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ABSTRACT 

 

This paper examines the contemporaneous and dynamic relationships between the 

volatilities of the technology stocks in the S&P 100 index.  Factor analysis and 

heterogeneous autoregressive regressions are used to examine contemporaneous and 

dynamic, inter-temporal relationships, respectively.  Both techniques utilize high 

frequency data by measuring stock prices every 5 minutes from 1997-2008.  We find that 

a strong industry effect explains the bulk of the volatility of the technology stocks and 

that the market’s volatility has very low correlation with the stocks’ volatility.  Further, 

we find the market’s volatility has insignificant predictive content for the stocks’ 

volatility.  The stocks themselves contain large quantities of unique predictive content for 

each other’s volatilities. 
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1. INTRODUCTION 

Understanding the nature of equity volatility is of paramount importance to the 

financial services industry.  Many derivative securities and stock options in particular are 

priced based upon expectations of future volatility.  Furthermore, in light of the recent 

chaos in the markets, effective risk management has become more critical than ever 

before, which can only be achieved with reliable estimates of volatility.  Financial 

institutions are required to use a standard measure called Value at Risk (VaR), the 

estimated possible loss to the institution over the upcoming ten days that is so severe that 

it is expected to occur only 1% of the time (Hull 192).  This measure is updated daily and 

is used to decide the amount of capital that should be set aside to absorb any shocks or 

losses.  The calculation of VaR requires accurate and reliable information on the 

volatility of various underlying assets and securities.  Moreover, the development of 

financial theory also extensively utilizes asset volatility forecasts.  Thus, a clearer picture 

of equity volatility can be very beneficial and useful.  In this paper, the volatility of 

stocks in the technology sector will be examined. 

Conventional wisdom on the components of stock returns (from which volatility 

is measured) suggests that there is a systematic component to returns and an 

idiosyncratic, stock-specific component.  The systematic component indicates how the 

return on a stock changes due to changes in the overall market and this statistic is known 

as the stock’s beta (Stock 122).  Table 1 shows the beta for every stock analyzed in this 

paper – the range of the betas is around 1.00 to 1.50.  This means they should all 

exhibit higher returns and volatility when the market’s return and volatility increase, and 
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vice versa.  We test this conventional wisdom by examining the contemporaneous 

relationship between the stocks’ volatility and the market’s volatility using factor 

analysis.  This analysis also enables us to explore how well the volatilities of different 

series correlate with each other.  Another benefit of factor analysis is that it determines 

how many common factors might explain the stocks’ volatilities.  This would be useful in 

narrowing down the sources of volatility in the dataset being examined. 

Further, we examine the dynamic, causal relationships among the stocks’ 

volatilities and the market’s volatility by testing how well they forecast each other.  It has 

been well established over the last several decades that stock returns follow a random 

walk and are very difficult to predict (Stock 665); however, forecasting volatility is a 

different story altogether.  Bollerslev (2006) explains that volatility appears in clusters 

over time and that assets do not have constant volatility (variance) over time, as was 

previously believed.  Volatility clusters over time are summarized succinctly in 

Bollerslev’s lecture by the following quotation from Mandelbrot (1963): “… large 

changes tend to be followed by large changes, of either sign, and small changes tend to be 

followed by small changes …”  Thus, by examining the trends in an asset’s volatility, one 

can expect to make reasonable and educated projections regarding the asset’s volatility in 

the future (Stock 665). 

We examine how well the stocks’ volatilities and the market’s volatility forecast 

each other by conducting heterogeneous autoregressive (HAR) regressions (Corsi 2003) 

and draw conclusions about each stock’s predictive power by examining the results of the 

appropriate Granger Causality Test (Granger 1969).  As will be seen, Granger Causality 
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is different from, but related to, the normal interpretation of causality and the outcome of 

a Granger Causality Test shows us how much predictive power a stock’s volatility has for 

another stock’s volatility, or for the market’s volatility, and vice versa. 

Neither of these two techniques has been employed using high frequency data 

before.  As described in Andersen, Bollerslev, Diebold, and Labys (2003), forecasting 

volatility with high-frequency data provides better results than does forecasting with 

lower frequency data.  They also find Realized Variance, defined in Section 2, to be the 

best measure of volatility for making forecasts.   

The rest of the paper continues as follows. Section 2 explains the model of 

volatility (realized variance) utilized here.  Section 3 contains important notes on the data 

used in the paper – both the source of the data, as well as data preparation are described. 

Sections 4 and 5 discuss the factor analysis and HAR-RV regressions, respectively.  

Sections 6 and 7 contain detailed discussions and interpretations of the results of factor 

analysis and HAR regressions, respectively.  Section 8 summarizes the paper and 

highlights the key results. 

 

 

2. A ROBUST MODEL OF VOLATILITY 

We model volatility with an approach that utilizes the benefits of high frequency 

data and thereby contains more information than measurements taken at a large interval, 

such as only once a day or once a week.  Intra-day geometric returns themselves are 

given by: 
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where p is the log price, t represents the day, j = 1,2,…,M, and M = 78 is the 

sampling frequency.  A sampling frequency of 78 corresponds to five-minute returns.  

The next section explains in more detail that five-minute returns are being utilized in 

order to minimize market microstructure noise while retaining the benefits of high 

frequency data.  Daily realized variance is given by the formula: 
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where j, M, and rt,j are all the same as for Equation (1) above.  Thus, a day’s realized 

variance is the sum of the squared log returns for that day.  Andersen and Bollerslev 

(1998) illustrate that realized variance converges to the integrated variance plus the jump 

component as the time between observations approaches zero: 
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The first term in Equation (3) represents the integrated variance of the continuous process 

and the second represents squared discrete jumps.  This limit is also the definition of 

quadratic variation.  Therefore, realized variance consistently estimates quadratic 

variation, as it accounts for both the continuous part of variation and the discrete jump 

components in variation.   

The next part of this section explains how market microstructure noise can cause 

significant distortion in estimating statistics, such as a stock’s volatility. 
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Stock prices are frequently modeled as the discounted present value of their future 

earnings, with the assumption that the stock’s expected Earnings Per Share and expected 

Dividend Per Share both grow at a constant rate (Levy 498).  These also result in the 

share price growing at the same constant rate g. If the discount rate, i.e., the required 

return according to the Capital Asset Pricing Model, is represented by k, then the current 

price P0 of a share is given by: 
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Since obtaining this price requires calculating the sum of an infinite series, even a small 

change in the market’s assessment of the discount rate can result in a significant effect on 

the estimated price and cause it to be substantially different from the stock’s fundamental 

price (Levy 501).  The discount rate can change over time as it is highly “firm-specific” 

and depends upon the firm’s assets and liabilities, which are not constant over time.  

Furthermore, the growth rate g can also cause major changes in a firm’s worth, as the 

above equation suggests.  While the assumption is that the growth rate remains constant, 

as with the discount rate, this is frequently not borne out in reality.  In general, firms will 

exhibit impressive growth in their infancy, but as their size increases, it becomes 

increasingly difficult to sustain previous levels of growth.  This illustrates how the 

theoretical price of a stock can differ from its observed price.  Moreover, market frictions 

such as bid-ask bounce and order imbalance can also cause a stock’s observed price to 

deviate from its intrinsic value.  This deviation is called market microstructure noise and 

is represented as the error term εt in the following:    
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where p(t) is the logarithm of the stock’s fundamental price and p*t is the observed 

price at time t.  We shall see presently how the detrimental effects of this noise can be 

minimized. 

 

 

3. DATA 

As stated in the introduction, the objective is to analyze the volatility of the stocks 

in the technology sector.  The technology stocks with the largest market capitalizations 

represent a good sample to examine.  They have high trade volumes and so are relatively 

more liquid and high-frequency data for them are readily available.  All data were 

purchased from http://price-data.com. 

The data used were available at one-minute intervals; however, sampling at that 

interval did not appear to be very useful, as the microstructure noise clouded the true 

picture.  Sampling at intervals larger than five-minutes would certainly reduce the noise 

even further; however, it also resulted in the loss of enough of the information contained 

in the dataset, thereby nullifying the benefits of utilizing high frequency data.  Thus, 

sampling returns at a frequency of five-minute intervals provides a good balance between 

the two contrasting forces of looking for higher frequency data to maximize the 

information contained in the data and looking for lower frequency data to minimize the 

microstructure noise. 
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The stocks selected to represent the technology sector, broadly defined, are as 

follows. Cisco (CSCO) is primarily engaged in production and distribution of networking 

and communication devices.  Dell (DELL) focuses mostly on providing desktops and 

laptops to private consumers and businesses.  EMC Corporation (EMC) provides servers 

and other solutions to the problem of storing enormous quantities of data. Google 

(GOOG) is the world’s preeminent provider of internet search services and has also 

expanded into other consumer-oriented applications such as web-based email. Hewlett-

Packard (HPQ) provides products and services similar to Dell, in addition to technology 

integration consulting and outsourcing services.  IBM (IBM) used to be in the personal 

computing business until 2004, when it sold its PC business and brand to Lenovo.  Now 

IBM focuses on all aspects of business computing, from servers and networking 

hardware and software to business process consulting and outsourcing services.  Intel 

(INTC) is the world’s largest microprocessor manufacturer.  Microsoft (MSFT) is the 

world’s largest software corporation, providing an extensive suite of products for both 

corporate users and the general consumer.  Oracle (ORCL) is the world’s second largest 

software corporation and is best known for its database management and enterprise 

resource planning products.  Texas Instruments (TXN) manufactures educational 

technology products and microprocessors.  Xerox (XRX) provides all hardware and 

software needed for document reproduction and transmission. 

These represent all the technology stocks in the S&P 100, with the exception of 

Apple (AAPL), as reliable data for it could not be obtained.  Data for Google are only 

available from the time of its Initial Public Offering in 2004, but for all the other stocks, 
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data were available from April 1997 to January 2008.  Thus, we first consider the data for 

all the stocks other than Google, then later incorporate Google data from the point 

possible and see whether including Google changes any results or conclusions.   

The S&P 500 futures data, which is used to represent the market, contained some 

shortened trading days (i.e., days with fewer than the required 78 five-minute returns).  A 

tolerance limit of 70 was set for the required number of returns.  Days with fewer than 70 

five-minute returns were removed from the entire dataset, including from the history of 

each stock, prior to any calculations.  In addition, for the factor analysis section, instead 

of the daily realized variations, their logs have been used.  This scales the results – as 

shown in Equation (3), returns are squared to measure realized variation, which can really 

exaggerate outliers and skew the data. 

 

 

4. METHOD ONE: FACTOR ANALYSIS 

This section is divided into three subsections – Section 4.1 provides some historical 

context and describes the situations in which one might chose conduct factor analysis; 

Section 4.2 explains how factor analysis actually works and how its results are 

interpreted; finally, Section 4.3 describes some methods to rearrange the results of a 

regular factor analysis, which can make interpreting the results of a factor analysis easier. 
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4.1 The purpose of Factor Analysis 
 

The technique of factor analysis, while initially pioneered for the domain of 

psychology in 1905 by Spearman, has a wide range of applications in economics and 

finance.  Gorsuch (1976) states that there are three major purposes of employing factor 

analysis: first, that “the number of variables for further research can be minimized while 

also maximizing the amount of information in the analysis”; second, that it enables us 

determine manageable hypotheses when faced with a huge amount of raw data; and third, 

that it enables us to test preexisting hypotheses about some data, i.e., whether or not it 

possesses certain qualities or distinctions.  Thus, it would be a good fit for examining the 

parallel variables being studied here, particularly since we do not know what causal 

relationships are at play here. 

 

4.2 Theory, Technique, and Interpretations 

Next is an examination of exactly what factor analysis is, precisely what results it 

provides, and how they are to be interpreted.  Kim and Mueller (1978a) explain that 

factor analysis involves recreating the variables to be analyzed by taking linear 

combinations of the fewest possible common factors, while minimizing the information 

lost with this data reduction.  The following equation is instructive: 

                                    εββ +++= ninii ZZY ...11  (6). 

Here, Yi represents a variable being examined by the factor analysis, Zni represents a 

factor generated by the analysis, βi represents the loading on the factor (i.e., the 

correlation between the dependent variable Yi and the factor Zni), and ε is the error term.  
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In a regression, the loadings would be interpreted as the regression coefficients on each 

of the explanatory variables; however, in a factor analysis, the explanatory variables are 

rescaled as necessary to enable the interpretation of loadings as correlation coefficients.  

A factor loading of 0.7 or greater is considered to be a benchmark figure for judging 

whether a variable and a factor are strongly correlated (StataCorp 2005).  

Equation (6) appears to be similar to a regression; however, the key difference is 

that the factors, unlike the explanatory variables in a regression, are not directly observed.  

This is why it is often a challenge to produce appropriate and meaningful interpretations 

from a factor analysis.  In addition, results can be further confounded, as factors could 

have significant correlation, which is not consistent with the base model assumption that 

there is no inter-factor correlation.  Garson explains that such an analysis can help in 

deciphering the “latent structure” of the variables being analyzed.  In other words, it 

provides information about the structure and make-up of a set of variables that would not 

otherwise be apparent – when analyzing a large quantity of data, it is useful to see how 

many different factors explain most of the variance within the dataset. 

Each factor is associated with an eigenvalue that indicates how much of the total 

overall variance that particular factor explains.  Factors with negative eigenvalues can be 

completely disregarded and in general, the greater its eigenvalue, the greater the variance 

explained by a particular factor (Garson).  Furthermore, factors with eigenvalues very 

close to zero may also be ignored.  In addition, it is critical to understand the concepts of 

Communality and Uniqueness.  They are related as indicated below: 

)1( yCommunalitUniqueness −=  (7). 
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Uniqueness indicates the amount of a variable’s variation that is not well 

explained by the common factors generated by the factor analysis.  Communality, as 

Equation (5) suggests, is the measure of the percent of a variable’s variance that is well 

explained by the common factors.  Naturally, high communality corresponds to low 

uniqueness, and vice versa.  If a variable’s uniqueness is below 0.6 (making the 

communality greater than 0.4), then we may say that its variance is well explained by 

the common factors (StataCorp 2005). 

 

4.3 Factor Rotations 

Factor Rotations can make interpreting factor analysis results easier.  There are 

two primary techniques for rotating factors – orthogonal and oblique.  An orthogonal 

rotation entails rotating all the factors by a fixed angle, thereby keeping them 

uncorrelated, as before (Abdi 2003).  The goal is to obtain factors with either really high 

or really low loadings.  This would theoretically make it easy to identify which factors 

associate most closely with which variables.  For an oblique rotation, the factors may be 

rotated by different angles within the factor space, which usually leads to correlated 

factors.  An oblique rotation is open to meaningful interpretation only if the common 

factors that it produces have low to medium correlation (Garson).  If the correlation 

between two factors were too high, then they would be “better interpreted as only one 

factor” (Abdi 2003).  In many cases, an oblique rotation provides new insight into the 

data because allowing different factors to be rotated by different angles permits 

combinations that would not be possible under the rigidity of an orthogonal rotation. 
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This concludes the discussion of the technique to be utilized for examining 

contemporaneous relationships between the stocks’ realized variances.  The next section 

explains the technique for studying the dynamic relationships between the stocks’ 

realized variances. 

 

 

5. METHOD TWO: HAR-RV REGRESSIONS 

This section is divided into 3 subsections – Section 5.1 gives a brief introduction 

to time series analysis; Section 5.2 explains heterogeneous autoregressive realized 

variance regressions, and finally, Section 5.3 provides the rationale behind significance 

tests to be conducted on these regressions, along with a detailed explanation of how these 

tests are actually conducted and their results interpreted. 

 

5.1 An Introduction to Time Series and Lags 

A time series measures the values of a particular entity at different points in time.  

Time series regressions are particularly helpful in examining the causal impact of one 

entity on another.  Prior to details of these regressions, however, it is critical to explain 

the concept of a lag, represented as follows: Yt-j.  If Yt is the value of the series Y in the 

present time period, then its jth lag Yt-j is the value of Y j periods ago.  Working with a 

series’ lags enables the testing of its utility in forecasting that series itself 

(autoregression), or another series, as desired. 
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5.2 The HAR-RV Model 

Andersen, Bollerslev, Diebold and Labys (2003) show that autoregression models 

exhibit better results than other models when it comes to forecasting variance.  We use 

heterogeneous autoregressive realized variance (HAR-RV) type models to forecast 

variance and then perform Granger Causality Tests in order to test the regressors’ 

predictive power. 

Corsi (2003) and Müller et. al (1997) developed the HAR-RV models.  They are 

known to be simple to work with, while also capturing and relaying information about 

variance through lagged past values effectively.  These models seek to utilize lagged 

averages of realized variation to forecast future realized variation.  We use lags averaged 

over 1, 5, and 22 days in order to capture data from the preceding day, week, and month, 

respectively.  5 and 22 were chosen for lagging by a week and a month since those are 

the number of trading days in a week and a month, respectively.  Specifically, the average 

lags are calculated as follows: 

                        k
RVRVRV

RV kttt
kt

−−−
−

+++
=

...21
 (8) 

where RVt-k is the kth average lag of the series’ realized variation.  The HAR-RV model 

may then be expressed as: 

ttMtWtDt RVRVRVRV εββββ ++++= −−− 22510  (9) 

where t indicates the day and the betas are the coefficients in the regression.  The four 

betas correspond to the constant term, the 1-day daily lag, the 5-day average weekly lag, 

and the 22-day average monthly lag respectively, and εt is the error term. 
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5.3 Granger Causality 

We now discuss Granger Causality (Granger 1969), a very important result in 

time-series regression.  Granger Causality is different from the standard idea of causality. 

If a series X has a causal impact on the series Y, then we would expect Y to be a direct 

consequence of X; however, if the series X Granger-causes the series Y, then the 

interpretation is that X contains unique information useful for predicting Y above and 

beyond every other series in the regression.  From this point onward, all references to 

causality should be taken to mean Granger-causality. 

The Granger Causality Test is conducted by employing an F-Test that tests the 

joint significance of multiple regressors in a regression.  This F-Test is based upon 

standard errors, and it is critical to use Newey-West covariance matrix estimators to get 

accurate standard errors in a time-lagged regression, with a lag of 60 days to ensure 

heteroskedasticity robustness.  This is critical, as stock volatility varies over time.  

Specifically, Newey-West covariance matrix estimators account for correlation amongst 

different lags of a times series and place more emphasis on correlated observations that 

appear closer together. 

In order to conduct a Granger Causality Test, all the lags of a particular series in 

the regression must be jointly subject to an F-Test.  The null hypothesis is that the 

coefficients on each of the lags of a particular series are zero.  If the null hypothesis is 

rejected, then at least one of the coefficients being tested is significant and the series 

being tested has unique predictive content in its past values for the dependent variable.  

Each Granger Causality Test in this paper will examine the daily, average weekly, and 
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average monthly lags, as described in Equation (6), of each time series that is used as an 

explanatory variable. 

The process of testing for Granger Causality can be further illustrated as follows.  

Assume there are three time-series being examined: Xt, Yt, and Zt.  Further assume that 

two lag levels 1 and 2 for each series are being employed, yielding the following 

independent variables: Xt-1, Xt-2, Yt-1, Yt-2, Zt-1, and Zt-2.  The following regressions 

would then be run: 

tXtZtZtYtYtXxtXt ZZYYXXX ,22112211211 εββββββ ++++++= −−−−−−  

tYtZtZtYtYtXtXt ZZYYXXY ,221122112211 εββββββ ++++++= −−−−−−  

tZtZtZtYtYtXtXt ZZYYXXZ ,221122112211 εββββββ ++++++= −−−−−− . 

Next, suppose we want to test whether or not the series Yt Granger-causes the series Xt.  

We would proceed by conducting an F-Test on βY1 and βY2 in the first regression to see 

whether they are jointly significant.  If they are, then we conclude that the past values of 

the series Yt contain unique predictive content for the series Xt, above and beyond the 

predictive content for Xt in Xt itself and Zt.  In other words, Yt Granger-causes Xt.  Now 

suppose we wanted to see if the series Zt Granger-causes the series Yt.  If an F-Test on 

βZ1 and βZ2 in the second regression indicates they are not jointly significant, then we 

conclude that the past values of the series Zt do not contain useful predictive content for 

Yt and that Zt does not Granger-cause Yt.  Thus, we can test time series for predictive 

content by jointly testing their coefficients in regressions of the type described above. 
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This concludes the discussion of the methods to be applied in this paper.  Now we 

proceed to examine the results of applying factor analysis and conducting HAR-RV 

regressions. 

 

 

6. FACTOR ANALYSIS RESULTS 

The results of factor analysis enable the examination of contemporaneous 

relationships between the realized variances of the stocks in the technology sector.  All 

the techniques described in Section 4 are applied and analyzed in this section, starting 

with a through explanation of the intuition behind the expectation that the stocks’ 

volatility should be a function of an industry/stock-specific (idiosyncratic) effect and a 

market (systematic) effect. 

 
6.1 Motivation 

The expectation is that there will be two dominating common factors and that the 

volatility of the ten largest technology stocks would be largely explained by (1) an 

industry effect, and (2) a market effect.  The motivation for this comes from the Market 

Model, which Sharpe (181) describes as follows: 

                          titmiiti rr ,,, εβα ++=  (10), 

where ri,t is the return on stock i, αi is the intercept, βi is the sensitivity of the stock’s 

return to the return on an average market portfolio, rm,t is the return on the average 

market portfolio, and εi,t is the error term.  The Market Model indicates that the return 
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on a stock is made up of two components – the return on the market and stock-specific 

idiosyncratic return, represented by the error term as the unexplained part of the total 

return on the stock.  Thus, the question arises whether or not a stock’s volatility would 

also be dependent on both the market and stock-specific factors, such as the industry to 

which the stock belongs, since we would expect returns and volatility in a particular 

industry to be correlated.  If Equation (10) describes returns accurately, then the variance 

of a stock i’s return would be given by 

22
,

22
,, titi tmir εσσβσ +=  (11); 

in addition, the covariance of the variances of two stocks i and j would be given by 

)(),( 2
,

2222
,, tmjirr VarCov
tjti

σββσσ =  (12), 

assuming that σ2
εi,t is independent of σ2

εj,t.  Should they not be independent, then the 

above covariance would be as shown in Equation (13) below: 
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As has been mentioned before, Table 1 indicates that the beta of every stock being 

examined is non-zero.  Thus, based upon Equations (11), (12), and (13) the variance and 

covariance of the stocks’ returns should have strong influence from the general market 

and within the industry. 
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6.2 Correlation among the stocks’ Realized Variances 

In anticipation of the factor analysis, we also examine how well the realized 

variances of the each of the stocks, as well as the market, correlate with each other.  

These results are summarized in Table 2.1  It is evident that all the stocks’ realized 

variations have high correlations with each other and are in the range 0.7 – 0.8.  The 

market’s realized variation, on the other hand, only has a medium correlation with all the 

stocks, around 0.5 in each case.  The results of adding Google’s realized variation into 

the dataset are in Table 3.  It is clear that all the correlations reduce noticeably.  The 

original stocks’ Realized Volatilities still have medium correlation with each other; 

however, Google’s realized variation has exceptionally low correlation with every other 

stock and the market. 

 

6.3 Standard Factor Analysis 

We now look at the first factor analysis, shown in Table 4.  The upper part of the 

table lists all the discovered common factors and their eigenvalues.  Factor 1 (eigenvalue 

= 7.72630) is very significant.  Factor 2 (eigenvalue = 0.15161) may be interpreted as 

a weak, but not entirely insignificant factor.  The remaining factors do not have adequate 

eigenvalues and will be ignored hereafter. 

Conclusions from the factor analysis may now be drawn, keeping in mind the 

caveat that interpreting a factor analysis requires sifting through different rotations for 

                                                 
1 As the variable names in Table 1 suggest, these correlations (as well as the subsequent factor analyses) are 
on the logs of the Daily realized variances.  The rationale for taking logs prior to any analysis here has been 
explained in Section 3. 
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interpretable results, which is why its second purpose was stated to be to provide firm 

hypotheses to be tested using other methods.  The lower part of Table 4 contains factor 

loadings and uniquenesses.  All the stocks’ variances correlate very strongly with Factor 

1 and also exhibit high communality.  This appears to confirm part of our hypothesis that 

a dominant industry effect would explain a significant portion of the stocks’ volatility.  

That the market’s volatility has relatively low correlation with this factor and high 

uniqueness provides further credence to this interpretation.  Factor 2 has very low factor 

loadings throughout, even with the market.  This suggests that a market effect, if any, is 

not discernible here and as such, the market does not appear to play a significant role in 

explaining technology stocks’ volatility.  Again, the market’s high uniqueness suggests 

that its volatility has little in common with that of the stocks.  Figure 1 (a plot of the 

factor loadings of the two most significant factors) shows that the market appears to be 

quite distinct from the stocks, all of which are clustered together. 

Next, the Stata output is forcibly restricted to only two factors by giving the 

command that only factors with eigenvalue of 0.1 or greater be retained.  Table 5 

indicates that the two retained factors have identical loadings as the two factors in Table 

4.  However, it is important to note that the uniqueness for each of the variables has 

increased slightly, which indicates that removing the so-called insignificant factors does 

indeed reduce the measured communality. 
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6.4 Factor Rotations 

We now examine the results of Factor Rotations in this case.  Table 6 shows the 

correlations among the factors produced by an oblique rotation on the factor analyses in 

Tables 4 and 5.  Practically every correlation is really weak.  The only medium 

correlation is between the original Factors 4 and 5, which are the two most insignificant 

factors.  This can be attributed to sampling errors and indicates that this is not a robust 

measure at all.  We conclude that an oblique rotation will not be helpful in enhancing our 

previous analysis, since such a rotation admits meaningful interpretations only when the 

factors produced have medium to strong correlation.   

An orthogonal rotation yields uncorrelated factors by construction, with these 

factors either having a very strong or very weak correlation with all the variables by 

design.  At first glance, this would appear to be ideal for identifying distinct industry and 

market effects.  The results of an orthogonal rotation on the original Factor Analysis of 

Table 4 are in Table 7.  An orthogonal rotation would in all likelihood be helpful if there 

were multiple strong common factors; however, in this case this method does not provide 

meaningful results – the correlations (i.e., factor loadings) tend to be in the 0.3 – 0.6 

range, i.e., most of the stocks have medium correlation with factors. This is probably 

because this technique places a high premium on the original Factors 2 and 3, which were 

previously deemed to be insignificant.   

However, upon examining closely the new factor loadings on the factors F1 

(Table 5) and F2 (Table 5) in Table 7, which result from an orthogonal rotation on the 

Factor Analysis of Table 5 (where Stata was forced to restrict output to only two factors), 
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we can perhaps see a really basic Diversified/Business Technology effect.  The loadings 

on F1 for Cisco, Dell, IBM, Microsoft, and Oracle are actually quite high and certainly 

seem to be in a higher range than the loadings for the other stocks.  These 5 stocks are for 

companies that are major players in both Personal and Business Computing 

(“Diversified”), or are really strong in Business and Server Computing.  Thus, we may 

conclude that there appears to be some evidence of a Diversified/Business Technology 

effect here, although with the caveat that EMC appears to be a notable exception. 

 

6.5 The results of including Google (2004 – 2008) 

Finally, we study the effects of adding Google into the dataset (please see Tables 

8 and 9).  As has been emphasized previously, data for Google are only available from 

2004 onwards, since that is when the company went public.  The market’s communality 

is almost exactly the same as its previous communality (see Table 4).  Some of the stocks 

from before also have higher uniqueness and lower communality.  However, the most 

important result to note is that Google has extremely high uniqueness (0.8878) and very 

low correlations with all of the common factors, ranging from 0.09 – 0.20.  The 

common factors explain practically none of Google’s realized volatility and this suggests 

that there is not much to pursue by way of trying to establish communality between 

Google’s realized variation and that of other technology stocks and the market.  This 

view is further reinforced by the fact that the factor loadings for all the stocks other than 

Google exhibit almost no change from Table 8 to Table 9.  This suggests that including 

Google in the analysis has no significant impact on the preexisting correlation structure 
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within the technology sector and that Google’s variance is fundamentally different from 

that of technology companies.  A possible explanation for Google’s separation from both 

the technology industry and the market, presented visually in Figure 2, is that Google’s 

revenues derive largely from advertisements placed on searches conducted through its 

search engine, unlike the other technology firms, all of which generate revenue primarily 

through providing hardware and software. 

 

 

7. REALIZED VARIATION PREDICTIVE CONTENT 

REGRESSIONS 

This section examines the results of applying the regressions described in Section 

5 to examine the dynamic relationships between the realized variances of the stocks in the 

technology sector.  Since stock price data for Google are available only from the time of 

its Initial Public Offering in 2004, first regressions are conducted on all the other stocks 

for the period 1997 – 2008.  After analyzing these regressions, the results of including 

Google in regressions on all the stocks over the period 2004 – 2008 are examined. 

 

7.1 Results from 1997-2008 (excluding Google) 

We examine the results of regressing every stock’s daily realized variation, as 

well as that of the market, against the lagged values of all ten stocks and the market, 
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utilizing the HAR-RV model as described in Equation (6).  We then conduct Granger 

Causality Tests using heteroskedasticity-robust standard errors as explained in Section 5. 

Table 10 compares the explanatory power of only the stocks found to be 

significant in each case through the Granger Causality Tests with that of all the stocks 

and the market.  We see that the overwhelming majority of the explanatory power 

(94.40% or more, in some cases nearly 100%) is contained in the series deemed 

significant by Granger Causality Tests. 

The results of all the Granger Causality Tests are summarized in Table 11.  In this 

table, reading across a row shows all the stocks the realized variations of which Granger-

cause a particular stock’s realized variation.  Reading down a column provides a quick 

view of all the stocks that have realized variations Granger-caused by a particular stock’s 

realized variation. 

As can be seen by the significance all across the diagonal, the past volatility of 

every series is useful in predicting that series’ own volatility.  There are several other 

interesting observations to be made here.  Hewlett-Packard, which went through a lot of 

turmoil in the shape of a chaotic merger with Compaq that went to a shareholder vote, as 

well as extensive restructuring, is the only stock for which the market has significant 

predictive power.  Microsoft, which makes software to go with Dell and Intel’s products, 

is very significantly explained by them.  EMC Corporation and IBM are major rivals in 

the server business and all the stocks that are significant for the former are also 

significant for the latter.  Most technology companies extensively use Intel-made 

processors and are also significantly explained by Intel.  It should be noted that for the 
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majority of the time over which the data was obtained, IBM was in both the personal 

computer as well as office server business, and we see that it is significantly explained by 

companies that relate strongly to both these lines of business.  Xerox provides relatively 

unique products and this is borne out by the fact that its volatility only has significant 

predictive content for Texas Instruments, another technology company that provides 

services different from most of the companies in the sector.  In general, it appears that the 

volatility of a company in a particular line of business within the technology sector tends 

to have significant predictive content for the volatility of other companies in that specific 

focus within the overall technology sector.  Furthermore, the market’s realized variation 

does not have significant predictive content for any technology stock’s realized variation, 

other than Hewlett-Packard, which is the one stock that experienced great tumult over 

this period.  This suggests that the market’s realized variation’s apparent significance in 

explaining HP’s realized variation could be attributed to too much noise crowding out the 

real signal sent out by HP’s realized variation. 

Overall, the results of the Granger Causality Tests make tremendous intuitive 

sense. 

 

7.2 Results from 2004-2008 (including Google) 

The final step in the regression analysis is to examine how much predictive 

content Google’s realized variation contains for the other stocks and the market, and vice 

versa.  Table 12 indicates that only 36.6% of Google’s realized variation is explained by 

the regression, which goes along with the previously established disconnect between 
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Google and the rest of the industry and the market.  Google’s realized variation contains 

significant predictive content only for Microsoft and Dell.  It must be mentioned that this 

is not due to an overall decrease in explanatory power in the regression – the adjusted R2 

in most cases is comparable to the corresponding R2 in Table 10.  Table 13 indicates that 

neither the market, nor any technology stock (other than Google itself) contains 

significant predictive content for Google.  Thus, we may conclude that the results from 

the regression corroborate those obtained through factor analysis – that its unique revenue 

model and limited time as a publicly held company make the nature of its volatility very 

different from that of other technology companies and the market. 

 

 

8. CONCLUSION 
 

This paper employs two major analysis techniques to see how the volatilities of 

the major technology stocks and that of the market relate to each other – both in terms of 

measuring their communality, as well as for seeing how much predictive content they 

have for each other.  The market, which was found to have practically no communality 

with the technology stocks by conducting factor analysis, is significant only for 

explaining Hewlett-Packard’s volatility, the one stock that experienced great tumult over 

this period, which suggests that there is too much noise clouding the true signal of HP’s 

volatility.  Otherwise, it would not make much sense for the market’s volatility to have 

predictive content for only one technology stock’s volatility. 
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Ultimately, we see that utilizing the information contained in high frequency data 

provides useful insight into the nature of equity volatility within the technology sector.  

Employing techniques that take advantage of this information, we determine that some 

long held beliefs on the nature of equity volatility are quite robust, while others require 

examination in greater depth – it was established that, as suggested by the Market Model, 

a stock’s volatility has a major idiosyncratic component.  On the other hand, it appears 

that the Market Model’s implication of a systematic component to equity volatility can be 

called into question – at best, our results are indicative of a rather weak and insignificant 

systematic component.  The industry effect completely overshadows any impact the 

market might have on technology stock volatility.  To the author’s knowledge, these 

results are unprecedented.  The significance of these results is that analysts focusing on 

the technology sector can focus primarily on trends within the industry and the specific 

stock they are examining, without being too concerned with external events in the market 

that have little apparent influence on the technology sector. 

It would not be prudent, however, to dismiss the market’s role in influencing 

equity volatility.  As can be seen from the current financial situation, the technology 

sector is relatively insulated from the general market, compared to other sectors, such as 

the banking sector.  Examining this in more depth by applying one or both of the 

techniques utilized in this paper, as well as other methods, to determine the extent of the 

interdependency of the volatility of stocks within other industries, as well as the nature of 

their association with the market’s volatility, would constitute interesting and useful 

future research. 
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9. TABLES 

 
 
 

Table 1: Betas of stocks analyzed (taken from Yahoo! Finance) 
Stock CSCO DELL EMC HPQ IBM INTC MSFT ORCL TXN XRX GOOG
Beta 1.37 1.43 1.29 0.99 1.05 1.21 1.07 1.10 1.03 1.27 1.64 

 
 
 

Table 2: Correlations between the natural logs of each stock’s realized variation  
1997-2008 (excluding Google) 

ln CSCO DELL EMC HPQ IBM INTC MSFT ORCL TXN XRX SP 
CSCO 1.0000           
DELL 0.7365 1.0000          
EMC 0.7814 0.6563 1.0000         
HPQ 0.7677 0.6778 0.7366 1.0000        
IBM 0.7665 0.7293 0.7057 0.7553 1.0000       
INTC 0.7555 0.7320 0.7044 0.6962 0.6827 1.0000      
MSFT 0.8208 0.7474 0.7271 0.7511 0.8030 0.7334 1.0000     
ORCL 0.8295 0.7527 0.7527 0.7580 0.7707 0.7443 0.8121 1.0000    
TXN 0.7984 0.6751 0.7718 0.7713 0.7336 0.7335 0.7484 0.7918 1.0000   
XRX 0.7046 0.6384 0.6871 0.7127 0.6831 0.7308 0.6836 0.6914 0.7114 1.0000  
SP 0.5068 0.4750 0.5505 0.5245 0.4958 0.4995 0.4956 0.5416 0.5298 0.4930 1.0000 

 

 

Table 3: Correlations between the natural logs of each stock’s realized variation  
2004-2008 (including Google) 

ln CSCO DELL EMC HPQ IBM INTC MSFT ORCL TXN XRX GOOG SP 
CSCO 1.0000            
DELL 0.3607 1.0000           
EMC 0.5599 0.3505 1.0000          
HPQ 0.4893 0.2661 0.4616 1.0000         
IBM 0.5405 0.3910 0.5157 0.4967 1.0000        
INTC 0.3655 0.3706 0.3986 0.2638 0.2781 1.0000       
MSFT 0.5899 0.4208 0.4703 0.4377 0.6232 0.2687 1.0000      
ORCL 0.5648 0.3352 0.5174 0.4321 0.4408 0.3795 0.4562 1.0000     
TXN 0.5755 0.2069 0.4473 0.4489 0.4079 0.3459 0.3579 0.4622 1.0000    
XRX 0.2674 0.1802 0.3354 0.3286 0.3731 0.3223 0.2377 0.2951 0.2684 1.0000   
GOOG 0.1151 0.1524 0.2188 0.0990 0.1823 0.1426 0.0914 0.1355 0.0842 0.1575 1.0000  
SP 0.4169 0.0304 0.3153 0.3616 0.2396 0.1893 0.2297 0.3169 0.4774 0.2362 0.0551 1.0000 
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Table 4: Factor Analysis on RVs 1997-2008 (excluding Google) 
 Eigenvalue Difference Proportion Cumulative 

Factor 1 7.7263 7.57469 1.0076 1.0076 
Factor 2 0.15161 0.06516 0.0198 1.0274 

 
Variable (ln) F1 F2 Uniqueness Communality 

CSCO 0.9026 -0.0467 0.1685 0.8315 
DELL 0.8173 -0.1607 0.292 0.708 
EMC 0.8467 0.145 0.2563 0.7437 
HPQ 0.8573 0.0712 0.2471 0.7529 
IBM 0.8570 -0.1231 0.2344 0.7656 
INTC 0.8404 0.0224 0.2539 0.7461 
MSFT 0.8843 -0.1698 0.1869 0.8131 
ORCL 0.8974 -0.0659 0.1818 0.8182 
TXN 0.8735 0.1224 0.2164 0.7836 
XRX 0.8035 0.1191 0.3204 0.6796 
SP 0.5959 0.1397 0.6159 0.3841 

Only Factors 1 and 2 are shown as Factors 3-5 had trivial eigenvalues, indicating that 
they are insignificant 

 
 

Table 5: Same as Table 4, with new Uniqueness and Communality numbers, by 
employing mineigen(0.1), which forcibly restricts output to two factors, by enforcing a 

minimum eigenvalue of 0.1, instead of the default 0 
Variable (ln) F1 F2 Uniqueness Communality 

CSCO  0.9026 -0.0467 0.1832 0.8315 
DELL 0.8173 -0.1607 0.3062 0.7080 
EMC 0.8467 0.145 0.262 0.7437 
HPQ 0.8573 0.0712 0.2599 0.7529 
IBM 0.8570 -0.1231 0.2504 0.7656 
INTC 0.8404 0.0224 0.2932 0.7461 
MSFT 0.8843 -0.1698 0.1892 0.8131 
ORCL 0.8974 -0.0659 0.1903 0.8182 
TXN 0.8735 0.1224 0.222 0.7836 
XRX 0.8035 0.1191 0.3402 0.6796 
SP 0.5959 0.1397 0.6255 0.3841 
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Table 6: Correlations among factors after Oblique rotations on Tables 4 and 5 
Factor F1(4) F2(4) F3(4) F4(4) F5(4)  F1(5) F2(5) 
F1(4) 1     F1(5) 1  
F2(4) .1478 1    F2(5) .01936 1 
F3(4) 0.1210 .04684 1      
F4(4) .09771 0.2418 0.1628 1     
F5(4) .04321 .03125 -0.1314 -0.4188 1    
F1(4)-F5(4) are the 5 factors and their correlations after an oblique rotation on Table 4. 

F1(5) and F2(5) are the 2 factors and their correlations after an oblique rotation  
on Table 5. 

 
 
 

Table 7: Factor Loadings after Orthogonal rotation 
Variable (ln) F1 (Table 4) F2 (Table 4) F1 (Table 5) F2 (Table 5) 

CSCO 0.6351 0.5473 0.7568 0.4940 
DELL 0.6159 0.3768 0.7550 0.3517 
EMC 0.4651 0.6574 0.5987 0.6160 
HPQ 0.5284 0.6106 0.6507 0.5627 
IBM 0.6653 0.4774 0.7650 0.4055 
INTC 0.4782 0.4859 0.6658 0.5133 
MSFT 0.7089 0.4522 0.8145 0.3838 
ORCL 0.6423 0.5397 0.7639 0.4755 
TXN 0.4983 0.6512 0.6337 0.6136 
XRX 0.4092 0.5519 0.5790 0.5697 
SP 0.2910 0.4894 0.3991 0.4639 

The two most significant factors after performing Orthogonal Rotations on the Factors in 
Tables 4 and 5 (Uniqueness and Communality are not shown as they do not change) 
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Table 8: Factor Analysis on RVs, 2004-2008, excluding Google 
 Eigenvalue Difference Proportion Cumulative 

Factor 1 4.31447 3.80405 0.9678 0.9678 
Factor 2 0.51042 0.24101 0.1145 1.0823 
Factor 3 0.26941 0.11068 0.0604 1.1427 

 

Variable (ln) F1 F2 F3 Uniqueness Communality 
CSCO 0.7873 0.0665 -0.1031 0.3369 0.6631 
DELL 0.4774 -0.3552 0.1226 0.6235 0.3765 
EMC 0.7108 -0.0229 0.0777 0.4881 0.5119 
HPQ 0.6451 0.0874 -0.0813 0.5517 0.4483 
IBM 0.7152 -0.1991 -0.1613 0.3975 0.6025 
INTC 0.5019 -0.0597 0.3444 0.6244 0.3756 
MSFT 0.6886 -0.2494 -0.2224 0.413 0.587 
ORCL 0.6825 0.0229 0.0763 0.5193 0.4807 
TXN 0.6540 0.3067 0.0120 0.4731 0.5269 
XRX 0.4468 0.0306 0.1706 0.7070 0.2930 
SP 0.4633 0.4132 -0.0445 0.6124 0.3876 

 

Table 9: Factor Analysis on RVs, 2004-2008, including Google 
 Eigenvalue Difference Proportion Cumulative 

Factor 1 4.35962     3.83497     0.9575      0.9575 
Factor 2 0.52465     0.21712     0.1152      1.0727 
Factor 3 0.30754     0.13033     0.0675      1.1403 

 

Variable (ln) F1 F2 F3 Uniqueness Communality 
CSCO 0.7846    -0.0888   -0.1337    0.3373 0.6627 
DELL 0.4804    0.3584    0.0635     0.6201 0.3799 
EMC 0.7155    0.0368    0.0986    0.4719 0.5281 
HPQ 0.6433    -0.0978   -0.0645    0.5530 0.4470 
IBM 0.7173    0.1913   -0.1443    0.3933 0.6067 
INTC 0.5040    0.0798    0.3065     0.6281 0.3719 
MSFT 0.6863    0.2165   -0.2690    0.4094 0.5906 
ORCL 0.6820    -0.0261    0.0507     0.5193 0.4807 
TXN 0.6512    -0.3145    0.0148     0.4717 0.5283 
XRX 0.4503    -0.0060    0.2156     0.7041 0.2959 

GOOG 0.2082    0.1214    0.1879   0.8878 0.1122 
SP 0.4609    -0.4162   -0.0030    0.6131 0.3869 
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Table 10: Explanatory power of lagged values of stocks, as determined by Granger 
Causality Tests 

DEPENDENT 
VARIABLE 

ALL EXPLANATORY 
VARIABLES AND 
ADJUSTED R2 

SIGNIFICANT 
STOCKS ONLY AND 

ADJUSTED R2 

% R2 
RETAINED 

CSCO 11 x 3 0.6863 4 x 3 0.6773   98.69% 
DELL 11 x 3 0.7159 4 x 3 0.6758   94.40% 
EMC 11 x 3 0.6464 4 x 3 0.6344   98.14% 
HPQ 11 x 3 0.5433 5 x 3 0.5334   98.18% 
IBM 11 x 3 0.5900 7 x 3 0.5875   99.58% 
INTC 11 x 3 0.6451 4 x 3 0.6351   98.45% 
MSFT 11 x 3 0.6555 4 x 3 0.6489   98.99% 
ORCL 11 x 3 0.6680 4 x 3 0.6605   98.88% 
TXN 11 x 3 0.6721 3 x 3 0.6432   95.70% 
XRX 11 x 3 0.5725 3 x 3 0.5623   98.22% 
SP2 11 x 3 0.3530 3 x 3 0.3526 99.89% 

A comparison of how well each stock’s daily realized variance is predicted by all 3 lag 
levels of all 10 stocks and the market, and how well it is predicted by only the stocks 

deemed significant by Granger causality tests (see Table 10 for which stocks are 
significant in which case).  The calculation depicted in the second and fourth columns is 
designed to indicate the number of regressors in that particular regression.  For example, 

the entry for Cisco is 4 x 3. This indicates that 4 of the 11 stocks were found to be 
significant and since there are 3 lag levels for each stock, there are 4 x 3 = 12 regressors 

in that particular regression. 

                                                 
2 SP = S&P 500 (all others are standard ticker symbols, in order from top to bottom: Cisco, Dell, EMC 
Corporation, Hewlett Packard, IBM, Intel, Microsoft, Oracle, Texas Instruments, and Xerox). 



Table 11: Results of Granger Causality Tests on HAR-RV regressions 

The results of regressing the Daily Realized Variance of each of the stocks and the market against all 3 lag levels of all 10 
stocks and the market, from 1997-2008.  The first column indicates the stock whose daily RV is the regressand for that 

particular regression.  For example, the third row indicates that when EMC’s daily RV is the regressand, the RVs for Dell 
(DELL), EMC (EMC) itself, Oracle (ORCL), and Xerox (XRX) pass their respective Granger Causality Tests, while the other 
stocks and the market (denoted by SP) all fail this test.  The p-values shown are obtained by conducting a Granger causality 
test on all 3 lag levels of the stock for that particular regression.  Since 3 lag levels were tested for each stock, the degrees of 

freedom also equal 3 for each test.  

 CSCO DELL EMC HPQ IBM INTC MSFT ORCL TXN XRX SP 

CSCO 00..00001166  
**** 

00  
****** 

00..22008855 00..77884400 00..00772222 00  
****** 

00..774499 00..00005500  
**** 

00..33335566 00..22228866 00..55112299 

DELL 00..00001144  
**** 

00  
****** 

00..22777755 00..11990099 00..99118866 00  
****** 

00..00000044  
****** 

00..33117700 00..11667788 00..99776677 00..33338822 

EMC 00..223388 00..00000044  
****** 

00  
****** 

00..22991111 00..11110066 00..22991177 00..22333388 00  
****** 

00..00556677 00..00331133  
** 

00..33119966 

HPQ 00..00994455 00..00000077  
****** 

00..00777788 00..00228800  
** 

00..33554488 00  
****** 

00..55550033 00..44881199 00..00883388 00..00225544  
** 

00..00110077  
** 

IBM 00..44440033 00..00002244  
**** 

00..00005566  
** 

00..88339933 00  
****** 

00..00000044  
****** 

00..00440044  
** 

00..00005500  
**** 

00..55222288 00..00007788  
**** 

00..11226666 

INTC 00..00001177  
**** 

00..11223388 00..44770099 00..00000066  
****** 

00..22001133 00  
****** 

00..11559999 00..11112288 00..22442222 00..00337733  
** 

00..77881111 

MSFT 00..00006666  
**** 

00  
****** 

00..99669955 00..22004422 00..33880000 00  
****** 

00  
****** 

00..00884422 00..88990077 00..11119900 00..11115522 

ORCL 00..44115500 00..00002233  
**** 

00..11556600 00..22336655 00  
****** 

00..00000099  
****** 

00..55662200 00  
****** 

00..88443300 00..00887766 00..00886633 

TXN 00..11778833 00..00552233 00..22771122 00..22660088 00..66558855 00  
****** 

00..22000000 00..88554455 00  
****** 

00..00001133  
**** 

00..00999966 

XRX 00..22332222 00..11559966 00..558899 00..33338811 00..88444444 00..00113300  
** 

00..11116655 00..00003399  
**** 

00..33227788 00  
****** 

00..55000066 

SP 00..66558822 00..88883399 00..22999999 00  
****** 

00..00339922  
** 

00..55880022 00..88553377 00..33770088 00..88443366 00..88776677 00  
****** 

* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 12: The predictive content contained in past lagged values of Google’s RV for all 

technology stocks and the market 
 
 
 
 

Table 13: The predictive content for Google’s RV contained in past lagged values of all 
other technology stocks and the market 

Adjusted R2 0.3660 
Explanatory Variable Result of Granger Test 

CSCO 0.0657 
DELL 0.4591 
EMC 0.5408 
HPQ 0.4681 
IBM 0.7695 
INTC 0.0809 
MSFT 0.2422 
ORCL 0.1908 
TXN 0.6566 
XRX 0.0573 
SP 0.8506 

GOOG 0*** 
* p < 0.05, ** p < 0.01, *** p < 0.001 

Dependent Variable Adjusted R2 (all 12 x 
3 = 36 regressors) 

Granger Test on 
Google 

CSCO 0.6139 0.552 
DELL 0.6175 0.0009*** 
EMC 0.6344 0.064 
HPQ 0.5331 0.1779 
IBM 0.6693 0.0001 
INTC 0.3616 0.1133 
MSFT 0.6615 0.0362* 
ORCL 0.4673 0.0584 
TXN 0.5209 0.8825 
XRX 0.1230 0.3246 
SP 0.1285 0.2702 

GOOG 0.3660 0*** 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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10. FIGURES 
 
Figure 1: Factor Loadings3 on the two factors with the highest eigenvalues in the Factor 
Analysis of the natural logs of Daily Realized Variations (corresponds to Table 4) 

 
 

Figure 2: Factor Loadings corresponding to Table 9.  Note how distinct Google’s 
volatility is from the market as well as all the other technology stocks. 

 
                                                 
3 Recall that a factor loading is the correlation between the factor and the variable in question. 
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