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Abstract 

This paper utilizes the high-frequency stock price data and the corresponding daily option price 

data of several highly capitalized corporations in order to investigate the impact that asset price 

jumps of individual equities have on the equities’ respective variance risk premia.  The findings 

of this paper describe many characteristics of the variance risk premia of individual equities, 

supporting some expectations of the characteristics, and refuting others.  In the process of 

investigating these characteristics, this paper proposes a simple estimator for the market price of 

the variance risk of an individual equity. 
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1 Introduction 

 All investments inherently involve risk; not even the safest of government bonds are 

completely risk-free.  For that reason, one of the most important aspects of investing is managing 

risk.  The most basic form of risk in the financial markets is an asset’s volatility – a measure of 

the variability of the asset’s returns.  Investors, especially large institutional investors, determine 

both the components of their portfolio and the relative weights with which the components are 

represented based in large part on the volatility of the various investments available to them.  

Thus, it stands to reason that if the volatility of any of the assets in an investor’s portfolio 

increased, then the asset would be riskier than it had previously been, and the investor would be 

less willing to hold said asset. 

 It has been known for some time that an asset’s volatility changes over time [e.g. Fama 

(1965), Engle (1982), and French, Schwert, and Stambaugh (1987)].  This poses a risk for 

investors, therefore, that the volatility of an asset will increase, thereby making the asset less 

valuable.  The intuition behind this is straightforward and is corroborated by evidence 

demonstrating the existence of the leverage effect, as discussed by Nelson	  (1991)	  and	  Ghysels,	  

Harvey,	  and	  Renault	  (1996),	  whereby	  an	  asset’s	  price	  movements	  are	  negatively	  correlated	  

with	  said	  asset’s	  volatility.	   	  The	  risk	  that	  volatility	  will	   increase	  is	  therefore	  known	  as	  the	  

variance	  risk.	  	  As	  with	  any	  other	  risk,	  investors	  expect	  to	  be	  compensated	  in	  exchange	  for	  

holding	  onto	  the	  risk.	  	  The	  compensation an investor receives for holding the volatility of the 

asset’s return variance	  is	  called	  the	  variance	  risk	  premium. 

 Throughout the past several years, variance risk premia have become a highly researched 

subject in financial economics.  Neurberger (1994) and Dupire (1992; 1993) are credited with 

initiating this research, as they both independently created techniques to study the traits of 
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variance risk premia by using various option portfolios.  Option payouts, they realized, were 

highly dependent on the volatility of their underlying assets, and option prices incorporated the 

market’s expectation of the assets’ ex-ante volatilities.  Shortly afterwards, Carr and Madan 

(1998) created a formula to estimate the size of variance risk premia by creating a portfolio of 

options representing a cross-section of one asset’s options, all with the same maturity.  Since 

Neurberger and Dupire’s work, several people have looked into how variance risk interacts with 

other factors [e.g. Bates (1996), Pan (2002), and Eraker (2004)].  Bakshi and Kapadia (2004b), 

as well as Carr and Wu (2009), have investigated the relationship between the variance risk 

premia of individual equities and that of the market. 

 The availability of high-frequency data has made it possible to investigate how variance 

risk premia respond to intraday changes of an asset’s volatility. Todorov (2009), for example, 

researched the effect that price jumps have on the market’s variance risk premium.  This paper 

aims to add to the current understanding of the dynamics of variance risk premia, extending that 

research to estimating the effect asset price jumps have on the variance risk premia of various 

individual equities rather than the market as a whole. Specifically, this paper seeks to measure 

how the presence, direction, and magnitude of intraday jumps impact the payout of variance 

swaps. 

 The outline of the remainder of this paper is a follows.  Section 2 begins with a 

discussion about the role variance plays in the theoretical framework of an asset’s efficient 

logarithmic price process.  From there, the paper develops a methodology to measure the 

variance of an asset – first by conceptualizing a theoretical framework to describe the amount of 

volatility exhibited throughout a day, then by introducing a proxy for volatility that is 

demonstrated to be a good estimator for volatility.  Section 3 examines variance risk premia.  
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Initially, the section explains what exactly variance swaps are and how they work.  Next, there is 

a discussion about the fair value of a variance swap and about various methodologies to estimate 

the fair value through option prices.  These methodologies, however, prove to be infeasible to 

use in the estimation of the fair value of the variance swap for individual equities.  Thus, this 

paper proposes a more computationally simple estimator.  When run on the same data, the simple 

estimator seems to work nearly as well as the more computationally intensive estimators.  Lastly, 

the section briefly explains the various expressions of the variance risk premium and their 

respective interpretations.  Section 4 discusses asset price jumps.  The section begins by 

expanding upon the model (introduced in Section 2) that describes an asset’s price-path so as to 

allow for the existence of jumps – large price discontinuities – in the model.  This paper then re-

examines the consistency of the measure of variance from Section 2, given the inclusion of 

jumps in the price-path, and introduces a more jump robust measure of variance.  Section 4 goes 

on to describe the common strategies that are used in attempts to locate asset price jumps.  Then, 

the paper proceeds to create its own litmus test to determine which price movements could best 

be described as jumps.  Continuing on, the section discusses the methods that are used to 

describe and quantify each jump’s respective direction and magnitude.  Next, Section 5 provides 

an overview of the data and methodology that is used in this paper’s research.  The results of the 

research are discussed in detail in Section 6.  Finally, Section 7 provides both some concluding 

remarks and suggestions for future research. 

2 Measures of Variance 

 In financial economics, volatility is a measure of variability of an asset’s returns, and is 

defined as the standard deviation of the asset’s logarithmic price returns.  The volatility of an 
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asset relates directly to the path of that asset’s price through time. In a standard continuous time 

model, an asset’s price movements are described by the differential equation 

𝑑𝑝 𝑡 =   𝜇 ∙ 𝑑𝑡 + 𝜎 ∙ 𝑑𝑊 𝑡 , 

where 𝑝 𝑡  is the logarithmic asset price, 𝜇 is the drift component of the asset price, 𝜎 is the 

volatility of the price returns, and 𝑑𝑊 𝑡  is standard Brownian motion.  Fama (1965) observed 

that stock prices follow what is commonly referred to as a random walk.  If we think of an 

asset’s price return as a random variable, 𝜇 would be the variable’s expected value and 𝜎! its 

variance.  The Brownian motion component of the differential equation serves to provide 

randomness to the model.  This random component is scaled by the asset’s volatility 𝜎. 

 It is important to note that this model considers volatility to remain constant.  Research 

has shown, however, that an asset’s volatility is not constant, and that models with time-varying 

instantaneous volatility components are more accurate than static volatility models.  The 

differential equation describing an asset’s logarithmic price movement, as presented by Merton 

(1971), becomes 

𝑑𝑝 𝑡 =   𝜇 ∙ 𝑑𝑡 + 𝜎 𝑡 ∙ 𝑑𝑊 𝑡 . 

 An asset’s price movements, however, do not always follow a continuous path.  Research 

has shown that continuous-path models are inferior to models that incorporate asset price 

discontinuities, known as jumps.  The differential equation can therefore be further improved by 

including an additional component to account for these jumps.  The implications of including 

jumps in the model of an asset’s price path will be examined during the discussion of jumps in 

Section 4.  Furthermore, trading frictions – such as bid-ask bounce, asynchronous trading, and 

congestions in market making – make it impossible to observe instantaneous price movements.  

Essentially, since we are only able to observe an asset’s price at the discrete moments in time at 
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which the asset is traded, we must assume that these points would all lie on or near the 

continuous-time path of our models.  We are therefore unable to observe the instantaneous 

volatility of an asset. 

 It is, however, theoretically possible to approximate an asset’s volatility over a discrete 

period of time, such as a day, by finding the average of the asset’s volatility over that time.  This 

theoretical average is known as the integrated variance (𝐼𝑉), and it is defined by Anderson and 

Bollerslev (1998) to be 

𝐼𝑉! = 𝜎! 𝑡 + 𝜏 ∙ 𝑑𝜏
!

!!!
. 

It is still infeasible to calculate 𝐼𝑉! without the ability to observe a continuous price path.  How, 

then, is volatility measured? 

 By using high-frequency data, it is possible to observe discrete price movements using 

arbitrarily small, fixed increments of time.  The interval of time between observations, otherwise 

known as the sampling interval (∆), is inversely proportional to the number of intervals each day, 

known as the sampling frequency (𝑀).  Under this framework 𝑝!,!,𝑝!,!,… ,𝑝!,!!!  is the set of 

𝑀 + 1 price observations on day 𝑡, and 𝑟!,!, 𝑟!,!,… , 𝑟!,!  is the set of 𝑀 logarithmic price returns 

on day 𝑡, such that 

𝑟!,! = ln 𝑝!,!!! − ln 𝑝!,! . 

Andersen and Bollerslev (1998) suggest measuring volatility by using the cumulative squared 

intraday returns.  This proxy is known as the realized variance (𝑅𝑉) and is defined as 

𝑅𝑉! 𝑀 = 𝑟!!! !
!

!

!!!

. 



10 

 In their paper, Andersen and Bollerslev show that, assuming there are no jumps in the 

price process, by the theory of quadratic variation as discussed by Karatzas and Shreve (1988), 

plim
!→!

𝜎! 𝑡 + 𝜏 ∙ 𝑑𝜏
!

!!!
− 𝑟!!! !

!
!

!!!

= 0. 

By substituting the definitions of integrated variance and realized variance into the above limit 

and rearranging the components, we are therefore able to show that, as the sampling frequency 

(𝑀) approaches infinity and the length of each interval (∆) approaches zero, the realized variance 

(𝑅𝑉) asymptotically approaches the integrated variance (𝐼𝑉).   

3 Variance Risk Premium 

3.1 Variance Swaps 

 Investors are generally thought to be risk averse.  The basic concept of risk aversion is that 

when deciding between two independent investments, ceteris paribus, the risk-averse investor 

will prefer the investment that is less risky.  This is not to say, however, that a risk-averse 

investor will only hold one investment in his portfolio.  There is a vast selection of potential 

investments from which he can choose, each with its own level of riskiness and expected rate of 

return.  The investor chooses several different investments, such that he is holding his desired 

level of risk in his portfolio.  Generally, the riskiness of an asset is considered to be the volatility 

of its returns. 

 All else equal, investors prefer assets with less volatility.  Volatility can, as previously 

discussed, change over time.  If an asset’s volatility increases, it becomes less desirable to 

investors.  This means that investors are at risk of the volatility of an asset in their portfolios 

increasing.  Investors seeking to reduce their exposure to any such increases in volatility want a 
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product that has a positive payout if the asset’s volatility increases and a negative payout if that 

volatility decreases.  Demand for such a product drove the creation of variance swaps. 

 A variance swap1 is a type of financial instrument that enables investors to exchange cash 

flows based on a variable rate, the realized variance, for cash flows based on a fixed rate, the 

swap rate.  The contracts are structured so that the buyer is paid the difference between the 

realized variance (RV) of some underlying product over a period of time (usually 30 days) and 

the contract’s agreed upon fixed swap rate (SW), such that 

Payout = 𝑁× 𝑅𝑉 − 𝑆𝑊 , 

where 𝑁 is the notional amount of the contract, and 𝑅𝑉 − 𝑆𝑊  is the payout of a contract with a 

notional amount of $1. 

 For example, let us assume that firm A buys a variance swap from firm B with a swap 

rate of 18% and a notional amount of $100,000.  If, after 30 days, the realized variance is 

calculated to be 23%, then firm A’s payout would be 

Payout = $100,000×(0.23− 0.18)
= $5,000 , 

meaning that firm B would pay firm A $5,000.  If, on the other hand, the realized variance is 

calculated to be 15%, then firm A’s payout would be 

Payout = $100,000  ×  (0.15− 0.18)
= −$3,000 . 

The negative payout for firm A indicates that firm A would actually pay firm B $3,000.  

Variance swaps can therefore be used to effectively hedge out the risk of the asset’s volatility 

changing. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  For	  a	  detailed	  explanation	  of	  swaps,	  see	  Appendix	  D.	  
2	  Risk	  adjusted	  probabilities	  slightly	  skew	  the	  probabilities	  of	  each	  outcome	  so	  that,	  for	  the	  
purposes	  of	  the	  calculation,	  bad	  outcomes	  are	  calculated	  as	  having	  higher	  probabilities	  of	  
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 It is important to note that while there is a limit to how low any asset’s realized variance 

can become, with a theoretical minimum of zero, there is no upper bound to how high an asset’s 

volatility can spike.  While spikes in volatility are somewhat rare, the party that sells a variance 

swap risks losing a large amount of money if such a spike occurs.  Continuing the example above, 

if the realized variance is calculated to be 45%, then firm A’s payout would be 

Payout = $100,000  ×  (0.45− 0.18)
= $27,000 , 

meaning that firm B would have to pay firm A $27,000. 

 The above examples assumed the contract’s swap rate to be 18%, but how is this rate 

determined?  This leads to the economic question of the fair value of a financial instrument with 

the payout of a variance swap.   

3.2 Variance Swap Rate 

 In order to compensate the sellers of variance swaps for the risk they are taking, the swap 

rates are set such that buying a variance swap has a small negative expected return.  The small 

negative return for buyers of variance swaps can be interpreted as a small positive expected 

return for the sellers of the swaps.  This small reward is referred to as the variance risk premium.  

The fair value of a variance swap should therefore be slightly higher than the market’s 

expectation of future variance. 

 Variance swaps are over-the-counter instruments, meaning that they are private contracts 

between two parties and are not traded on any exchange. As such, the details about the contract 

terms are never publicly reported.  Therefore, the swap rates cannot be observed directly.  How 

then can we estimate the swap rate?  We must instead infer the fair swap rate of a variance swap 

from some other financial instruments that are traded on an open exchange and the prices of 

which reflect the market’s expectation of future variance. 
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 In order to get a view of volatility, we look at a type of financial instrument called option 

contracts.  An option, which is traded on the Chicago Board of Options Exchange (CBOE), is a 

derivative, meaning that its fair value is based on, or derived from (hence the term derivative), 

some underlying asset.  A call option gives its buyer the right, but not the obligation, to buy the 

underlying asset on the option’s expiration date at the option’s strike price.  Conversely, a put 

option gives its buyer the right, but not the obligation, to sell the underlying asset on the option’s 

expiration date at the option’s strike price.  For example, if a person had purchased a single call 

option on XYZ stock with a May 17 expiration date and a strike price of $100, then on May 17 

that person would have the right to buy 100 shares of XYZ stock for a price of $100 per share.  If 

the spot price of XYZ stock is $110 on the expiration date of the option, then the basket of 

options is effectively worth $1,000.  If, however, the spot price of XYZ stock is lower than $100 

on the expiration date, then the owner of the call option would be better suited just buying the 

stock rather than executing the option, making the option worthless. 

 The asymmetric payout structure of options makes the fair value of an option highly 

dependent on the market’s expectation of the underlying asset’s future volatility.  Indeed, options 

traders often refer to options not by their nominal price, but instead by the amount of expected 

volatility that they are pricing into the options.  This paper follows the intuition that the market’s 

expected volatility that is priced into options should be close to the market’s expected volatility 

that would be used as the swap rate.  Unfortunately, while option prices depend greatly upon the 

expected level of volatility, the options themselves must officially be traded in nominal terms.  

We therefore cannot directly observe the expected volatility that is priced into options.  How 

then can we estimate the market’s expected volatility?  In 1973, Fischer Black and Myron 

Scholes released a paper entitled “The Pricing of Options and Corporate Liabilities.”  The paper 
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introduced a formula that was designed to determine the appropriate price of options.  According 

to this formula, known as the Black-Scholes formula, the price of an option depends upon 

several variables: the current (or spot) price of the asset, the strike price of the option, the time 

until the option’s expiration date, the risk free interest rate, and the expected volatility of the 

asset’s price over the life of the option. 

 All but one of these variables, the expected volatility, can be directly observed from the 

financial markets.  It is possible, therefore, to determine the amount of expected volatility that 

must be entered into the Black-Scholes formula for it to output the price of the option that is 

actually observed.  This level of expected volatility found by backing out of the formula is 

known as the implied volatility, as it is the volatility implied by the current price of the option.  It 

should be noted, however, that for any given maturity of an asset’s options, the various options 

each have different implied volatilities.  This poses a problem: the market should only have one 

expectation of volatility, not several.  We must therefore reconcile these differing levels of 

expected volatility in order to estimate the one level of expected volatility that would fairly value 

a variance swap, the swap rate. 

 It is theoretically possible to synthesize an estimator of the swap rate from the prices of a 

cross-section of the asset’s call and put options for a given maturity.  The estimator of the 

variance swap rate on day 𝑡, as considered by Carr and Wu (2009), is 

𝑆𝑊!,! = 𝔼!∗ 𝑅𝑉!,! =
2

𝑇 − 𝑡
Θ! 𝐾,𝑇
𝐵! 𝑇 𝐾! 𝑑𝐾

!

!
, 
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where 𝔼!∗ 𝑅𝑉!,!  equals the time 𝑡 conditional expectation operator the realized variance over the 

life of the swap under a set of risk-adjusted probabilities2, 𝑇 equals the maturity date of the 

option, 𝐾 equals the strike price of the option, Θ! 𝐾,𝑇  equals the time 𝑡 value of out-of-the-

money option with 𝐾 > 0 and 𝑇 ≥ 𝑡, and 𝐵! 𝑇  equals the time 𝑡 price of a risk free bond 

paying one dollar at time 𝑇. 

 This equation to estimate the variance swap of a given asset, however, is purely 

theoretical.  The equation integrates across an infinite number of option strike prices, ranging 

from zero to infinity.  In actuality, options are only actively traded if their strike prices fall within 

a relatively narrow range of the equity’s spot price.  Furthermore, options are only made 

available at discrete strike prices.  The limited availability of options renders using the equation 

infeasible for estimating the variance swap rate. 

 For this reason, we look to the CBOE’s Volatility Index (VIX), which aims to estimate 

the market’s expected volatility of the S&P 500 index (SPX).  In calculating the VIX, the CBOE 

employs an estimator of the market’s expectation of 30-day volatility that is computationally 

similar to the theoretical estimator described above.  The CBOE uses a weighted average of the 

prices of SPX index options across various strike prices. 

 Unfortunately, the available data on the option prices of individual equities is not as 

comprehensive as the data on the prices of SPX index options that is used by the CBOE.  It is 

therefore infeasible to use the CBOE’s methodology to estimate the variance swap rate for 

individual equities.  We can,	  however, use the VIX as a benchmark against which to compare 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  Risk	  adjusted	  probabilities	  slightly	  skew	  the	  probabilities	  of	  each	  outcome	  so	  that,	  for	  the	  
purposes	  of	  the	  calculation,	  bad	  outcomes	  are	  calculated	  as	  having	  higher	  probabilities	  of	  
occurring	   than	   they	   actually	   have	   and	   good	   outcomes	   are	   calculated	   as	   having	   lower	  
probabilities	   of	   occurring	   than	   they	   actually	   have.	   	   This	   reflects	   the	   human	   behavior	   of	  
giving	   bad	   outcomes	   more	   weight	   and	   good	   outcomes	   less	   weight	   when	   evaluating	  
opportunities.	  
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alternative estimators of the variance swap rate.  It is possible to test the accuracy of an 

alternative estimator by using said alternative to estimate the expected 30-day volatility of the 

SPX index and comparing the alternative’s estimate to the VIX.  If, when performed on co-

temporal SPX option data, the alternative estimator’s results are similar to the VIX, we can 

assume that, when performed on the option data of individual equities, the alternative estimator 

would continue to produce estimates that are reasonably close to those that would be found by 

using the CBOE’s estimator. 

 One such alternative estimator is the simple arithmetic average of the 26 implied 

volatilities given by Option Metrics’ 30-day volatility data.  The Option Metrics data represents 

what would theoretically be the implied volatilities of a cross-section of options with 30 days to 

maturity.  It is comprised of the implied volatilities of the 13 out-of-the-money3 calls and 13 out-

of-the-money puts with strike prices nearest the equity’s spot price.  For each strike price, the 30-

day implied volatility is calculated through a linear interpolation of the implied volatilities of the 

two options whose strike dates are closest to the date 30 days in the future.  As seen in Figure 1, 

this simple estimator tracks the VIX quite well when applied to SPX options.  This simple 

alternative estimator will therefore be used in this paper as the estimator of the variance swap 

rate. 

3.3 Variance Risk Premium 

 There are two different expressions for the realized variance risk premium, each with its 

own interpretation.  The standard variance risk premium is defined by the equation 

𝑉𝑅𝑃! = 𝑅𝑉!,!! − 𝑆𝑊!,!". 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  An	  out-‐of-‐the-‐money	  call	   is	  one	   for	  which	   the	  option’s	  strike	  price	   is	  above	   the	  equity’s	  
spot	   price,	   and	   an	   out-‐of-‐the-‐money	   put	   it	   one	   for	   which	   the	   strike	   price	   is	   below	   the	  
equity’s	  spot	  price.	  
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As entering into a swap contract entails no upfront costs, 𝑉𝑅𝑃! represents the nominal payout on 

day 𝑡 + 30 of entering into a $1 notational variance swap contract on day 𝑡.  The Log Variance 

Risk Premium (𝐿𝑉𝑅𝑃!), however, is defined as 

𝐿𝑉𝑅𝑃! = ln 𝑅𝑉!,!" − ln 𝑆𝑊!,!"

= ln 𝑅𝑉!,!" 𝑆𝑊!,!"
. 

If we were to consider a variance swap to be a forward contract and the swap rate 𝑆𝑊!,!" to be 

the cost of the forward, then 𝑅𝑉!,!! 𝑆𝑊!,!" − 1  represents the excess return from the 

investment in a variance swap.  By conceptualizing the variance risk premium in this way, 

𝐿𝑉𝑅𝑃! acts as the continuously compounded excess return of entering into a variance swap on 

day 𝑡 and holding it to maturity. For the purposes of this paper, we will be using 𝐿𝑉𝑅𝑃! to 

express the ex-post variance risk premium because we are able to remain scale-free by working 

in logarithms. 

4 Asset Price Jumps 

As previously discussed, an asset’s volatility can change over time.  Observers of financial 

markets understand that high levels of variance in an asset’s price movements tend to come in 

waves.  This effect, whose first observation was noted by Benoit Mandelbrot (1963), is known as 

“volatility clustering.”  His observation, that “large changes tend to be followed by large changes 

– of either sign – and small changes tend to be followed by small changes,” provided intuition to 

more accurate autoregressive models forecasting volatility in financial time series, notably 

Engle’s (1982) Autoregressive Conditional Heteroskedasticity (ARCH) model and Bollerslev’s 

(1986) Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model.  These 

models break up volatility into two components, one of which represents the asset's natural base 

level of volatility, and one that describes the more fleeting levels of current volatility, both of 
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which are impacted by recent price movements.  Jumps can be viewed essentially as price 

movements much larger than one would expect given the current level of volatility.  For this 

reason we would expect jumps to have a significant impact on the component of volatility that 

relates to the recent price movements.  The relative size and duration of a jump's impact on its 

respective asset's level of volatility has several implications on what the fair value of a variance 

swap should be. 

 In order to discuss jumps in detail, we must first expand upon the discussion of modeling 

the path of an asset's logarithmic price from Section 2.  Recall the differential equation 

𝑑𝑝 𝑡 =   𝜇 ∙ 𝑑𝑡 + 𝜎 𝑡 ∙ 𝑑𝑊 𝑡 .	  

By adding 𝜅 𝑡 ∙ 𝑑𝑞 𝑡  to the model as the jump component of the price process, as suggested by 

Merton (1976), the differential equation becomes 

𝑑𝑝 𝑡 =   𝜇 ∙ 𝑑𝑡 + 𝜎 𝑡 ∙ 𝑑𝑊 𝑡 + 𝜅 𝑡 ∙ 𝑑𝑞 𝑡 , 

where 𝜅 𝑡  represents the magnitude of the jump and 𝑞 𝑡  is a binary variable indicating the 

presence of a jump.  By using this notation, the model considers the jump component to be 

independent of the rest of the price process, allowing us to study the effect of a jump on volatility 

separately from the continuous price movements. 

 Andersen, Bollerslev, and Diebold (2002) demonstrated that when jumps are included in 

the model of price movements, as the sampling interval approaches zero, the limit of realized 

variance converges to the integrated variance plus the sum of the squares of the magnitudes of all 

the jumps that occur throughout the day, such that 

plim
∆→!

𝑅𝑉! = 𝐼𝑉! + 𝜅!(𝑡 + 𝜏)
!

!!!

. 
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Barndorff-Nielsen and Shepherd (2004b) suggested their own proxy for volatility, which is 

known as the bi-power variation (𝐵𝑉), and is defined in this paper as 

𝐵𝑉! 𝑀 =
𝜋
2×

𝑀
𝑀 − 1 𝑟!,! 𝑟!,!!!

!

!!!

. 

Furthermore, Barndorff-Nielsen and Shepherd (2006) showed that their bi-power variation 

measure is quite robust and that, even with the presence of jumps, the bi-power variation 

converges to the integrated variance as the sampling interval approaches zero.  Thus, bi-power 

variation is a consistent estimator for integrated variance.  The characteristics of the bi-power 

variation theoretically allow us to isolate the jump component of the price process, for as the 

sampling interval approaches zero, the difference between the realized variance and the bi-power 

variation converges to the cumulative sum of the squared magnitudes of jumps that occurred 

throughout the day, such that 

plim
∆→!

𝑅𝑉! − 𝐵𝑉! = 𝜅!(𝑡 + 𝜏)
!

!!!

. 

 Noting that the difference between realized variance and bi-power variation estimates the 

amount of realized variance that is contributed by jumps, several researchers have used this 

intuition as the basis for tests attempting to determine whether or not a jump occurred on any 

given day, notably Barndorff-Nielsen and Shepherd (2006) and Huang and Tauchen (2005).  

These tests, however, can only tell us if a jump occurred on any given day; the tests are unable to 

attribute jumps to the individual price movements during which they occur.  Taking a different 

approach to the problem, a large amount of literature is devoted to creating tests that attempt to 

determine whether individual price movements can be classified as jumps.  Often, these tests 
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involve some threshold that a price movement must surpass in order to be classified as a jump 

[e.g., Lee and Mykland (2008), Mancini (2009), and Corsi, Pirino, and Renò (2010)]. 

4.1 Locating Jumps 

 In considering a method to classify jumps, this paper takes its intuition from Cecilia 

Mancini’s (2009) threshold estimator and the idea of truncated variance, which is defined as 

𝑇𝑉! = 𝑟!,!
!×𝐼 𝑟!,!!

!!! , 

where 𝐼 𝑟!,! =
1  if  𝑟!,! ≤ cutoff!
0  if  𝑟!,! > cutoff! .

 

In this way, 𝐼 ∙  is a binary indicator of whether a jump has occurred.  Truncated variance 

classifies a price movement as a jump if the logarithmic return is greater than some cutoff value.  

In order to account for the latent amount of volatility present, the cutoff value is set each day 

based on a measure of the previous day’s volatility. To minimize the effect that jumps have on 

that measure of volatility, this paper uses the bi-power variation as the measure of volatility.  We 

can then define the cutoff value as 

cutoff! = 𝛾×
1
𝑀𝐵𝑉!!!, 

where 𝛾 equals the minimum magnitude of return relative to 𝐵𝑉!!!  to be classified as a jump. 

 This paper adopts the intuition of a cutoff value determining the presence of jumps, and 

compares price returns to the cutoff value in order to determine the location of jumps. 

Furthermore, recall that, because trading frictions restrict us from viewing the true continuous-

time price path of any asset, we must observe the price level at discrete time intervals.  It is 

therefore much harder to estimate the jump component of the price model than the other 

components, as it is difficult to be certain whether a change in price is due to a jump or to a large 
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continuous movement throughout the interval.  Therefore, for the purposes of this paper, 𝛾 is set 

equal to eight (rather than the common range of three to five) so that we can be confident that 

each movement that is classified as a jump truly is best described as a jump. 

4.2 Measuring Jumps 

 For those returns classified as jumps, this paper considers the size of the jumps to be the 

absolute value of the ratio between the jump’s log-difference return and the previous day’s bi-

power variation, such that 

jump_return! = max
!!!→!

𝑟!,!
1
𝑀𝐵𝑉!!!

. 

The maximizing function, therefore, serves to ensure that, if multiple jumps occur on the same 

trading day, the day’s largest jump is considered to be its only jump. 

4.3 Direction of Jumps 

 The direction of a jump, positive or negative, depends simply on the direction of the 

jump’s underlying price movement, upward or downward.  If multiple jumps occur on the same 

trading day, the direction of the day’s jump is considered to be the direction of the price 

movement underlying the day’s largest jump in magnitude.  It should be noted that we would 

expect the presence of multiple jumps in a single day to have a larger impact on the future 

variability of some equity’s price movements than the presence of a single jump.  This represents 

a potential weakness in this paper’s methodology for classifying jumps, as days are sorted into 

only two categories: days in which at least one jump occurs, and days in which no jumps occur. 
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5 Empirical Analysis 

5.1 Data 

 The calculations in this paper employ two main sets of time series data, applying them to 

10 diverse, highly capitalized corporations: Alcoa (AA), Apple (AAPL), Amazon (AMZN), 

Boeing (BA), Bank of America (BAC), Caterpillar (CAT), Dell Computers (DELL), General 

Electric (GE), Google (GOOG), and Goldman Sachs (GS).  The first set of time series data is 

composed of each stock’s intraday prices, reported in one-minute increments from 9:35am to 

4:00pm, for every full trading day from April of 1997 through December 30th, 2010.  The 

second set of time series data for each corporation is Option Metrics’ 30-day volatility data, 

which reports daily levels of volatility implied by the closing prices of options. Every date is 

composed of the implied volatilities of 13 calls and 13 puts of various strike prices, each of 

which is interpolated to a maturity of 30 days. 

 It should be noted that the trading frictions discussed earlier in this paper cause a well-

documented pattern of short-term deviations of the asset’s observed price from its fundamental 

value, such that 

𝑝!"# 𝜏 = 𝑝 𝜏 + 𝜀!, 

where	  𝑝!"# 𝜏 	  is the observed price at moment 𝜏 ,	  𝑝 𝜏 	  is the asset’s fundamental price at 

moment	  𝜏,	  and	  𝜀! is the short-term deviation caused by the trading frictions.  Some approaches to 

compensate for this noise attempt to estimate the fundamental price at every observation, such as 

the strategy proposed by Barndorff-Nielson and Shephard (2005) of averaging the bid quote and 

the ask quote at the time of each observation to create a set of mid-quote date.  Other literature 

focuses on limiting the impact of the noise by optimizing the length of the interval between 
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samples, such as Aït-Sahalia, Mykland, and Zhang (2005).  This paper follows the approach of 

optimizing the duration of sample intervals, using the common sampling interval of five minutes.  

This interval represents a good middle ground between maximizing the sampling frequency and 

minimizing the impact of the trading frictions on the measurement.  The first set of time-series 

data is therefore sampled into five-minute increments, which in turn sets the sampling interval 𝑀 

equal to 77. 

5.2 Methodology 

 The statistical framework of this paper is based upon the ordinary least squares regression 

of several contemporaneous factors: the change of the current day’s ex-post log variance risk 

premium from that of the previous day, the occurrence of a jump in the current trading day, and 

the direction and relative magnitude of any such jump. 

 For the purposes of this paper’s statistical analysis, the dependent variable of each of the 

regressions is set as the nominal difference between the ex-post Log Variance Risk Premiums of 

variance swaps entered into at the close of day 𝑡 and at the close of day 𝑡 − 1 respectively.  This 

paper refers to the change in Log Variance Risk Premium from day 𝑡 − 1 to day 𝑡, ∆𝐿𝑉𝑅𝑃!, as 

∆𝐿𝑉𝑅𝑃! = 𝐿𝑉𝑅𝑃! − 𝐿𝑉𝑅𝑃!!!

= ln
𝑅𝑉!,!!!"
𝑆𝑊!,!!!"

− ln
𝑅𝑉!!!,!!!"
𝑆𝑊!!!,!!!"

, 

where the 30-day variance swap rate for day 𝑡, 𝑆𝑊!,!!!", is taken to be the arithmetic average of 

the 26 implied volatilities given by Option Metrics 30-day volatility data for day 𝑡. 

 By the conventions of the financial markets, in computing the payout of a variance swap, 

the realized variance of an asset over a 30-day period that begins at the close of day t (𝑅𝑉!,!!!") 

is equal to the sum of the log differences of the asset’s daily closing prices throughout that period. 
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Therefore, the ex post 𝑅𝑉 corresponding to a 30-day variance swap created at the close of day t 

is defined as 

𝑅𝑉!,!!!" = ln 𝑃!!! − ln 𝑃!!!!! !
!"

!!!

, 

where 𝑃! equals the closing price of the asset on day n.  𝑅𝑉!,!!!"	  looks	  forward	  30	  days,	  and	  is	  

therefore	   not	   known	   until	   day	   t+30.  Furthermore, while the New York Stock Exchange 

(NYSE) is not open every day, in the interest of ensuring contemporaneous regressions, this 

paper will consider the closing price on any day the market is closed to be the closing price from 

the previous trading day. In this way, we can ensure both that each 𝑅𝑉!,!" includes all of the 

daily returns for its respective 30-day period, and that there is a corresponding 𝑅𝑉!,!" for days in 

which the CBOE is open and the NYSE is closed. 

 Furthermore, the presence of a jump is a dummy variable in some regressions. If any 

returns are greater than the cutoff described earlier, there is deemed to have been a jump. 

Otherwise, there is deemed not to have been any jumps. If there is a day in which the NYSE is 

open while the CBOE is closed, any jumps that occur that day are “rolled over” into the next day. 

6 Findings 

6.1 Presence of a Jump 

Insofar as the participants in the financial markets include the most recent intraday price 

movements in their respective forecasts of volatility, we would expect the financial firms selling 

variance swaps to attempt to correct their volatility forecasts for any jump that occurs throughout 

day.  This should increase the swap rate of any variance swap made after the jump.  If the jump 

occurred on day 𝑡, then the information regarding the presence of a jump is priced into a variance 
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swap created at the end of day 𝑡, but is obviously not priced into such a swap created at the end 

of day 𝑡 − 1, before knowledge of the jump ever existed.  While the swap rates are different, the 

two variance swaps have payouts based on the realized variance over most of the same days.  For 

this reason, we expect the ex post payout of buying a variance swap after a jump on day 𝑡 to be 

less than that of buying variance swap on day 𝑡 − 1.  In order to test this expectation, we perform 

the regression 

∆𝐿𝑉𝑅𝑃! = 𝛼 + 𝛽×𝑗𝑢𝑚𝑝_𝑏𝑖𝑛𝑎𝑟𝑦! ,	  

where	  𝑗𝑢𝑚𝑝_𝑏𝑖𝑛𝑎𝑟𝑦!	  is	  a	  dummy	  variable	  for	  presence	  of	  a	   jump	  on	  day 𝑡.	   	  The	  results	  of	  

this	  regression	  are	  in	  Table	  1.	  

	   In	  testing	  the	  null	  hypothesis	  𝐻!:𝛼 = 0	  against	  the	  alternative	  𝐻!:𝛼 ≠ 0,	  we	  cannot	  

reject	  the	  null	  hypothesis	  at	  the	  95%	  confidence	  interval	  for	  any	  of	  the	  10	  equities	  tested.	  	  

This	  result	  is	  expected,	  for	  the	  Log	  Variance	  Risk	  Premium	  should	  not	  change	  significantly	  

between	  two	  days	  without	  the	  presence	  of	  a	  jump.	  

When	  we	   tested	   the	  null	   hypothesis	  𝐻!:𝛽 = 0	  against	   the	  alternative	  𝐻!:𝛽 ≠ 0,	  we	   found	  

that	   we	   can	   reject	   the	   null	   hypothesis	   at	   the	   95%	   confidence	   level	   for	   each	   of	   the	   ten	  

equities	  included	  in	  the	  regression.	  	  This	  means	  that	  the	  presence	  of	  a	  jump	  on	  day 𝑡	  has	  a	  

statistically	  significant	  effect	  on	  the	  change	  of	  𝐿𝑉𝑅𝑃	  from	  day 𝑡 − 1	  to	  day 𝑡.	   	  Furthermore,	  

the	   coefficient	   found	   for	  𝛽	  in	   each	   of	   the	   ten	   equities’	   respective	   regression	   is	   negative,	  

suggesting	  that	  the	  presence	  of	  a	   jump	  on	  day 𝑡	  causes	  the	  𝐿𝑉𝑅𝑃	  to	  decrease	  on	  day 𝑡.	   	  As	  

𝐿𝑉𝑅𝑃	  represents	   the	   continuously	   compounded	  excess	   return	  of	   entering	   into	  a	  variance	  

swap,	   the	  presence	  of	  a	   jump	  on	  day	  𝑡	  causes	   the	  return	   from	  buying	  a	  variance	  swap	  on	  

day 𝑡	  to	  be	  lower	  than	  it	  otherwise	  would	  have	  been.	  
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6.2	   Positive	  Versus	  Negative	  Jumps	  

	   Working	   on	   the	   assumption	   that	   the	  market	   participants	   are	   risk	   averse,	   and	   are	  

therefore	   judging	   risk	   based	   on	   an	   autoregressive	   forecast	   of	   an	   asset’s	   price	   return	  

variance	  rather	  than	  on	  past	  price	  performance,	  we	  would	  assume	  that	  positive	  asset	  price	  

jumps	  are	  priced	  into	  variance	  swaps	  with	  the	  same	  weight	  as	  negative	  asset	  price	  jumps.	  	  

To	  test	  our	  assumption,	  we	  first	  change	  the	  previous	  regression	  by	  separating	  the	  presence	  

of	  positive	  and	  negative	  asset	  price	  jumps	  into	  two	  mutually	  exclusive	  exogenous	  variables.	  	  

The	  regression	  becomes	  

∆𝐿𝑉𝑅𝑃! = 𝛼 + 𝛽!×𝑛𝑒𝑔_𝑗𝑢𝑚𝑝_𝑏𝑖𝑛𝑎𝑟𝑦! + 𝛽!×𝑝𝑜𝑠_𝑗𝑢𝑚𝑝_𝑏𝑖𝑛𝑎𝑟𝑦! ,	  

where	  	  𝑛𝑒𝑔_𝑗𝑢𝑚𝑝_𝑏𝑖𝑛𝑎𝑟𝑦!	  is	  a	  dummy	  variable	  for	  the	  presence	  of	  a	  negative	  jump	  on	  day	  

𝑡,	  and	  𝑝𝑜𝑠_𝑗𝑢𝑚𝑝_𝑏𝑖𝑛𝑎𝑟𝑦!	  is	  a	  dummy	  variable	  for	  the	  presence	  of	  a	  positive	  jump	  on	  day	  𝑡.	  	  

The	  results	  of	  this	  regression	  are	  in	  Table	  2.	  

	   Because	   we	   know	   that	  𝛽!×𝑛𝑒𝑔_𝑗𝑢𝑚𝑝_𝑏𝑖𝑛𝑎𝑟𝑦! + 𝛽!×𝑝𝑜𝑠_𝑗𝑢𝑚𝑝_𝑏𝑖𝑛𝑎𝑟𝑦! 	  from	   this	  

regression	  is	  a	   linear	  combination	  of	  𝛽×𝑗𝑢𝑚𝑝_𝑏𝑖𝑛𝑎𝑟𝑦!	  from	  the	  first	  regression,	  we	  know	  

that	  the	  set	  of	  𝛼	  values	  is	  shared	  among	  both	  regressions,	  and	  therefore	  that	  in	  testing	  the	  

null	   hypothesis	  𝐻!:𝛼 = 0 	  against	   the	   alternative	  𝐻!:𝛼 ≠ 0 ,	   we	   cannot	   reject	   the	   null	  

hypothesis	   at	   the	   95%	   confidence	   interval	   for	   any	   of	   the	   ten	   equities	   tested.	   	   Again	   this	  

result	  assures	  us	  that	  the	  Log	  Variance	  Risk	  Premiums	  did	  not	  change	  significantly	  between	  

two	  days	  without	  the	  presence	  of	  a	  jump.	  

In	  testing	  the	  null	  hypothesis	  𝐻!:𝛽! = 𝛽!	  against	  the	  alternative	  hypothesis	  𝐻!:𝛽! ≠ 𝛽!,	  we	  

are	   unable	   to	   reject	   the	   null	   hypothesis	   at	   the	   95%	   confidence	   level	   for	   nine	   of	   the	   ten	  

equities	  we	   included	   in	   the	   regression,	  meaning	   that	  positive	   and	  negative	   jumps	  do	  not	  

affect	  the	  𝐿𝑉𝑅𝑃	  differently	  than	  each	  other	  in	  a	  statistically	  significant	  way.	   	  This	  result	   is	  
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especially	   interesting	   because	   the	   well-‐documented	   leverage	   effect	   –	   the	   positive	  

correlation	   between	   negative	   return	   surprises	   and	   volatility	   [e.g.,	   Nelson	   (1991),	   and	  

Ghysels,	  Harvey,	  and	  Renault	  (1996)]	  –	  suggests	  that	  this	  should	  not	  be	  the	  case.	  	  According	  

to	  the	  leverage	  effect,	  a	  negative	  price	  jump	  should	  increase	  the	  volatility	  of	  the	  asset	  by	  a	  

greater	  amount	  than	  a	  positive	  price	  jump	  of	  the	  same	  magnitude.	  

6.3	   Relative	  Size	  of	  Jumps	  

	   It	  stands	  to	  reason	  that	  a	  relatively	  larger	  asset	  price	  jump	  occurring	  on	  a	  given	  day	  

should	   be	   weighted	   into	   the	   asset’s	   volatility	   forecasts	   more	   heavily	   than	   a	   relatively	  

smaller	  price	  jump	  occurring	  on	  another	  day.	  	  To	  test	  this	  logic,	  we	  run	  the	  regression	  

∆𝐿𝑉𝑅𝑃! = 𝛼 + 𝛽×𝑗𝑢𝑚𝑝_𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒! ,	  

where	  jump_relative!	  is	  the	  magnitude	  of	  the	  largest	  jump	  on	  day	  𝑡	  relative	  to	  the	  previous	  

day’s	  bi-‐power	  variation,	  𝐵𝑉!!!,	  such	  that	  

jump_relative! = max!!!→!
!!,!
!
!!"!!!

.	  

The	  results	  of	  this	  regression	  are	  in	  Table	  3.	  

	   Once	   again,	   when	   we	   test	   the	   null	   hypothesis	  𝐻!:𝛼 = 0	  against	   the	   alternative	  

𝐻!:𝛼 ≠ 0,	   we	   find	   that	   we	   cannot	   reject	   the	   null	   hypothesis	   for	   any	   of	   the	   ten	   equities,	  

reassuring	  us	  that	  LVRP	  is	  behaving	  as	  we	  would	  expect.	  

When	  we	   tested	   the	  null	   hypothesis	  𝐻!:𝛽 = 0	  against	   the	  alternative	  𝐻!:𝛽 ≠ 0,	  we	   found	  

that	   we	   can	   reject	   the	   null	   hypothesis	   at	   the	   95%	   confidence	   level	   for	   each	   of	   the	   ten	  

equities	   included	   in	   the	   data	   set.	   	   Furthermore,	   seven	   out	   of	   the	   ten	   equities	   had	  higher	  

test-‐statistic	   values	   in	   this	   regression	   than	   their	   respective	   test-‐statistic	   values	   in	   the	  
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regression	   of	   the	   presence	   of	   jumps	   alone.	   	   This	   suggests	   that	   the	   size	   of	   jumps	   has	   a	  

greater	  effect	  on	  𝐿𝑉𝑅𝑃	  than	  the	  presence	  of	  jumps	  alone.	  

7 Conclusion 

 This paper contributes to the current understanding of variance risk premia in two main 

ways.  First, it proposes a quick and easy method to estimate the fair value of a variance swap.  

This new method, which appears to be quite accurate in its estimation, makes the investigation of 

the variance risk premia of individual equities feasible.  Whereas few stocks have options with 

enough liquidity to use the CBOE’s estimator, the requisite data for the simple estimator 

proposed herein is readily available for most, if not all, stocks traded on the NYSE.  This should 

greatly enhance the ability of other researchers to test the characteristics of variance risk premia.  

Secondly, the findings of this paper confirm many of the expectations held about how asset price 

jumps affect the variance risk premia of individual equities.  Specifically, we have presented 

evidence that the variance risk premia of individual equities respond to price jumps of their 

respective equities in much the same way that the variance risk premia of the market index 

respond to index price jumps.  Furthermore, this result suggests that the variance risk premium of 

an individual equity is not solely dependent upon the equity’s proportion of the variance risk of 

the market as a whole.  This inference, drawn from the evidence in this paper, contradicts the 

conclusion of Carr and Wu (2009) that much of the variance risk premia of individual equities is 

a result of the market’s variance risk. 

 It is important, however, to keep the results of this paper in context.  First of all, there 

were several days during which multiple jumps occurred.  For the purpose of this paper, however, 

only the largest jump of the day was recorded.  It is possible that the presence of multiple jumps 

in a single day could have affected the variance risk premium much more than the presence of a 
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single jump would, which would in turn make the effect of the jump appear to be much more 

statistically significant.  It may therefore be beneficial to include a factor in future regressions to 

compensate for the presence of multiple jumps in the same day.  Also, while this paper used 

high-frequency intraday asset price information, the only available Option Metrics volatility data 

was based on the daily closing prices of options.  If an asset price jump occurred early enough in 

the day, it is possible that the jump’s effect on the asset’s volatility began to wane, which would 

result in the jump not getting enough credit.  If intra-daily option data becomes available, further 

research should be done to investigate how long a jump’s effects on variance risk premia last. 

 These caveats aside, the research presented in this paper provides strong evidence that 

asset price jumps have significant effects on the variance risk premia of individual equities.  

Furthermore, the methodologically simple estimator proposed within this paper has thus far 

proved to be an efficient tool for accurately estimating the variance risk premium of an 

individual equity. 
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B Tables 

Table 1 – Results from regressing the presence of an asset price jump on day t on the difference 

in payouts of variance swaps purchased at the end of days t and t-1. 

 Intercept jump_boolean  
Stock α Std. Err. t β Std. Err. t R2 
AA 0.0030 0.0026  1.14 -0.1260 0.0169  -7.45 0.0159 
AAPL 0.0012 0.0030  0.39 -0.0621 0.0183  -3.39 0.0034 
AMZN 0.0033 0.0035  0.95 -0.1504 0.0225  -6.70 0.0135 
BA 0.0027 0.0026  1.03 -0.1174 0.0168  -7.00 0.0141 
BAC 0.0021 0.0028  0.76 -0.1427 0.0227  -6.29 0.0114 
CAT 0.0015 0.0027  0.55 -0.1313 0.0222  -5.92 0.0101 
DELL 0.0006 0.0027  0.23 -0.0649 0.0238  -2.72 0.0022 
GE 0.0012 0.0027  0.45 -0.0971 0.0219  -4.44 0.0057 
GOOG 0.0007 0.0045  0.15 -0.0518 0.0251  -2.06 0.0027 
GS 0.0031 0.0029  1.07 -0.1924 0.0218  -8.82 0.0267 

 

Table 2 – Results from regressing the presence of either a positive or a negative asset price jump 

on day t on the difference in payouts of variance swaps purchased at the end of days t and t-1.  

 Intercept neg_jump_boolean pos_jump_boolean  
Stock α Std. Err. t Β1 Std. Err. t Β2 Std. Err. t Adj R2 
AA 0.0030 0.0026  1.14 -0.1167 0.0254  -4.60 -0.1333 0.0225 -5.93 0.0154 
AAPL 0.0012 0.0030  0.39 -0.0517 0.0243  -2.13 -0.0753 0.0274 -2.75 0.0029 
AMZN 0.0033 0.0035  0.95 -0.1698 0.0358  -4.74 -0.1381 0.0286 -4.83 0.0130 
BA 0.0027 0.0026  1.03 -0.1260 0.0237  -5.31 -0.1090 0.0234 -4.65 0.0136 
BAC 0.0021 0.0028  0.76 -0.2093 0.0305  -6.86 -0.0622 0.0335 -1.86 0.0139 
CAT 0.0016 0.0027  0.58 -0.1404 0.0326  -4.31 -0.1312 0.0295 -4.44 0.0108 
DELL 0.0006 0.0027  0.23 -0.1378 0.0365  -3.77 -0.0116 0.0313 -0.37 0.0036 
GE 0.0012 0.0027  0.45 -0.0780 0.0321  -2.43 -0.1134 0.0297 -3.82 0.0053 
GOOG 0.0007 0.0045  0.15 -0.0465 0.0331  -1.40 -0.0588 0.0379 -1.55 0.0015 
GS 0.0031 0.0029  1.07 -0.2272 0.0323  -7.03 -0.1639 0.0293 -5.59 0.0267 
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Table 3 – Results from regressing the magnitude of an asset price jump on day t (relative to 

𝐵𝑉!!!, the bipower variation of the previous day) on the difference in payouts of variance swaps 

purchased at the end of days t and t-1. 

 Intercept Jump_return  
Stock α Std. Err. t β Std. Err. t R2 
AA 0.0021 0.0026  0.79 -5.1573 0.8188  -6.30 0.0114 
AAPL 0.0016 0.0030  0.53 -3.4143 0.5725  -5.96 0.0103 
AMZN 0.0031 0.0035  0.88 -6.5859 0.9043  -7.28 0.0159 
BA 0.0030 0.0026  1.16 -8.8996 0.9856  -9.03 0.0232 
BAC 0.0015 0.0028  0.55 -5.1351 0.8574  -5.99 0.0103 
CAT 0.0014 0.0027  0.53 -7.8448 1.2677  -6.19 0.0110 
DELL 0.0005 0.0027  0.18 -2.7560 0.9168  -3.01 0.0026 
GE 0.0008 0.0027  0.31 -4.2497 1.0399  -4.09 0.0048 
GOOG 0.0008 0.0045  0.17 -4.1239 1.4374  -2.87 0.0052 
GS 0.0029 0.0029  1.01 -9.0112 0.7945  -11.34 0.0433 
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C Figures 

Figure 1 – Comparison of the levels found using this paper’s methodology for estimating the 

market’s predicted variance over the next 30 days and the levels founds using the CBOE’s 

methodology for estimating the market’s predicted variance, as reported in the VIX index. 
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D Explanation of Swaps 

 A swap is a type of over-the-counter financial instrument; it is a contractual agreement 

between two parties to exchange a sequence of cash flows over a set period of time.  In a basic 

swap, one of the two cash flows is fixed and the other is based on an uncertain variable, such as 

interest rates, currency exchange rates, commodity prices, etcetera.  At the time of each payment, 

the two cash flows net out so that the party whose payment is greatest pays the other party the 

difference between the two payments. 

 To illustrate how swaps work, let us assume two companies, firm A and firm B, enter 

into an interest rate swap on January 1, 20X1 with the following terms: 

• Firm A is to pay firm B the equivalent of a 5% interest payment on a notional amount of 

$1 million every year for five years. 

• Firm B is to pay firm A the equivalent of an interest payment equal to the London Inter-

Bank Offer Rate (LIBOR) one-year interest rate, a rate which varies to reflect the rate at which 

banks are willing to lend to each other for one year, present on January 1 on a notional amount of 

$1 million every year for five years. 

Assuming the one-year LIBOR was equal to 4.5% on January 1, 20X1, then on January 1, 20X2 

firm A would owe firm B $50,000 and firm B would owe firm A $45,000.  These payments 

would net each other out, such that firm A would pay firm B $5,000 and firm B would not pay 

anything to firm A.  Furthermore, assuming the one-year LIBOR on January 1, 20X2 were equal 

to 6%, then on January 1, 20X3 firm B would pay firm A $10,000 and firm A would not pay 

anything to firm B.  This process would continue for the life of the swap. 

 Corporations often have a large amount of debt with a variable interest rate.  This gives 

managers at those companies big headaches as they attempt to create an operating budget for 
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their company; the variable interest rate means that the company’s interest burden is subject to 

change from month to month, making it difficult to plan for how much money the company 

needs to set aside to pay its lenders.  Furthermore, those companies face the risk that the interest 

rate will increase significantly enough in the future that, much like the homeowners in the recent 

mortgage crisis who had adjustable rate mortgages and could not afford their mortgage payments 

after interest rates increased, they will be unable to afford to pay their lenders and will be forced 

into bankruptcy.  Banks, on the other hand, often borrow money at a fixed rate but would prefer 

to have variable rate debt (lest interest rates they are able to charge drop below the rate at which 

they borrowed their money).  For these reasons, banks and corporations occasionally enter into 

interest rate swaps, through which they essentially “swap” the fixed rate for the variable rate and 

vice versa. 

 In 1981, IBM and the World Bank made history when they entered into the first ever 

interest rate swap.  At that time, IBM had a large amount of debt denominated in Swiss Francs 

and Deutsche Marks.  The US based company’s debt being based in foreign currencies meant 

that its interest burden was dependent upon the exchange rates between those currencies and the 

US Dollar, putting the company at risk of the US Dollar depreciating in value.  The World Bank 

had the opposite problem; most of the bank’s debt was denominated in US Dollars while the 

loans it made were to foreign nations, putting the World Bank at risk of the US Dollar 

appreciating in value.  The World Bank therefore “swapped” its US debt for IBM’s foreign debt. 

 


