks and the market portfolio are most frequent in the morning. This pattern

is particularly apparent in the idiosyncratic jumps of individual stocks, with a large number of the

�agged jumps occurring at approximately 10:00am.

The discussion that follows is an investigation of intraday patterns in volatility. In one sense

this is an extension of the previous work. The Lee-Mykland statistic is based on the theoretical

results from Barndor�-Nielsen and Shephard (2004). It implicitly makes a comparison between the

realized variance and the bi-power variation in determining which returns are statistically signi�cant

jumps. Wood, McInish and Ord (1985) document that equity volatility exhibits a U -shaped intraday

pattern. Section 4.2 expands on their result by testing for similar patterns in the decomposition

of equity volatility into its jump and di�usive components. The realized variance and the bi-power

variation are computed over intraday intervals and averaged over the sample as in Wood et al.

(1985). The empirical results indicate that both equity volatility and the di�usive component in

volatility exhibit U -shaped patterns within the trading day. The jump component in volatility is

highest in the morning but it does not increase later in the day. Evidence for this can be found in

Table 3, Figure 3 and Figure 16 in the Technical Appendix. Similar results seem to hold for the

individual stocks and the market.

The subsequent section investigates the a�ect of intraday patterns in volatility on the Lee-

Mykland statistic. It compares the Lee-Mykland statistic which has a backward looking average

of local volatility with a modi�cation to the Lee-Mykland statistic that de�nes the average of the

local volatility to be centered at the current time. The conclusion from Figure 8 and Table 4 is

that the Lee and Mykland statistic may over specify the number of statistically signi�cant jumps

in the morning and late afternoon while under reporting the number of jumps in the middle of the

trading day. The intuition comes from Figures 5 and 7. It seems that the patterns observed in the

local volatility are eliminated at the recommended window sizes for computing the statistic. The

result is that returns in the morning and late afternoon are compared to an average of the di�usive

component in volatility that may be lower than the true di�usive component in volatility, whereas

returns in the middle of the trading day are compared an average of the di�usive component in

volatility that may be higher than the true di�usive component in volatility.

The last section investigates whether the observed patterns in the realized variance and bi-power

variation can be used to improve the performance of the HAR-RV-CJ forecasting model proposed

in Andersen, Bollerslev and Diebold (2006). The results reported in Table 5 are similar to those
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6 CONCLUSION

in Andersen, Bollerslev and Diebold (2006). They indicate that only the continuous component of

the realized variance has predictive power in forecasting. The coe�cient estimates for the jump

explanatory variables are generally insigni�cant using Newey-West standard errors. In fact, over

all horizons the jump explanatory variables based on the �rst hour of trading have insigni�cant

coe�cient estimates.

These results suggest several interesting extensions for future research. First, the discussion

related to the Lee-Mykland statistic could be enhanced by performing Monte Carlo simulations to

compare the performance of the statistic when there are intraday patterns in the di�usive component

of volatility with a simulation where there are no intraday patterns in the di�usive component of

volatility. This would be most convincing if performed in a model where the volatility was stochastic

in addition to exhibiting intraday patterns.

Another extension could be a new de�nition for the Lee-Mykland statistic that attempts to take

into consideration the patterns in intraday volatility. As noted previously, the Lee-Mykland statistic

has an advantage over the other non-parametric jump detection schemes in that it tests individual

returns under the null hypothesis that there are no jumps in asset prices. If the estimate of local

volatility in the denominator could be corrected to take into account the e�ects of intraday volatility

it would provide a very powerful tool for identifying when statistically signi�cant jumps occurred in

historical data.

Finally, it would be interesting to look further into what drives jumps in asset prices. The

empirical results suggest that there are more jumps in the morning than any other time of day. The

morning is also the most volatile period of the trading day. One interpretation of this result is that

the morning may serve as a period of price discovery. From this perspective the morning may be

viewed as an opportunity for traders to interact with each other to decide the price of assets after

they encode new information into their expectations about the future. This idea could be extended

to a comparative analysis of volatility and jumps in the morning for the SPY versus the individual

stocks. There is evidence alluded to throughout the paper that indicates something di�erent may

be driving the market and the individual stocks to jump. Explaining this di�erence in behavior

suggests an interesting source of future research.
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7 TABLES

7 Tables

Stock Names and Ticker Symbols

Ticker Symbol Actual Name

SPY Standard and Poor's Depository Receipt

C Citigroup

LOW Lowe's

MO Altria Group

MRK Merck

PEP Pepsi

UPS United Parcel Service

VZ Verizon Communications

WMT Wal-Mart Stores

XOM Exxon Mobile

Table 1: Reports the ticker symbols for the nine individual stocks and the market portfolio considered throughout

the paper.

Statistically Signi�cant Jump Discontinuities During Intraday Periods

Time at NYSE SPY C LOW MO MRK PEP UPS VZ WMT XOM

9:52:30 14 9 3 17 15 8 26 10 8 9

10:10 27 79 137 117 121 104 107 110 101 97

10:27:30 42 55 89 70 55 55 61 68 71 46

10:45 21 35 34 35 29 33 40 25 24 16

11:02:30 14 20 22 32 23 22 17 18 16 22

11:20 7 13 19 19 12 14 23 14 17 12

11:37:30 12 16 9 14 7 16 13 13 10 14

11:55 8 5 8 18 11 7 5 9 2 6

12:12:30 5 2 6 6 7 6 9 13 4 5

12:30 4 0 6 8 11 2 11 6 2 7

12:47:30 4 2 2 5 4 7 7 2 5 0

1:05 3 1 3 11 4 5 6 1 2 3

1:22:30 2 3 2 5 2 2 1 3 1 4

1:40 4 4 3 5 3 3 4 2 2 0

1:57:30 5 2 5 5 4 3 2 2 5 3

2:15 4 1 2 6 8 6 5 6 2 2

2:32:30 14 7 6 9 8 3 8 8 6 3

2:50 19 15 2 14 10 5 9 6 8 7

3:07:30 10 6 8 6 5 10 11 6 9 14

3:25 22 13 9 8 9 4 16 19 4 12

3:42:30 13 5 8 11 12 10 7 10 3 8

4:00 28 7 7 17 11 21 17 15 10 15

Total 282 300 390 438 371 346 485 366 312 305

Table 2: Returns are �agged as statistically signi�cant jumps when `t,j > Φ−1(.999) using a 4.5 day window size.

The �rst column corresponds to the end of each intraday period using a 17.5 minute sampling frequency throughout

the trading day. The data is plotted in Figure 16.
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Intraday Realized Variance RV ∗t,i

Intraday Period i SPY C LOW MO MRK PEP UPS VZ WMT XOM

9:35 to 10:27 20.49 36.21 42.72 31.84 33.77 28.71 23.00 35.50 33.81 28.89

10:27 to 11:20 16.05 26.20 30.04 23.01 23.88 21.21 16.05 26.59 24.49 21.74

11:20 to 12:12 13.26 22.35 24.62 19.58 20.71 17.19 13.16 22.37 19.27 17.84

12:12 to 13:05 11.81 19.65 22.00 17.00 17.97 15.44 11.92 19.28 17.70 16.02

13:05 to 13:57 12.80 20.38 22.53 16.73 18.40 15.90 12.94 20.24 19.02 16.14

13:57 to 14:50 14.73 23.04 24.43 18.73 20.12 17.22 13.85 22.13 20.72 18.47

14:50 to 16:00 16.68 25.39 24.89 20.42 23.12 19.92 15.60 25.15 22.90 21.67

Intraday Di�usive Component BV ∗t,i

Intraday Period i SPY C LOW MO MRK PEP UPS VZ WMT XOM

9:35 to 10:27 17.00 29.61 34.67 25.66 27.38 23.16 18.07 28.44 27.43 23.15

10:27 to 11:20 13.29 20.89 24.56 18.33 19.35 17.22 12.93 21.89 19.81 17.39

11:20 to 12:12 10.68 18.31 19.58 15.68 16.48 13.70 10.30 18.01 15.67 14.40

12:12 to 13:05 9.65 15.86 17.89 13.60 14.55 12.29 9.65 15.68 14.13 13.24

13:05 to 13:57 10.31 16.61 17.76 13.22 14.96 12.80 10.69 16.20 15.73 13.09

13:57 to 14:50 12.03 18.51 19.52 15.07 16.36 13.80 11.04 17.99 16.63 15.20

14:50 to 16:00 14.26 21.84 21.51 17.52 19.60 17.18 12.94 21.75 19.99 18.68

Intraday Jump Component RV ∗t,i −BV ∗t,i

Intraday Period i SPY C LOW MO MRK PEP UPS VZ WMT XOM

9:35 to 10:27 3.49 6.61 8.05 6.18 6.39 5.54 4.93 7.06 6.37 5.75

10:27 to 11:20 2.76 5.32 5.48 4.68 4.53 3.99 3.12 4.70 4.67 4.35

11:20 to 12:12 2.58 4.04 5.04 3.90 4.23 3.49 2.86 4.36 3.60 3.43

12:12 to 13:05 2.16 3.79 4.11 3.40 3.42 3.15 2.27 3.59 3.56 2.79

13:05 to 13:57 2.49 4.77 4.76 3.51 3.44 3.10 2.25 4.04 3.28 3.05

13:57 to 14:50 2.70 4.53 4.91 3.66 3.77 3.41 2.81 4.14 4.09 3.27

14:50 to 16:00 2.42 3.55 3.39 2.91 3.52 2.74 2.65 3.40 2.90 2.99

Table 3: The averages of the intraday periods i = {1, . . . , 7} for the realized variance, di�usive component, and jump

component as de�ned in Section 4.2 are computed for the SPY and nine individual stocks. The reported numbers

are then annualized and expressed in terms of volatility to make them easier to interpret. For example, the

computation for realized variance is

√(
1

Days

)∑Days

t=1
RV ∗t,i

(
252·M

3

)
for each intraday period i. This data

corresponds to Figures 3 and 18.
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`t,j and `
c
t,j: Statistically Signi�cant Returns in the SPY Data

Window Size 3 Hours 3 Hours 3 Hours 4.5 Hours 4.5 Hours 4.5 Hours

Time at NYSE `t,j `ct,j `t,j − `ct,j `t,j `ct,j `t,j − `ct,j
9:52:30 12 4 8 14 8 6

10:10 48 8 40 53 11 42

10:27:30 46 24 22 56 30 26

10:45 31 9 22 34 16 18

11:02:30 13 4 9 16 12 4

11:20 13 9 4 11 9 2

11:37:30 8 4 4 10 10 0

11:55 2 5 -3 1 2 -1

12:12:30 3 5 -2 4 5 -1

12:30 5 6 -1 6 4 2

12:47:30 5 7 -2 6 3 3

1:05 3 6 -3 2 5 -3

1:22:30 6 5 1 4 4 0

1:40 9 5 4 4 0 4

1:57:30 11 8 3 2 6 -4

2:15 19 12 7 7 8 -1

2:32:30 34 12 22 21 13 8

2:50 42 12 30 32 8 24

3:07:30 25 4 21 16 5 11

3:25 26 12 14 25 11 14

3:42:30 22 3 19 21 4 17

4:00 37 9 28 42 13 29

Table 4: The �rst column plots the end of each 17.5 minute intraday period. Notably, the `t,j and `ct,j statistics

behave as we expect from Figure 20. At the window sizes of 3 and 4.5 hours `t,j �ags more jumps in the morning

than `ct,j while the `ct,j �ags more jumps in the middle of the day than `t,j . Furthermore, it may be misleading to

compare the di�erence `t,j − `ct,j across di�erent intraday periods. Figures 1, 8 and 15 indicate that statistically

signi�cant jumps are most frequent in the morning for all window sizes and for both the `t,j and `ct,j statistics,

which may led to a more pronounced di�erence between the statistics at di�erent intraday periods.
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Summary Statistics

Variables RVt Ct Jt J1
t

Mean 1.03 1.01 .014 .026

St. Dev. 1.30 1.24 .234 .276

Skewness 4.88 4.27 32.1 14.4

Kurtosis 36.9 27.4 1090 233

Min. 0.05 0.05 0 0

Max. 16.3 12.9 7.94 5.46

Correlation Matrix

Variables RVt Ct Jt J1
t

RVt 1 .989 .272 .006

Ct .989 1 .126 -0.02

Jt .272 .126 1 .182

J1
t .006 -0.02 .182 1

Table 5: The top panel reports the sample mean, standard deviation, skewness, kurtosis, minimum and maximum..

The bottom panel reports the correlation matrix. The realized variance RVt and the explanatory variables Ct, Jt,

and J1
t are de�ned in Section 5 and are computed using the SPY data over the �ve year sample.

S&P 500 HAR-RV-CJ Regressions

RVt,t+h = βo+βCDCt−1,t+βCWCt−5,t+βCMCt−22,t+βJDJ
i
t−1,t+βJWJ

i
t−5,t+βJMJ

i
t−22,t+ εt,t+h

Jt, J1
t , J

2
t h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

βCD 0.329 0.208
∗∗∗

0.148
∗∗∗

0.377 0.201
∗∗

0.147
∗∗

βCW 0.400
∗

0.447
∗∗∗

0.328
∗∗∗

0.401
∗

0.456
∗∗∗

0.336
∗∗

βCM 0.202
∗

0.210
∗∗

0.212
∗∗∗

0.184
∗

0.194
∗∗

0.201
∗

βJD -0.249 -0.177
∗∗

-0.135
∗∗∗

0.131 0.126 0.070

βJW -.541
∗∗

-0.617
∗∗∗

-0.424
∗∗

0.086 -0.054 -0.243

βJM -.287 -0.167 0.046 -0.347 -0.336 -0.066

βo 0.097
∗∗

0.159
∗∗

0.326
∗∗

0.101
∗∗

0.167
∗∗

0.333
∗

R2
0.522 0.640 0.521 0.517 0.634 0.517

AdjR2
0.519 0.639 0.518 0.514 0.632 0.515

Table 6: The table reports the ordinary least squares estimates for the HAR-RV-CJ forecasting model over daily

h = 1, weekly h = 5 and monthly h = 22 horizons. The �rst three columns correspond to the jump component

de�ned as Jas in Andersen, Bollerslev and Diebold (2006). The next three columns correspond to J1where J1 is the

modi�ed jump components de�ned in Section 5. The last rows include the R2 and the Adjusted R2. Newey-West

Standard errors are also computed where ∗implies p < .05, ∗∗ implies p < .01 and ∗∗∗ implies p < .001.
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8 Figures

Statistically Signi�cant Jump Discontinuities in the Market Portfolio
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Figure 1: The z-axis plots the quantity of statistically signi�cant jump discontinuities for the SPY where �agged

jumps are de�ned as `t,j>Φ−1(.999). The window size k is plotted on an independent axis where it ranges from 35

minutes to 6.7 days. The intraday time intervals j are plotted on the other independent axis where j takes on integer

values from 0 to 22 corresponding to the 22 returns computed at a 17.5 minute sampling frequency on a daily basis.

One observation is that the number of �agged jumps appears to stabilize for a su�ciently high window size. There

are also considerably more �agged jumps in the morning and late afternoon than other parts of the trading day.
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Morning and Midday Volatility
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Figure 2: Each plot compares the morning and midday annualized weekly averages of the intraday realized

volatility, bipower variation, and jump component for the SPY data over the �ve year sample period. The

x-axis plots time while the y-axis plots RV ∗t,i, BV ∗t,i, and J∗t,i as de�ned in Section 4.2. The observation is

made that in nearly every week of the �ve year sample the realized volatility, bipower variaiton, and jump

component are higher between 9:35 to 10:27 than 12:13 to 13:05.
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Intraday Patterns in the Volatility of the S&P 500
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Figure 3: The averages of the intraday periods i = {1, . . . , 7} for the realized variance, di�usive component, and

jump component as de�ned in Section 4.2 are computed for the SPY. The reported numbers are then annualized and

expressed in terms of volatility to make them easier to interpret. For example, the computation for realized variance

is

√(
1

Days

)∑Days

t=1
RV ∗t,i

(
252·M

3

)
for each intraday period i. The top �gure plots RV ∗t,i and BV

∗
t,i, the middle �gure

plots J∗t,i and the bottom �gure plots the relative jump component J∗t,i/RV
∗
t,i. From the three �gures it is clear that

the �rst hour of trading is the most volatile intraday period. Additionally, it is evident that the averages of RV ∗t,i and

BV ∗t,i follow an intraday U -shaped pattern that is skewed to the left. This contrasts with the jump component J∗t,i
where the volatility in the last period is lower than the preceding period.
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Intraday Bipower Variation: Curve Fit to SPY Data
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BV*
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Figure 4: The x-axis plots the time of day. The y-axis plots a fourth degree polynomial that is �t
to the intraday averages of the bipower variation BV ∗t,i for the SPY data from Figure 3.
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Implications of Intraday Patterns in Bipower Variation for `t,j
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Figure 5: The x-axis plots the time of day. The y-axis plots various curves that represent the
denominator in the `t,j statistic during the trading day under the assumption that an intraday U -
shaped pattern persists in the bipower variation. The No Lag curve corresponds to the fourth-degree
polynomial �t to the S&P 500 data from Figure 4. The additional curves correspond to averages
of the No Lag curve over various window sizes. They are computed as Lagt,j introduced in Section
4.3.
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Figure 6: The x-axis plots the time of day. The y-axis plots Lagt,j and Lagc
t,j as de�ned in Section 4.3. As

is visually evident, Lagc
t,j provides a better approximation for the intraday pattern in bipower variation at

small window sizes because it is centered at the current time whereas Lagt,j is backward looking. Once the

window sizes increases to 6 hours both Lagt,j and Lagc
t,j converge to the average of bipower variation over

the trading day.
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Lagt,j − Lagct,j
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Figure 7: The x-axis plots the time of day while the y-axis plots Lagt,j−Lagct,j as de�ned in Section
4.3. The most pronounced di�erence occurs at the 3 and 4.5 hour window sizes where Lagt,j > Lagct,j
in the middle of the day and Lagt,j < Lagct,j in the morning and late afternoon.

`t,j versus `
c
t,j for the S&P 500
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Figure 8: In the legend LM corresponds to `t,j and LM
∗ corresponds to `ct,j . Statistically signi�cant

jumps are de�ned as `t,j > Φ−1(.999) and `ct,j > Φ−1(.999) from Section 4.3. Notably, the statistics
behave as expected. At small window sizes `t,j > `ct,j in the morning and afternoon while this
relationship is reversed in the middle of the day. As the window size increases the number of jumps
�agged by the two statistics converge for each of the intraday periods. The exact number of jumps
at the 3 and 4.5 hour window sizes are reported in Table 4.
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9 Technical Appendix

Model for Stock Price Evolution

Included below is a Monte Carlo simulation following the standard model dp(t) = µ · dt+ σ · dW (t)

described in Section 2. Stock price evolution modeled as a standard geometric Brownian motion is

de�ned as S(t) = S(0) · eµt+σW (t) where W (t) ∼ N(0, t). In the example below the annualized drift

and volatility are µ = 10% and σ = 25%. The starting stock price is S(0) = 100.

Standard Model: Simulated Stock Price Evolution
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Figure 9: Stock price in dollars is plotted on the y-axis versus the x-axis which plots time in years.

Data

High frequency �nancial data from the TAQ database is analyzed for the empirical research in this

paper. In total the data set contains 1241 days with 771 intraday prices for the SPY and nine

stocks from the NYSE. At the outset it is reassuring to check that the high frequency data agrees

with the price series data that is readily available online. Below two plots show the closing price

and log-returns for the SPY sampled at a daily frequency. Visually they con�rm that the high

frequency data from 2001 to 2005 behaves as expected. Similar plots can be generated by using

price series data from Yahoo Finance.
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Level Price for SPY
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Figure 10: Plots the closing price and daily returns of the SPY for each of the 1241 days in our sample.

The dates on the x-axis correspond to the end of each year. The y-axis plots the dollar price for the index

and the geometric returns from the closing prices on each of the 1241 days.

One concern in computing the non-parametric statistics from Section 2 is the choice of sampling

frequency. Below two plots illustrate the di�erence between intraday sampling at a 30 second

versus a 5 minute frequency. The price series corresponds to PepsiCo. on April 25th 2005. This

particular day was investigated at the outset of the empirical research because it is �agged as

statistically signi�cant by the zt statistic. Note how the 5 minute sampling actually removes 30

second prices from the plot, smoothing a signi�cant amount of the noise in the 30 second price

series. An interesting omission from the 5 minute price series occurs slightly before 10:00am. In

the 30 second price series there is a trade made at $54.95 that seems to be out of sync with the

rest of the prices. Further investigation reveals that the volume on this trade was 181,700 shares

compared to a �ve year average of 4,869 shares per trade. A plausible explanation for why the
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trade occurred at a lower price is compensation for the additional risk of taking on a large order.

More importantly, this example demonstrates how high frequency data can shed light on how

rational markets actually operate.

30 Second Sampling: PEP Prices on April 25th 2005
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5 Minute Sampling: PEP Prices on April 25th 2005
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Figure 11: The y-axis plots the level price in dollars for PepsiCo. on April 25th 2005 versus the time of day

at the New York Stock Exchange for two di�erent sampling frequencies.

The debate about the appropriate sampling frequency is also related to the literature on

market-microstructure noise. Black (1976), Amihud and Mendelson (1987), and Harris (1990,

1991) conclude that trading mechanisms and discrete prices can bias high frequency data.

Andersen, Bollerslev, Diebold and Labys (2000) continue this discussion in the context of

computing the realized variance. They observe that market-microstructure noise that begins to

bias prices at very �ne sampling frequencies has the e�ect of increasing the volatility. To select an

appropriate sampling frequency their recommendation is followed to compute the average realized

variance over our entire data set at various frequencies and make a selection that balances the

preference for a �ne frequency with the visible e�ects of market-microstructure noise. The 17.5

minute sampling frequency is selected by this method and is used in all subsequent analysis unless

otherwise denoted.
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Volatility Signature Plots
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Figure 12: The x-axis plots the sampling frequency in minutes. The frequencies considered are 2.5, 3.5, 5,

7, 11, 17.5, 27.5, 38.5, 55, and 77 minutes. The y-axis plots the annualized volatility in percentage terms,√(
252
1241

)∑1241

t=1
RVt.

Kernel Density Estimation and Q-Q Plots

In Section 4 the `t,j statistic is computed over the �ve year data set for nine individual stocks and

the SPY. The statistically signi�cant jump discontinuities in the SPY data are then reported in

Figure 1. Below a similar plot is included using the same data as in Figure 1. It merely collapses

the curves for various window sizes from the three dimensional plot onto two dimensions. The two

dimensional graph provides another visual representation for how the number of �agged jumps

converges to an intraday U -shaped pattern as the window size increases, where a large number of

returns are �agged as signi�cant jumps in the morning and late afternoon. The pattern could also

be said to resemble a �smile� or�smirk.�

Statistically Signi�cant Jumps Within the Trading Day: SPY Data
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Figure 13: The various curves correspond to the number of statistically signi�cant jump discontinuities

�agged by the `t,j statistic for di�erent intraday periods. Each curve corresponds to a di�erent window

size.
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Non-parametric kernel density estimation and Quantile-Quantile plots are included below. The

Q-Q plots compare the quantiles of a standard normal distribution versus the order statistics of

`t,j computed at various window sizes for the SPY data. Deviations from linearity indicate that

there is evidence to potentially reject the null hypothesis of no jump discontinuities in stock prices

or `t,j ∼ N(0, 1). The kernel density estimates provide a non-parametric estimation of the

probability distribution of `t,j at various window sizes.

Q-Q Plots for `t,j
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Figure 14: The x-axis plots the quantiles of the normal distribution versus the y-axis which plots the order

statistics for `t,j calculated using the SPY data. Titles of the subplots indicate the window size for `t,j .

Kernel Density Estimation
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Figure 15: The non-parametric kernel density estimates provide an estimation for the probability

distribution of `t,j . Titles of the subplots indicate the window size.
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Individual Stocks

The empirical results for the individual stocks are similar to the results observed in the SPY. One

observation that can be made from the data is that �agged jump discontinuities by the `t,j statistic

occur most frequently in the morning. This trend is particularly accentuated for idiosyncratic

jumps. Over the �ve year sample the plots below indicate that for many of the stocks there were

upwards of 100 �agged jumps between 9:50am and 10:10am with less than 10 jumps being �agged

over intervals of the same length corresponding to the middle of the day or afternoon.

Statistically Signi�cant Jump Discontinuities: Individual Stocks
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Figure 16: The y-axis plots the number of statistically signi�cant jump discontinuities de�ned as

`t,j ≥ Φ−1(.999). The window size used for the computation is 4.5 days as it is seen to be su�ciently long

for the statistic to stabilize in Figure 1.

Another similarity to the SPY is the tendency for the volatility to be high in the morning. For

Citigroup's stock the plots below annualize the realized variance, bipower variation, and jump

component for each week in the sample. Over practically the entire sample one can observe that all

three measures of the volatility tend to be higher in the �rst hour of trading than the middle of the

day.
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Morning and Midday Volatility
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Figure 17: The x-axis plots time versus weekly averages of RV ∗t,i, BV ∗t,i and max(RV ∗t,i−BV ∗t,i, 0) as de�ned

in Section 4.2, or the intraday realized variance, bipower variation and jump component respectively.

On the next page the averages for the intraday realized variance, bipower variation and jump

component are included for six of the individual stocks. As before they are annualized and

reported in terms of volatility, so .5 would correspond to 50% annual volatility. Similar to the S&P

500, the realized variance and bi-power variation exhibit the now familiar U -shaped pattern. The

highest period of volatility as measured by all of the non-parametric statistics is the �rst hour of

trading. An additional observation from the data is that individual stocks are more volatile than

the SPY. This is expected. Perhaps more interesting is the fact that the jump component is higher

in the individual stocks than it is for the SPY. The relative jump component comprises

approximately 20% of the realized variance throughout the trading day, with the exception of the

last hour where it falls noticeably for both stocks and the market.
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Intraday Patterns in the Volatility of Individual Stocks
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Figure 18: Averages of RV ∗t,i, BV ∗t,i and max(RV ∗t,i −BV ∗t,i, 0) are annualized and plotted in terms of

volatility. For example, the average of the realized variance for MRK is .3377 in the �rst hour of trading

which would correspond to an annualized volatility of 33.77%. The third plot for each stock is the relative

jump component or (RV ∗t,i −BV ∗t,i)/RV ∗t,i.

The �nal �gure compares the number of statistically signi�cant jump discontinuities for PepsiCo.

de�ned as `t,j > Φ−1(.999) and `ct,j > Φ−1(.999) from Section 4.3. The statistics behave as

expected. At small window sizes there are more jumps �agged by `t,j than `
c
t,j in the morning and

afternoon. This relationship is reversed in the middle of the day. It provides even more striking

evidence of intraday patterns that have an e�ect on the number of jumps �agged by `t,j than in

the SPY. By increasing the window size to a stable level the number of �agged jumps by both

statistics converge very closely and the number of jumps �agged by `ct,j more than doubles in the

period from 9:50 to 10:10am.

`t,j versus `
c
t,j for PepsiCo
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Figure 19: In the legend LM corresponds to `t,j and LM∗ corresponds to `C
t,j .
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