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Abstract 
 

This paper analyzes the impact of increasing fuel prices on public transit ridership in 

the United States. Using regional gasoline prices and transit ridership and supply figures 

from 218 US cities from 2002 to 2008, I estimate the cross-price elasticity of demand for 

four modes of transit with respect to gasoline price. I report how these estimates vary 

between cities and test to see if these cross-price elasticities have changed over time. I 

find a cross-price elasticity of transit demand with respect to gasoline price ranging from 

-0.012 to 0.213 for commuter rail, -0.377 to 0.137 for heavy rail, -0.103 to 0.507 for light 

rail, and 0.047 to 0.121 for bus. These estimates vary significantly between cities but are 

not highly correlated with urban population size. Additionally, I find evidence suggesting 

that the cross-price elasticity has increased over this time period for commuter rail, light 

rail, and motorbus transit. 
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1. Introduction 
 

The average price of gasoline in the United States has risen significantly over the past 

several years, increasing from $1.148 per gallon in January 2002 to its peak of $4.114 in 

July 2008 1 . During this period, aggregate public transit ridership has grown at an 

increasing rate2 while the growth of total vehicle miles traveled slowed to a halt and even 

decreased in 2007 and 20083. 

The increase in transit ridership and decrease in vehicle miles traveled is particularly 

notable as private vehicle use in the United States had been steadily growing since the 

1940’s (St. Clair 1981). The 2001 National Household Transportation Survey found that 

87.9% of all commutes to work were by private vehicle, compared to only 4.7% by 

public transit (Pucher, 2003). As private vehicles and public transportation are 

substitutes, an increase in gasoline prices makes public transportation relatively cheaper 

than driving and is expected to increase transportation demand. Many other factors also 

determine travel mode choice, but the recent surge in gasoline prices has received a lot of 

attention from national and local media outlets as the driving force behind the shift in 

travel behavior. The relevant literature varies widely regarding the size and significance 

of gasoline prices’ effect on ridership and does not support any single conclusion. 

This study comprehensively analyzes the nature of the relationship between gasoline 

prices and public transit ridership in the United States, aiming to estimate the extent to 

which gasoline prices have determined transit demand since 2002. To accomplish this, 

the cross-price elasticities of four modes of public transit demand with respect to gasoline 

price are estimated using a nationwide panel dataset. A cross-price elasticity of demand is 
                                                 
1 US Energy Information Administration, average gasoline price estimate - all grades 
2 American Public Transportation Association, Ridership Reports Archive 
3 US Federal Highway Administration, Travel Volume Trends 
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a measure of the percent change in one goods’ demand caused by a 1% change in another 

good’s price. In this case, I will estimate the change in transit demand caused by a 1% 

change in gasoline price. To allow for comparison, I employ a procedure similar to 

previous research, but using a dataset offering two advantages. First, I use panel data 

containing monthly observations of supply and demand from 218 cities across the nation, 

many more cities than any previous study of US transit ridership. Second, I include 

observations of the recent rise in gasoline prices, enabling me to see how ridership 

responded in these unusual circumstances. Also, to put the elasticity estimates into better 

context, I research how these estimates vary across cities and determine whether or not 

this elasticity has remained constant over time. For the entire time period, I estimate 

cross-price elasticities of .087 for commuter rail, -0.012 for heavy rail, .100 for light rail, 

and .063 for motorbus. These estimates tended to increase with population and varied 

significantly between cities, but not in a uniform manner. Finally, the cross-price 

elasticity significantly increased during the time period in three modes: commuter rail, 

light rail, and motorbus. This suggests that consumers became increasingly sensitive to 

gasoline prices as those prices reached higher levels during the latter half of the period of 

observation. 

A more refined understanding of the relationship between gasoline price and public 

transit will be useful to two audiences: public transit agencies and policy makers. Public 

transit agencies are especially concerned with the price of gasoline as it partially 

determines both their costs and level of service demanded. An increase in gasoline price 

makes service provision, especially buses, more costly, while it simultaneously raises 

demand. Winston and Maheshri (2006) note that on average, fares only collect 40% of 
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transit’s operating costs, meaning increased service provision during periods of high 

gasoline prices would not be sustainable, even with a reasonable increase in fares. A 

comprehensive knowledge of how changes in gasoline price affect demand, especially the 

relative impacts on different modes of transit and the price sensitivity of new riders, will 

help transit authorities respond to gasoline prices with optimal levels of service and fares. 

Policy makers would benefit in two ways from a better understanding of how 

gasoline prices affect travel mode choice. First, there are several social costs associated 

with vehicle use, namely greenhouse gas emissions, congestion, highway upkeep, foreign 

oil dependence, and traffic accidents (Murphy and Delucchi, 1998). Insight into the 

factors that have led individuals to reduce vehicle use can guide future policy aimed at 

encouraging similar behavior. Second, when considering plans for constructing or 

improving transit infrastructure, policy makers will be aided if they know how demand 

for each mode of transit in a given city is likely to respond to a change in gasoline price, 

or alternatively, the extent that a given city would support a transit system at various 

levels of gasoline prices. 

The rest of this paper is organized as follows. Section 2 reviews the existing research 

on transit ridership, particularly papers measuring the effects of gasoline prices. To 

estimate the impact of gasoline prices on transit ridership, a specification of public transit 

demand is developed. Section 3 addresses common econometric problems and develops 

empirical specifications. Then, using a panel dataset of US transit ridership, section 4 

estimates cross-price elasticities for commuter rail, heavy rail, light rail, and motorbus 

transit demand, allowing the estimates to vary by city, metropolitan population, and over 

time. Finally, section 5 concludes. 
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2. Literature Review 

Public transit has been heavily researched by economists, urban transportation 

planners, and policy researchers. Using both cross-sectional and time-series analysis, 

researchers have identified and measured many factors that determine transit ridership; 

however, few papers study the effect of gasoline prices on transit ridership. Of the papers 

that include gasoline prices, some find a significant positive relationship that varies 

widely by city, mode of transit, and empirical specification, whereas other studies find no 

significant relationship. To provide the context of gasoline prices’ role in the literature, 

this section begins with an overview of the major determinants of transit ridership. Then, 

the results and methodologies of papers which measure the impact of gasoline prices are 

reviewed.  

 

2.1 Overview of the Factors Affecting Transit Ridership 

The transit literature has identified many factors that influence transit demand. Before 

looking at gasoline prices’ effect, one must assess the possibility that these other factors 

are responsible for the recent change in travel behavior. Summarizing the transit 

literature, Taylor and Fink (2002) divide the factors affecting transit ridership into two 

broad categories: internal and external. Internal factors are determined by a transit 

system’s operators and include fare, level of service, and quality of service. External 

factors are largely exogenous to transit system’s managers, and can be further categorized 

as geographic, demographic, or economic. 

The effects of internal factors, specifically transit pricing, are well studied. Holmgren 

(2007), Litman (2004), Taylor and Fink (2002) and Goodwin (1992) review many of 
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these studies. Using estimates from 81 studies, Holmgren finds a mean own-price 

elasticity of -.38, signifying that a 1% increase in transit fares will decrease demand by 

.38%. He notes though, that this estimate ranges from -.009 to -1.32, meaning transit can 

range from being almost perfectly inelastic to greater than unit elastic. Litman reports a 

similar range of elasticity estimates, along with the insight that large cities have a smaller 

price elasticity (due to more transit-dependant riders), fare increases affect ridership more 

than fare decreases, elasticities differ between modes of transit, and long-run elasticities 

are roughly twice the magnitude of short-run elasticities. These factors, among others, are 

very likely to affect estimates of cross-price elasticities as well, albeit in potentially 

unique ways. The amount of service provided, generally measured in vehicle revenue 

miles, has been found to have a significant positive relationship with ridership. Vehicle 

revenue miles represent the distance a transit vehicle travels while in service, and is 

commonly used as a proxy for transit supply. Holmgren finds an average elasticity with 

respect to vehicle revenue kilometers of .72, meaning that for every 1% increase in the 

number of hours transit vehicles are in service, ridership goes up .72%. Service quality 

factors such as speed, reliability, safety, cleanliness, ease of use, crowdedness, and route 

orientation have also been found to significantly impact ridership, however they are 

relatively more difficult to measure. The literature is not conclusive about whether riders 

are more sensitive to changes in service quality or service quantity. Taylor and Fink and 

Cervero agree that service characteristics are more important than fares, and more 

generally, external factors have a larger impact on transit ridership than internal factors. 

On average, fares have increased since 2002, so transit pricing is not likely to explain the 

rise in ridership levels. Service levels have risen since 2002, so they could potentially 
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explain the increase in ridership and should be accounted for. Presumably, service quality 

has increased as well, but barring any dramatic changes in the transit infrastructure, this 

variable can be assumed to have exerted a constant upward influence on ridership in a 

similar manner as frequent service expansions. 

External factors impact transit demand by altering the perceived relative costs and 

benefits of transit versus vehicle travel. Taylor and Fink (2003) note that geographic 

factors such as the area of urbanization, urban form, topography, and climate all 

contribute to travel mode choice. Demographic factors can have a strong impact on one’s 

predisposition to ride public transit. High percentages of college students, immigrants, 

and Democrats are all found to be positively correlated with transit demand, whereas 

percent living in poverty and percent of households with a vehicle have a negative 

relationship with transit ridership. Economic factors such as income and unemployment 

level also have been found to have a strong effect on public transit ridership (Taylor et al. 

2008, Thompson and Brown, 2006). Increases in average household income lead to 

decreases in transit ridership,4 and controlling for income, unemployment has a negative 

impact on transit demand. This is due to the fact that commutes to and from work 

comprise a significant portion of one’s demand for transportation, so being jobless causes 

people to have a large reduction in overall transportation demand. The geographic, 

demographic, and economic factors discussed above may play a significant role in 

explaining the increase in ridership and must be addressed as well. 

 

 

 
                                                 
4 Having a negative income elasticity of demand makes public transit an inferior good. 
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2.2 Measuring the Effect of Vehicle Operating Costs on Transit Ridership 

Another economic variable that partially determines transit demand is the cost of 

operating a motor vehicle. Highway and bridge tolls have been found to significantly 

impact transit demand, causing a .37% increase in ridership for every 1% increase in tolls 

(McLynn and Goodman, 1973). Also, increases in parking price and decreases in parking 

availability have been found to significantly increase transit demand (Moral and Bolger, 

1996). Finally, gasoline prices theoretically impact transit demand in a similar fashion, 

but estimates of this effect vary widely between studies. Cross-sectional studies, such as 

Taylor and Miller (2008) and Kohn (2000) tend to find that gasoline price has an 

insignificant impact on ridership. Taylor and Fink (2008) explain that this result is caused 

by a lack of sufficient cross-sectional variation in gasoline price.  

 

2.2.1 Time-Series Estimates of Cross-Price Elasticities 

The studies that use time-series or panel data to measure the cross-price elasticity of 

transit ridership with respect to gasoline price are summarized in Table 2.1 below.  

Table 2.1 Results from Previous Studies of the Impact of Gas Prices on Transit Demand 
(from Mattson 2008) 
      

Study Short-Run Long-Run Not Defined Years Notes: 

Agthe and Billings 1978   0.42 1973-1976 
Tucson, AZ 

buses 
Wang and Skinner 1984 0.08-0.80   1970-1980 7 US Cities 

Doi and Allen 1986   0.112 1978-1984 
Philadelphia 

urban rail 
McLoed 1991   insignificant 1958-1986 Honolulu, HI bus 

Voith 1991 1.05 2.69  1978-1986 
Philadelphia 

urban rail 

Currie and Phung 2007   0.04 1998-2005 
US aggregate 

data 
Haire and Machemehl 2007   0.24 1999-2006 5 large US cities 

Mattson 2008   .08 - .50 1999-2007 

11 Midwest 
towns’ bus 

transit 
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One of the first studies is Agthe and Billings (1978), which estimates a cross-price 

elasticity of .42 using Tuscon, AZ bus transit data from 1973 to 1976. Wang and Skinner 

(1984) use time-series data from transit agencies in seven US cities from 1970 to 1980 

and estimate cross-price elasticities ranging from .08 to .80. Doi and Allen (1986) use a 

time-series dataset ranging from 1978 to 1984 to estimate the cross-price elasticity for an 

urban rail rapid transit line in Philadelphia, finding a result of .112. In a study of 

Honolulu bus ridership from 1958 to 1986, McLeod (1991) finds that gasoline prices did 

not have a significant effect, despite his hypothesis to the contrary. Finally, Voith (1991) 

uses a panel dataset of rapid transit ridership figures from 129 stations in Philadelphia 

from 1978 to 1986. He estimates the cross-price elasticity of transit ridership with respect 

to variable automobile operating costs of 1.05 in the short-run and 2.69 in the long-run. 

The last three studies listed are of particular interest for two reasons: first, the purpose 

of all three studies is to specifically model the impact of gasoline price on transit demand 

as opposed to simply including it alongside several other variables and second, they 

analyze recent data, making their estimates more helpful in understanding the role 

gasoline may play in explaining the recent trends in travel behavior. Currie and Phung 

(2007) analyze aggregate US ridership data by mode from the American Public 

Transportation Association (APTA), a trade organization consisting of a majority of US 

public transit agencies. For all modes, they find a total cross-elasticity of .12, and by 

mode they estimate cross-price elasticities of .33 for light rail, .17 for heavy rail, and .04 

for bus. They also interact various world events with this cross-price elasticity to see if 

the effect of gasoline prices on transit ridership has changed over time. They find that 

allowing 9/11, the Iraq War, and Hurricane Katrina to interact with cross-price elasticity 
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increased the model’s R2; the elasticity estimates all increased after 9/11 and decreased 

after the Iraq War and Katrina with only one exception (the elasticity of commuter rail 

demand with respect to gasoline price increased .01 after Iraq). Although an interesting 

finding, the magnitude of these shifts is quite small, often only .01, and they offer no 

explanation regarding the forces behind the shifts. 

Haire and Machemehl (2007) also use data from the APTA to estimate cross-price 

elasticities for five large U.S. cities, Atlanta, Dallas, Los Angeles, San Francisco, and 

Washington DC, from 1999 to 2006. Their results are summarized in Table 2.2. 

 

Table 2.2 Empirical Relationships 
between Fuel Price and Transit Demand 
(From Haire and Machemehl 2007)  
    
Mode City Estimate 
Motorbus Dallas 0.5404 
 Washington, DC 0.3097 
 Los Angeles 0.2229 
Light rail Dallas 0.1058 
 Los Angeles 0.0582 
Heavy Rail Washington, DC 0.4043 
 Los Angeles 0.1053 
 San Francisco 0.2270 
Commuter Rail Dallas 0.4923 
 Los Angeles 0.2131 
 San Francisco 0.3735 
Note: All estimates are significant at the 10% level. 

 

As is evident in Table 2.2, their estimates vary widely from city to city and between 

modes. In addition to the significant results listed in Table 2.2, they found that motorbus 

ridership in Atlanta and San Francisco, heavy rail ridership in Atlanta, and commuter rail 

ridership in Washington, DC were not significantly correlated with fuel prices. On 

average, they find a 1% increase in fuel price leads to a .24% increase in transit ridership, 
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and by transit mode, the cross-elasticities were estimated to be .24 for bus, .07 for light 

rail, and .27 for both heavy and commuter rail. 

Jeremy Mattson (2008) uses APTA data to analyze aggregate bus ridership from 1999 

through 2006. He estimates the cross-price elasticity to be 0.123 for cities with more than 

two million residents, 0.128 for cities with a one-half to two million residents, 0.164 for 

cities with 100,000 to 500,000 residents, and .081 for cities with less than 100,000 

residents. He does not explain why this estimate might vary by population. Next, he uses 

data from the National Transit Database (NTD) to analyze the impact of gasoline prices 

on bus ridership in eleven small cities in the Midwest and Mountain region from 1997 to 

2006. For the individual cities, he finds cross-price elasticities ranging from .08 to .50, 

but when he combines all the cities into a yearly panel dataset, he estimates an average 

gasoline cross-price elasticity of .12.  

While these three papers offer some insight into the effect of gasoline price on transit 

demand, each has a significant limitation. First, in just looking at aggregate data, Currie 

and Phung ignore the wide differences that exist between cities. As travel mode choices 

are highly dependant on a particular location and service offerings, an aggregate study 

does not offer insight into where and why people are riding transit more. In only looking 

at several similar cities, Haire and Machemehl and Mattson both fail to provide much 

context for their results. Haire and Machemehl’s results are only applicable to the five 

cities they study, whereas Mattson’s results have little meaning outside the small towns in 

the Midwest that he studies. In addition to including the most recent data available, my 

study will incorporate data from 218 cities nationwide. This will ensure that my estimated 

cross-price elasticities by mode have accounted for the city-specific factors that largely 
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determine the estimates and my result will also allow any single city’s elasticity to be 

compared to similar cities across the nation. The literature utilizes many different 

specifications and explanatory variables. The next section addresses these differences and 

develops a model to estimate the impact of gasoline price in many US cities. 
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3. Developing a Model  

3.1 Models Used in the Literature 

Applying consumer theory to public transportation, Berechman (1993) prescribes a 

generalized demand function D = D (P, T, Y, Q, I, V, Z) where D is transit demand in 

trips, P is fare, T is a vector of travel times, Y is a vector of service provision, Q is a 

vector of service qualities, I is a vector of population characteristics, V is a vector of 

substitute prices, and Z is a vector of urban characteristics. All of the previously cited 

time-series studies build off this framework, but as shown in Table 3.1 below, each uses a 

unique combination of functional form and explanatory variables. 

Table 3.1 Models from Previous Studies of the Impact of Gas Prices on Transit Demand 
      

Study Specification Dynamic? Observations 
Explanatory 

Variables 
Dummy 

Variables 
Agthe and Billings 

1978 log-log no monthly supply 
Energy crisis, 

summer 
Wang and Skinner 

1984 
linear &  
log-log no monthly fare, supply # working days 

Doi and Allen 
1986 

linear &  
log-log no monthly fare, bridge toll 

summer, 
October,  

Voith 1997 linear 
Geometric 

lags yearly 
supply, fare, local 

pop.  Station FE’s,  
Dargay and Hanly 

2001 
 

log-log 
 

Partial 
adjustment 

 
yearly 

 

income, supply, 
motoring costs 

 

Allow cross-
elasticity to 

vary by county 
 

3.2 Empirical Considerations 

There are two important econometric considerations that can complicate a study of 

public transit ridership: the lagged impact of determinants, as reflected in the difference 

between short-run and long-run elasticities, and simultaneity between supply and 

demand. Regarding the lagged effect of changes in explanatory variables, Goodwin 

(1992) notes that it is known that it takes time for demand to respond to changes in 

gasoline prices, therefore a demand model must include lagged gasoline prices or it will 
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suffer a specification bias. Chen (1997) presents several methods of lagging explanatory 

variables with the aim of reducing multicollinearity. While it is true that multicollinearity 

makes it difficult to determine the effect of a particular lag, when added, the lags will 

sum to the total effect of a permanent change in gasoline price. 

Simultaneity arises when supply is incorporated as an explanatory variable. As supply 

is a function of past demand, which is correlated with current demand, including supply 

can bias a model’s estimates. The size of the simultaneity effect is not certain, but the 

direction is known to bias supply upwards and other explanatory variables downward. 

Wang and Skinner (1984) argue that using monthly data alleviates much of the 

simultaneity bias, as transit supply is determined on a yearly basis. A panel data study of 

a Philadelphia transit agency by Voith (1991) instruments for transit supply using 

information about the transit authority’s subsidies, costs, and lagged deficits to perform a 

2SLS estimation. The 2SLS model produces significantly different results than his OLS 

estimation but the difference is small. However, a similar procedure is very difficult for 

studies of multiple cities where similar operating data is not available. As there are no 

reliable instruments that could be used for cities across the nation, I am forced to use 

monthly data and will have to simply address the fact that my results are likely to be 

slightly biased. 

 

3.3 Specification 

To allow the coefficients to represent elasticities and for ease of comparison with the 

literature, I will estimate a log-log demand specification for each mode of transit. In 

addition to including transit ridership as the dependent variable and gasoline price as the 
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explanatory variable, several factors need to be accounted for. First, despite the 

aforementioned possibility of simultaneity bias, a measure of transit supply is included to 

account for the general trend towards increased transit supply, as well as account for any 

service shocks that result from occurrences such as strikes or the construction of a new 

transit lines. Also, including transit supply controls for the number of working days in a 

given month, as both supply and ridership are higher on working days than on weekends. 

Second, ridership level and gasoline prices both increase every year over the range of 

observations. Including yearly fixed effects (Yij) will account for unobserved 

determinants of transit demand that vary year over year, such as fare level, service 

quality, and economic and demographic factors. Finally, as seen in Figures 3.1 and 3.2, 

both gasoline and transit ridership exhibit strong seasonality. To address this, monthly 

fixed effects (Mik) will be included in the model. Since yearly unobservable factors and 

seasonality vary dramatically between cities, it would be naïve to apply similar monthly 

fixed effects to ridership demand equations for very different cities, for instance Chicago 

and Miami. The specification will therefore include different yearly and monthly fixed 

effects for each city. Including the previously mentioned variables, the resulting 

specification is: 

 

lnRit = α0 + α1lnSit + α2lnPit + ΣβijYj + ΣβikMk + εit    (I) 

 

where R is ridership, S is transit supply, P is average regional gasoline price, Y are 

yearly fixed effects, M are monthly fixed effects, and ε is a mean-zero error term. The 

subscripts i, t, j, and, k indicate the city, observation period, year, and month, 
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respectively. The next specification is identical to Equation (I) but includes six months of 

lagged gasoline prices. While “short-run” effects are generally considered to last up to a 

full year after a price change, the purpose of these lags is to gauge whether they 

significantly add explanatory power to the model or if they produce drastically different 

results than the previous specification.  

 

lnRit = α0 + α1lnSit + α2lnPit + α3lnPit-1 + … + α8lnPit-6 + ΣβijYj + ΣβikMk +  εit (II)  

 

Next, to assess how the impact of gasoline prices on transit ridership differs between 

cities, Equation (I) will be estimated separately for commuter, heavy, and light rail modes 

in every city with rail transit. For motorbus, instead of estimating each city individually, 

the 218 cities will be divided into four groups based on 2007 metropolitan population as 

reported by the US Census Bureau. These four population groups are: greater than 2 

million people, between .5 and 2 million people, between 100,000 and 500,000 people, 

and less than 100,000 people. The following specification will be estimated for each of 

these four population categories which allow monthly and yearly fixed effects to vary by 

city, like equations I and II, but only estimates one cross-price elasticity for each 

population group (p). 

 

 lnRit = α0p + α1plnPit + α2plnSit + ΣβijYj + ΣβikMk +εit    (III) 
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Finally, I will allow gasoline price to interact with the yearly dummy variables to 

measure how the effect of gasoline prices on transit ridership changes over time. Again, 

different coefficients on the monthly dummy variables will be estimated for each region. 

 

  lnRit = α0 + Σα1jYj*lnPit + α2lnSit + ΣβijYj + ΣβikMk +εit    (IV)  

 

3.4 Predicted Results 

In all specifications, the coefficients on transit supply and gasoline price are expected 

to have positive values. In general, the coefficient on transit supply is expected to be 

greater than the coefficient on gasoline price. The coefficient on gasoline price is likely to 

vary between modes and cities but should stay between 0 and 1, as transit demand is 

generally inelastic. I hypothesize that the coefficient on gasoline price will increase over 

time, as higher gasoline prices and related media attention cause people to become more 

aware of their gasoline expenditures. As commuter rail and light rail serve a greater 

percentage of discretionary riders5, I would expect these modes to show the greatest 

increase in cross-price elasticity as gasoline price rises. 

 

 

 

 

 

 

                                                 
5 Discretionary riders refer to mass transit patrons who possess a private vehicle. Dependent riders are 
individuals without a private vehicle that rely on mass transit for transportation. 
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4. Panel Data Analysis 

4.1 Data 

The transit ridership and supply data are taken from the National Transit Database 

(NTD). The federal government requires all transit agencies receiving funding from the 

Federal Transit Administration to submit ridership and supply data to the NTD. This 

study uses monthly NTD data from January 2002 through August 2008, 80 periods in 

total. After removing data containing multiple discontinuous sections, the panel dataset 

includes 218 metropolitan areas, of which all 218 have motorbus transit, 13 have 

commuter rail, 11 have heavy rail, and 17 have light rail. The ridership data is measured 

in unlinked passenger trips (UPT), which are the number of “legs” of journeys taken in a 

given month. There are two concerns with UPT. First, technological advances have made 

them easier to accurately measure, and second, they overcount multi-trip journeys. If 

increases in technology allow better measurement of UPT, the data could reflect an 

increase in measurement rather without a true underlying increase in ridership. However, 

by 2002, advanced measurement technology was already widely used, so this is not a 

serious concern. Similarly, a trend in transit pricing towards a flat fee is likely to have 

encouraged multiple leg journeys, meaning the inherent overcounting associated with 

UPT could lead to artificially inflated growth in ridership (FitzRoy and Smith, 1999). 

Polzin and Chu (2006) note that UPT is the only measure of transit demand available, and 

suggest that its drawbacks should not overshadow the fact that it proxies for true demand 

very well. The transit supply data is reported in vehicle revenue miles (VRM), which are 

the total number of miles all transit vehicles cover while in service over a given period. 
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Table 4.1 below provides a breakdown of the ridership data by mode and table 4.2 

contains the average distribution of ridership in cities with multiple modes of transit. 

The gasoline price data is provided by the US Energy Information Administration 

(EIA). The figures are average prices for all grades of gasoline sold in each of seven 

regions nationwide and are reported in nominal dollars. I convert these prices to real 2000 

US dollars using GDP implicit price deflators. 

Figures 4.1 and 4.2 show how the twelve-month moving averages of vehicle miles 

traveled and public ridership have varied alongside the twelve month average of real 

gasoline prices since 2002. The VMT are measured in billions of miles driven and in 

2007, the 12-month moving average VMT declined for the first time since the Federal 

Highway Administration began recording the figure in 1946. The ridership figures are 

measured in thousands of Unlinked Passenger Trips. The gasoline prices have been 

adjusted for inflation and are reported in 2000 USD. Figure 4.3 shows the each month’s 

average gasoline price relative to the yearly average, and Figure 4.4 shows each month’s 

average total transit ridership level relative to the yearly average. 

 

Table 4.1 Ridership by mode % ridership # cities 
Commuter Rail 4.88% 13 
Heavy Rail 36.47% 11 
Light Rail 4.06% 17 
Motorbus 54.58% 218 
 

Table 4.2 Ridership in cities w/ rail # cities % Bus % CR % HR % LR 
Bus & Commuter Rail 1 97.8 2.2     
Bus & Heavy Rail 1 49.4  50.6  
Bus & Light Rail 8 80.7   19.3 
Bus, Commuter, & Heavy Rail 4 69.9 3.4 26.7  
Bus, Heavy & Light Rail 1 99.8  0.1 0.1 
Bus, Commuter, & Light Rail 2 68.5 1.3  30.2 
Bus, Commuter, Heavy & Light Rail 6 54.8 5.9 25.8 13.5 
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Figure 4.1 Avg. Vehicle Miles Traveled and Avg. Gas Price, 2002 to 2008 

 

0

1

2

3

4

2002 2003 2004 2005 2006 2007 2008
7200000

7400000

7600000

7800000

8000000

8200000

8400000

8600000

8800000

9000000

9200000

Gas Price Ridership
 

Figure 4.2 Avg. Aggregate Transit Ridership and Avg. Gas Price, 2002 to 2008 
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Figure 4.3 Monthly US gasoline prices relative to 12 month moving average 
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Figure 4.4 Monthly total US transit ridership relative to 12 month moving average 
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4.2 Results  

Table 4.3 Results of Equations I and II, all modes   

 I II  
Commuter Rail coefficient t-value coefficient t-value 

supply 0.290 13.83** 0.272 12.20 
gas price 0.087 3.51** 0.019 0.47 

(gas price)n-1   0.129 2.23** 
(gas price)n-2   -0.037 -0.56 
(gas price)n-3   0.066 0.99 
(gas price)n-4   -0.070 -1.04 
(gas price)n-5   0.103 1.77* 
(gas price)n-6   -0.004 -0.10 
∑ (gas price)   0.206  

intercept 9.124 31.68** 8.784 20.17** 
R2 0.937  0.937  

Heavy Rail coeff. t-value coeff. t-value 
supply 0.175 8.61** 0.687 20.18** 

gas price -0.012 -0.33 -0.017 -0.35 
(gas price)n-1   0.082 1.17 
(gas price)n-2   -0.143 -1.81* 
(gas price)n-3   0.082 1.04 
(gas price)n-4   0.027 0.34 
(gas price)n-5   0.004 0.06 
(gas price)n-6   -0.014 -0.29 
∑ (gas price)   0.022  

intercept 13.119 38.86** 5.589 9.14** 
R2 0.781  0.859  

Light Rail coeff. t-value coeff. t-value 
supply 0.592 19.14** 0.581 16.99** 

gas price 0.100 2.82** 0.133 2.32** 
(gas price)n-1   0.020 0.23 
(gas price)n-2   0.004 0.04 
(gas price)n-3   0.083 0.87 
(gas price)n-4   0.051 0.53 
(gas price)n-5   0.095 1.14 
(gas price)n-6   0.017 0.29 
∑ (gas price)   0.403  

intercept 6.055 14.26** 4.733 7.27** 
R2 0.883  0.885  
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Table 4.3, cont. Results of Equations I and II, all modes 
Motorbus coefficient t-value coefficient t-value 

supply 0.410 32.61** 0.413 32.01** 
gas price 0.063 1.450 0.007 0.11 

(gas price)n-1   0.118 1.20 
(gas price)n-2   -0.061 -0.55 
(gas price)n-3   -0.008 -0.07 
(gas price)n-4   0.027 0.24 
(gas price)n-5   0.044 0.45 
(gas price)n-6   -0.004 -0.05 
∑ (gas price)   0.124  

intercept 7.003 27.13** 6.657 12.04 
R2 0.167  0.165  

Notes:         
     

 

Regressing Equation (I) produces cross-price elasticity values with respect to gasoline 

price of 0.087 for commuter rail, -0.012 for heavy rail, 0.100 for light rail, and 0.063 for 

motorbus, but only for commuter rail and light rail are these values significant at the 10% 

level. These estimates are lower than those reported in the literature and indicate that 

gasoline price and ridership are not very strongly correlated over the entire range of 

observations for heavy rail and motorbus. In each regression, the supply variable was 

significant at the 1% level, and the yearly and monthly fixed effects were both jointly 

significant in each model. Equation (II) included six months of lagged gasoline prices. 

Regressing this specification was meant to help determine if transit demand is quickly 

adjusting to changes in gasoline price or if there is a significant delayed effect. The high 

degree of collinearity between the lagged gasoline prices makes interpreting any specific 

coefficient impossible and decreases each of their standard errors. When their coefficients 

are summed, however, they still represent the impact that a change in gasoline price has 

on transit demand for the first six months. By mode, the sum of these coefficients is 

0.206 for commuter rail, 0.022 for heavy rail, 0.403 for light rail, and 0.124 for motorbus. 
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These values fall much closer to those found in the literature, but the impact of gasoline 

prices on heavy rail is lower than expected and the effect on light rail is towards the 

upper range of reported cross-price elasticities. Looking closer, including the lagged 

gasoline prices only significantly increased the R2 for heavy rail and actually decreased 

the R2 of motorbus. This suggests that they did not add explanatory power to the model 

and thus the cross-price elasticity estimates produced by adding their coefficients are not 

very meaningful. 

Table 4.4 Cross-Price Elasticity Estimates by City, Commuter Rail 

metro area gas price ε t-value R2 2007 population 

New York 0.024 0.79 0.941 18,815,988 

Los Angeles 0.126 2.29** 0.956 12,875,587 

Chicago 0.036 0.74 0.867 7,952,540 

Philadelphia 0.131 3.01** 0.977 6,145,037 

Miami 0.021 0.13 0.801 5,827,962 

Dallas - Fort Worth 0.213 2.25** 0.812 5,413,212 

Boston' -0.012 -0.310 0.876 5,306,565 

Washington, DC -0.077 -1.31 0.911 4,482,857 

San Francisco 0.098 1.31 0.956 4,203,898 

Seattle 0.088 0.77 0.989 2,974,859 

San Diego 0.204 2.00** 0.904 2,668,056 

Baltimore -0.009 -0.13 0.908 2,536,182 

Hartford 0.110 1.12 0.894 1,189,113 

Notes: VRM, monthly fixed effects, and yearly fixed effects were   

included in each specification. n = 10 cities. *, ** = 10%, 5% significance. 
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Table 4.5 Cross-Price Elasticity Estimates by City, Heavy Rail 

metro area gas price ε t-value R2 2007 population 

New York -0.008 -0.200 0.934 18,815,988 

Los Angeles 0.011 0.060 0.897 12,875,587 

Chicago 0.091 2.08** 0.923 7,952,540 

Philadelphia -0.025 -0.440 0.924 5,827,962 

Miami -0.126 -1.560 0.853 5,413,212 

Washington, DC 0.016 0.350 0.943 5,306,565 

Atlanta -0.092 -1.160 0.840 5,278,904 

Boston' 0.137 2.01** 0.860 4,482,857 

San Francisco 0.099 1.97* 0.934 4,203,898 

Baltimore 0.003 0.080 0.891 2,668,056 

Cleveland -0.377 -2.23** 0.852 2,096,471 
Notes: VRM, monthly fixed effects, and yearly fixed effects were   
included in each specification. n = 10 cities. *, ** = 10%, 5% significance. 
 
Table 4.6 Cross-Price Elasticity Estimates by City, Light Rail 

metro area gas price ε t-value R2 2007 population 

New York -0.056 -0.83 0.992 18,815,988 

Los Angeles 0.071 0.45 0.907 12,875,587 

Dallas - Fort Worth 0.114 1.61 0.907 6,145,037 

Philadelphia -0.071 -0.77 0.966 5,827,962 

Boston 0.116 1.24 0.825 4,482,857 

San Francisco 0.152 1.29 0.636 4,203,898 

San Diego -0.081 -0.61 0.931 2,974,859 

St. Louis 0.062 0.32 0.898 2,803,707 

Baltimore 0.054 0.38 0.839 2,668,056 

Denver 0.507 3.16** 0.940 2,464,866 

Pittsburgh 0.047 0.50 0.651 2,355,712 

Portland, OR 0.212 2.84** 0.939 2,175,113 

Cleveland -0.103 -0.42 0.648 2,096,471 

Sacramento 0.099 0.73 0.915 2,091,120 

San Jose 0.229 1.93* 0.957 1,803,643 

Buffalo 0.138 0.87 0.490 1,128,183 

Salt Lake City 0.211 1.03 0.749 1,099,973 
Notes: VRM, monthly fixed effects, and yearly fixed effects were   
included in each specification. n = 10 cities. *, ** = 10%, 5% significance. 
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The results of estimating Equation (I) for individual cities for the three rail modes are 

presented in Tables 4.3 through 4.6. For commuter rail, VRM and monthly fixed effects 

were jointly significant for each city. Yearly fixed effects were jointly significant for each 

city except Boston, but were included in each city’s specification as they increased the 

regression’s R2. Four of thirteen cities displayed a positive, significant coefficient on gas 

price which had an average coefficient on gas price of 0.168. For heavy rail, four of 

eleven cities had a significant coefficient on gasoline price. Chicago, Boston, and San 

Francisco displayed positive cross-price elasticities in the range of 0.091 to 0.137, but 

Cleveland’s cross-price elasticity of demand was estimated as -0.377. This highly 

significant, large negative coefficient in counterintuitive and suggests that something 

unusual occurred with Cleveland’s transit system from 2002 to 2008. For light rail, three 

of seventeen cities had significant coefficients on gasoline price. The largest was Denver, 

which had a cross-price elasticity of 0.507. In each of these tables, each city’s 2007 

metropolitan population is reported. This was intended to be used to determine if the size 

or significance of the coefficients on gas price was correlated with population. However, 

so few cities had significant findings that such an exercise would not produce a 

meaningful result. 

Table 4.7 Cross-Price Elasticity Estimates by 
Population, motorbus  

metro population 
 

coefficient t-value R2 n 
>2 mil. 0.092 3.14* 0.581 19 

500k - 2 mil 0.082 2.85* 0.319 48 
100k - 500k 0.053 1.03 0.307 100 

< 100k 0.047 0.32 0.233 51 
* = 5% significance.     
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Table 4.7 reports the estimated cross-price elasticities of bus transit for four groups of 

cities, categorized by metropolitan population. Cities with more than 2 million people and 

between .5 million and 2 million people had significant cross-price elasticity estimates of 

.092 and .082, respectively. The two smaller categories did not have significant cross-

price elasticities.  

Table 4.8 Results of Equation (IV)       
         Commuter Rail       Heavy Rail          Light Rail        Motorbus 

  coeff. t-value  coeff. t-value   coeff.   t-value   coeff.  t-value 
2002*gasprice 0.003 0.05 -0.153 -1.88* 0.115 1.48 -0.042 0.003 
2003*gasprice -0.042 -0.53 0.143 1.11 -0.029 -0.26 0.051 -0.042 
2004*gasprice -0.031 -0.50 -0.044 -0.46 0.108 1.21 -0.020 -0.031 
2005*gasprice 0.070 1.89* 0.013 0.23 0.121 2.28** 0.089 0.070 
2006*gasprice 0.102 2.51** -0.073 -1.2 0.011 0.19 0.023 0.102 
2007*gasprice 0.083 1.75* -0.003 -0.04 0.159 2.42** 0.048 0.083 
2008*gasprice 0.316 6.15** 0.084 1.07 0.284 3.84** 0.221 0.316 
R2 0.9395  0.7842  0.8846  0.1674  
 

Table 4.8 contains the yearly estimates of cross-price elasticity for each mode from 

2002 to 2008. For commuter rail, light rail, and motorbus, the cross-price elasticity 

estimates increase in both magnitude and significance over time. Figures 4.5 through 4.8 

show these estimates over time, including 90% confidence bands to indicate which 

estimates were significantly different from zero. For commuter rail and light rail, this 

change is particularly striking. All the previous regression results had found that from 

2002 to 2008, gasoline prices were not consistently a significant determinant of transit 

demand. These results help explain that finding. It appears that for the first few years of 

the period of observation, when gas prices were quite low, there was not a strong 

relationship between gasoline prices and transit demand. It was only later, in 2007 and 

2008, that the effect of gasoline prices became significant and increasingly large. 
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Figure 3.1 Cross-price elasticity estimates for Commuter Rail, 2002- 2008 
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Figure 3.2 Cross-price elasticity estimates for Heavy Rail, 2002- 2008 
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Figure 3.3 Cross-price elasticity estimates for Light Rail, 2002- 2008 
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Figure 3.4 Cross-price elasticity estimates for Motorbus, 2002- 2008 
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5. Conclusion 

In agreement with the previous literature, this research finds that the impact of 

gasoline prices on public transportation demand varies widely from city to city and 

between modes. On the whole, gasoline prices did not significantly determine transit 

demand from 2002 to 2008. However, when the cross-price elasticity is broken down into 

separate yearly estimates, one finds that for commuter rail, light rail, and motorbus, the 

impact of gasoline price on transit demand became more significant and substantial as 

gasoline prices increased. Thus, while gasoline prices may not be the main cause of the 

trend towards increased ridership since 2002, they certainly played a large role in the 

recent acceleration in transit ridership growth, as a change in gasoline price was found to 

have the largest impact on transit ridership during the same period that gas prices were 

increasing the most. 

The finding that gasoline prices have an increasing impact on travel behavior as they 

reach higher levels has an important impact on transit operation and public policy 

decisions. Transit operators should tailor their demand forecasts depending on the current 

levels of gasoline price, and during periods of high prices, they should take measures to 

provide a more elastic supply of transit, as any additional increase in gasoline prices will 

likely elicit a large increase in ridership. Also, as gasoline prices are expected to trend 

upwards in the long-term, they should favor capital investments in commuter and light 

rail over motorbus and heavy rail, when possible. For policy makers, the knowledge that 

as gasoline prices increase, vehicle owners are more affected by price changes informs 

taxation policies. When gasoline prices are high, fuel taxes and congestion tolls are more 

likely to have an impact in curbing vehicle travel. 
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While these results suggest that transit demand became increasingly sensitive to 

gasoline prices from 2002 to 2008, this finding is subject to several assumptions. First, 

this research does not address the substitution effects between modes in a given city. It 

could be the case that much of the reported variation in transit mode demand is the 

product of people switching from one mode to the next, and thus the marginal impact of 

former vehicle travelers is masked. Second, the elasticity estimates presented in this 

paper do not address the potential simultaneity bias caused by including supply as an 

explanatory variable. Transit supply has a very significant, positive coefficient in every 

specification. Potentially, changes in the ability of transit operators to successfully predict 

transit demand could cause the coefficient on gasoline price to change. For instance, if 

operators accurately predicted transit demand in 2002 but were inaccurate in 2008, there 

would be more variation in ridership to be explained by gasoline prices in 2008 and the 

estimated cross-price elasticity would be larger, even if the actual impact of fuel prices on 

consumer behavior was constant. Finally, the estimates of cross-price elasticity by year 

did not allow gasoline price to have a lagged impact on ridership. While this is expected 

to bias the coefficients on gasoline price downwards, it could be the case that this bias is 

not uniform. As gasoline prices rose to unprecedented levels, it could be the case that 

people simply reacted more quickly. 

The relationship between gasoline prices and transit demand is likely to become an 

increasingly important issue as oil supply drops and global warming and congestion 

become more severe. There are several extensions to this research that are necessary to 

better understand how individuals react to gasoline prices. First, as gasoline prices 

retreated during the second half of 2008, transit ridership levels continued to rise. While 
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this would indicate a weak or even negative relationship between gasoline prices and 

transit demand, detailed research, especially at the household level, might explain who is 

riding public transportation and what is motivating them. It is likely that the combined 

pressure of a struggling economy and high gasoline prices caused people to try using 

transit and in doing so overcome the initial cost of learning how to use it. Another 

important line of research will be to research the long-term impacts of sustained high 

gasoline prices. In the short-run, higher gasoline prices force people to adjust their travel 

behavior given their current situation, but in the long-term they can change things such as 

their location of residence and employment and motor vehicle stock and businesses can 

take measures to facilitate efficient gasoline use. It will be interesting to see where people 

put their energy in responding to increased gasoline prices and what the effect will be on 

vehicle demand, suburbanization, urban renewal, and both transit and highway 

infrastructure development. 
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