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Abstract 

Drawing motivation from the 2007-2009 global financial crises, this paper looks to 

further examine the potential time-variant nature of asset correlations. Specifically, high 

frequency price data and its accompanying tools are utilized to examine the relationship 

between asset correlations and market volatility. Through further analyses of this 

relationship using linear regressions, this paper presents some significant results that 

provide striking evidence for the time-variability of asset correlations. These findings 

have crucial implications for portfolio managers as well as risk management 

professionals alike, especially in the contest of diversification.  
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1. Introduction and Motivation 

In order to successfully measure and manage market risks, portfolio managers and 

risk management professionals scrutinize the variability and correlations of their portfolio 

assets. In finance, the correlation between two assets measures the extent to which they 

perform similarly to one another. For instance, equity stocks of companies in the same 

industry tend to be highly correlated; whereas two relatively unrelated securities such as 

stock of a bio-technology start-up and a gold futures contract usually have uncorrelated 

returns. Correlation measures are used in conjunction with expect returns to calculate the 

overall volatility of a collection of a portfolio. Since the true underlying volatility of an 

asset cannot be observed, portfolio managers and risk management professionals often 

utilize historical price data to estimate the asset correlations to make more informed 

financial decisions.  

Some professionals and academics have conjectured that asset correlations change 

over time. For example, a former global risk manager of a major financial firm noted that, 

“during major market events, correlations change dramatically” (Bookstaber, 1997). If 

correlations do in fact change overtime, the use of historical data may provide misleading 

measures of the current level of asset correlations. This could potentially pose serious 

threats to portfolio selection methods as well as risk management techniques. As a result, 

the behavior of asset correlations has been an important ongoing concern in both 

academia and the financial industry.  

Portfolio managers need to consider the behavior of asset correlations over time. 

It is considered good practice to reduce volatility in an investment portfolio by investing 

in a variety of assets whose values rise and fall independently of one another. This 

strategy is known as diversification. The fundamental premise behind diversification is 

that portfolio risk can be lowered via investments in a number of different assets with 

varying levels of risk, volatility, and returns. The amount of diversification in a given 
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portfolio is dependent on the correlation between assets that are in the portfolio. Effective 

asset allocation should reduce idiosyncratic risk, or the risk associated with owning an 

individual security. In order to achieve effective diversification, the assets held in the 

portfolio should not be highly correlated. Typically, there is a negative relationship 

between correlations of assets in a portfolio and the level of portfolio diversification. 

Since portfolio volatility is dependent on its level of diversification and diversification in 

turn is related with the correlations of the assets in the portfolio, it follows that portfolio 

volatility is dependent on the level of correlations between its assets. Thus, if asset 

correlations were to suddenly change, it could have a significant impact on overall 

portfolio volatility. Failure to account for this change may result in higher than expected 

losses for portfolios during certain market conditions, especially times of market turmoil. 

This is consistent with the events of the 2007-2008 financial crises. In this period, 

numerous seemingly unrelated assets together plummeted in value. Previously well-

diversified pension and mutual funds lost their diversification. For example, before 2007, 

Vanguard Group proudly described their Target Retirement Funds as, "broadly 

diversified: Underlying funds invest in 6,000-plus U.S. stocks and bonds and 2,000-plus 

international stocks to help spread out risk". However, diversification seems to be lost 

between October, 2007 and March, 2009 as the Vanguard Target Retirement Fund lost 

33% of its value (Schreiner, 2009).  

 Financial risk managers many also need to adjust their risk management 

techniques if correlations exhibit changes overtime. One way through which firms 

manage their exposure to market risk is the method of value at risk (VAR). For a given 

portfolio of assets, the N-day X-percent VAR specifies the loss amount that the portfolio 

is expected not to exceed in N-days with X-percent certainty. Firms and regulatory 

agencies often use this method to determine the amount of capital firms need to hold to 

absorb unexpected losses. In practice, risk managers often utilize only historical data 

from a relatively short time interval when calculating volatility and correlations for inputs 
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into VAR-based models. For example, one major banking company reported to use the 

variation of market prices in the most recent 264 days in its calculation of VAR (Chase 

Manhattan 1999). The use of a relatively short time period of input data for VAR 

calculation does have its desirable features and appeal. Since some financial market 

conditions tend to change over time, using data from the distant past may lead to 

erroneous and outdated depictions of the market. Nevertheless, if correlations are time-

variant, using only the most recent data for VAR calculations may also have dangerous 

implications. Specifically, if market conditions rapidly and significantly deteriorate, the 

estimated asset correlation using data from the recent past of market stability could be far 

from the actual behaviors in the market, leading to a false sense of security. As a result, 

this assessment of market risk may overstate the amount of diversification currently 

present in the portfolio, misleading firms to take on excessive risk. Similarly, VAR may 

also understate the amount of diversification currently present in the portfolio during 

times of low market uncertainty, misleading firms to further diversify. The high cost 

associated with excessive diversification could impose a substantial strain on companies’ 

bottom-line.  

Because of the losses many firms incurred during the financial crisis, more 

professionals have come to realize the importance of a more complete understanding of 

the behavior of correlations. For example, Cassandra Toroian, the president and chief 

investment officer of Bell Rock Capital LLC, recently said in an interview, “It has 

become more important over the years, because the world is more interconnected, for 

people to understand on a macro level how things relate to each other… people look to 

use these kinds of [correlation analysis] because they're trying to smooth out the volatility 

in their investments" (WSJ). The growing need for a more thorough understanding of 

time-variant correlation movements among portfolio managers is a central motivation for 

the research presented in this paper. 
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 Due to the important implications of correlation time variability, there has been 

some previous research done on the topic. For example, in their 2002 paper, Campbell, 

Koedijk, and Kofman found evidence of elevated correlations in international equity 

returns during periods of low market returns (Campbell, Koedijk, Kofman 2002).  In 

another paper published in 2002, Butler and Joaquin conjectured a systematic increase in 

asset correlations during bear markets compared to that during bull markets (Butler, 

Joaquin 2002). Although many previous research hint at the time-variability of asset 

correlations, none has produced results supporting its existence as convincing as those 

presented in this paper. 

This paper presents some striking evidence for the time variability of asset 

correlations. This is accomplished through the use of high-frequency price data. 

Probabilists have long known about the benefits that high-frequency data provides. 

Specifically, high-frequency data generates very reliable measures of volatility and 

correlations. Anderson and Bollerslev also noted that the use of high-frequency price data 

improves measurements of volatility and correlations than using just daily closing data 

along (1998). Most previous research on the subject of time-variant correlations utilizes 

only daily closing data. This research uses high-frequency price data to produce much 

more convincing results.   

 Through the use of high-frequency data, this paper aims to examine the link 

between asset correlations and market volatility. The primary reason behind this 

exploration is the idea that if a relationship could be established between asset 

correlations and market volatility, which is a time-variant measure, then it is reasonable 

to conclude that asset correlations are also time-variant. Another motivation for exploring 

asset correlations in conjunction with market volatility is that portfolio diversification 

becomes more important in market conditions characterized by heightened volatility. As 

noted earlier, the level of diversification present in any portfolio is directly linked to the 
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correlations between assets in that portfolio. Thus, it is crucial to understand the behavior 

of asset correlations in relation to market volatility.  

Before proceeding, a road map of the paper is presented here. First, in section 2, 

this paper presents some theoretical background on stochastic models of returns, 

volatility, correlation, as well as the benefits of using high-frequency data. Next, section 

3 introduces the high-frequency data utilized in this research and discusses some of the 

concerns associated with using high-frequency data. To provide justification for using 

high-frequency data, section 3 also offers insight into microstructure noise reduction. 

Then, section 4 gives a brief discussion of Fisher Transformation, a statistical tool 

utilized in this research. The results of this research are presented in section 5, which 

offers strong evidence supporting a relationship between asset correlations and market 

volatility. Lastly, a discussion is given in section 6 on the results provided by this 

research.   
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2. Model 

The foundation for estimating realized variance and covariance rests on the 

stochastic volatility model, defined by the differential equation: 

����� = 	������ + 
��������    (1) 

where the change in a stock’s log-price	����� is a function of the time-variant drift 

component ������ and the time-variant stochastic component 
��������, in which 

����� is a standard Brownian motion. This model treats the price, and thus the returns, 

of the underlying security as a random process. The geometric returns (�� of stocks can 

be calculated using the logarithmic price (�): 

�
,� = log	��
,��      (2) 

�
,� = �
,� − �
,���			      (3) 

Here, �
,� denotes the observed price of the underlying asset at time j in period t. The use 

of log-price here allows for convenient calculations of the percent change in stock prices. 

To find a link between market volatility and asset returns correlation, appropriate 

methods must be applied on the given high-frequency price data to estimate the 

underlying volatility as well as correlation. A common method for approximating the 

underlying volatility of the returns of a given asset is to calculate the realized variance 

(Anderson and Bollerslev, 1998). The realized variance can be computed over some time 

period as the sum of the squared high-frequency geometric returns within that time 

period:  

��
 = ∑ ��
,����
���      (4) 
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where � is the log return and � is the total number of data samples in period �. Anderson 

and Bollerslev have noted that realized variance converges in frequency to the integrated 

variance plus a discrete jump component: 

  

            (5) 

 

Thus, assuming the magnitude of the jump component is relatively small, realized 

variance can be used as an effective estimate of the underlying volatility. The research 

presented in the paper utilizes realized standard deviation as the measure for volatility. 

Realized standard deviation is defined as: 

����
 = ���	
     (6) 

where ��	
 is the realized variance as defined above.  

The underlying covariance of the returns of two given assets can be estimated 

using the realized covariance. The realized covariance between two assets, say A and B, 

can be calculated over some time period as the sum of the products of high-frequency 

geometric returns of those two assets: 

� !"#$,
 = ∑ �#,
,��$,
,��
���      (7) 

Anderson and Bollerslev have noted that due to the convergence property of realized 

covariance, it could be used as an effective estimate of asset correlations when working 

with high-frequency data (1998). Realized covariance could then be used in conjunction 

with the realized variance of both assets A and B to calculate the realized correlation 

coefficient: 
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� !��#$,
 = %&'()*,+
�%,),+×�%,*,+

		     (8) 

This research will utilize the realized correlation as a proxy measure for asset 

correlations. This is because realized correlation measures provide a scale that allows for 

convenient statistical comparisons across asset pairs.  

 It is important to note that these measures are applied to high-frequency data sets. 

The use of high-frequency data provides many benefits over alternative data sets. For 

instance, high-frequency data contains more information than daily data alone. This 

allows for more reliable realized measures of volatility and correlation. Moreover, the 

recent non-parametric approach using high-frequency data has also been found successful 

in estimating volatility and correlation. The framework for the integration of high-

frequency intraday data into the estimations of realized variance and correlations are 

provided by Andersen, Bollerslev, Diebold, and Labys (2003). 
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3. Data 

3.1 Raw Data 

The research presented in this paper utilizes the price data for the S&P 500 (SPY), Bank 

of America (BAC), Goldman Sachs (GS), JPMorgan (JPM), Coca-Cola (HPQ), Wal-Mart 

(WMT), and Verizon (VZ) obtained from price-data.com, a commercial data provider. 

These particular companies were chosen for their market capitalization (i.e. more 

liquidity) and representation across different industries including financial, consumer 

conglomerate, and telecommunication. The data sets contain minute-by-minute stock 

prices from 9:35 am to 3:59 pm in the period between April 4, 1997 and January 7, 2009. 

The S&P 500 (SPY) was used as the market index for the purpose of this research. Stocks 

were randomly paired up for analysis: WMT and VZ, WMT and JPM, WMT and KO, 

BAC and GS, JPM and GS. Note that some of the chosen stocks were not publically 

traded by 1997, so its corresponding data set does not date all the way back to April 4th, 

1997. For those stocks, only periods in which price data were available are considered in 

this research. 

 

3.2 Market Microstructure Noise 

Since the market often do not adjust fast enough to keep the spot prices exactly in 

line with the fundamental values as determined by common asset pricing models, our 

data sets on stock prices do not precisely reflect their theoretical counterparts. Instead, 

observed stock prices contain a microstructure noise element that could distort the 

estimations of volatility and correlation. Under ideal modeling conditions, the errors of 

estimating volatility with realized variance decreases as sampling frequency increases; 

however, this is not the case when working with market prices. As mentioned above, the 
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observed asset prices (�
� are not always equivalent to the fundamental prices of the 

stock (�
� : 

�
 ≠ �
	�/012�34�     (9) 

This may be due to the inherent frictions in the market that may arise from various factors 

such as the lack of liquidity. According to asset pricing theory, the price of a stock at any 

given time should be equivalent to the sum of all discounted future cash flows associated 

with the stock. A well-known model that implements this widely accepted theory is the 

Gordon growth model, 

� = 5
6�7     (10) 

where �, the underlying price of the asset, is equal to the expected future dividend 

payment (8) divided by the discount rate (9) as determined by the CAPM minus the 

expected perpetual growth rate (:) of the dividends. When the market determines the 

prices of different assets using the core Gordon growth model or a more sophisticated 

variation of this model, small changes to the input of the model could have a significant 

effect on the theoretical price output. For example, supposed a company is projected to 

issue a dividend of $1.00 per share in the upcoming year. Its discount rate (9) and 

perpetual growth rate (:) are estimated to be 8 and 6 percent respectively. The underlying 

price of the asset as determined by the Gordon growth model would be: 

� = 5
6�7 =

$�.==
=.=>�=.=? = $50.00   (11) 

Now, suppose the market turns more risk adverse and changes its required rate of return 

for similar assets from 8 percent to 10 percent. The new underlying price of the asset 

according to the Gordon growth model is: 

� = 5
6�7 =

$�.==
=.�=�=.=? = $25.00    (12) 
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This example epitomizes the phenomenon that a relatively small change in the market’s 

view of input factors such as the discount rate could have a tremendous impact on the 

theoretical stock price of an asset. Moreover, determining the exact discount and growth 

rates of various assets are known to be notoriously difficult. Combining the two above 

observations, it directly follows that the market price of an asset at any given point in 

time is extremely susceptible to microstructure noise and may not reflect the underlying 

value of the asset. 

Given the existence of microstructure noise, it makes sense to think of the log 

observed price �
 = 3!:��
�  as the natural log of the fundamental price of the stock 

�3!:��
��  plus a microstructure noise component (C
�: 

�
 = 3!:��
� + C
     (13) 

Then, the observed geometric returns can then be expressed as: 

�
DE − �
 = 3!:��
DE� − 3!:��
� + C
DE − C
  (14) 

Note that the size of the theoretical component (3!:��
DE� − 3!:��
�) is positively 

correlated with the size of the interval (F) while both the microstructure noise component 

(C
DE and C
) are independent of interval size. As the data is sampled more frequently, the 

magnitude of 3!:��
DE� − 3!:��
� decreases while the magnitude of C
DE − C
	 stays the 

same. Microstructure noise thus becomes more pronounced in the calculations as 

sampling frequency increases. As a result, many researchers have chosen to sample the 

data at intervals ranging from five to fifteen minutes in order to minimize the effects of 

microstructure noise (Zhang. 2005). 
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3.3 Signature Plots  

Due to the aforementioned distortions that microstructure noise could potentially 

cause, it is not suitable for the purposes of this research to use all the available data to 

estimate market standard deviation and asset returns correlation coefficients. Ideally, it 

would be best to choose a high sampling frequency in order to make use of as much 

available data as possible when making statistical inferences; however, due to the 

existence of microstructure noise, a choice of a data frequency that is excessively high 

could accentuate unwanted distortions that could significantly alter the results of this 

research. Thus, it is desirable to strike a balance and find an optimal sampling frequency. 

In order to find an optimal sampling frequency to use for the calculation of both realized 

market standard deviation as well as realized correlation coefficients, statistical methods 

were used to create volatility as well as correlation signature plots  

A volatility signature plot shows the average calculated daily realized volatility as 

a function of sampling frequency. Because this research is only concerned with the 

market volatility, it is sufficient to create volatility signature plots for the market along. A 

volatility signature plot for SPY is shown in figure 1, with average daily variance on the 

y-axis and the number of minutes between each price data on the x-axis. In the absence of 

market microstructure noise, the average calculated daily realized variance is 

uncorrelated with the sampling frequency used in the calculation. Thus, the volatility 

signature plot should appear relatively horizontal (Andersen, Bollerslev, Diebold, and 

Labys, 1999). One would expect the presence of microstructure noise to create an upward 

distortion on calculated volatility, especially at high sampling frequencies, as market 

inefficiencies cause higher variations in stock prices. As shown in figure 1, the presence 

of microstructure noise does indeed create a significant upward distortion at high 

sampling frequencies, especially when working with data more dense than that at the 5-

minute sampling frequency. 
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Analogously, a correlation signature plot shows the average calculated daily 

realized correlation between the returns of two assets as a function of sampling 

frequency. Because the research examines the realized correlation coefficients of every 

asset pair chosen, correlation signature plots were created for each asset pair. However, 

for presentation purposes, only the correlation signature plot for Bank of America (BAC) 

and Goldman Sachs (GS) is included (figure 2). The average daily realized correlation 

coefficient is graphed on the y-axis while the number of minutes between each price data 

is shown on the x-axis. As is the case with volatility, average calculated asset correlations 

should be uncorrelated with sampling frequency in the absence of microstructure noise. 

In that case, the correlation signature plots would appear relatively horizontal. Given the 

existence of microstructure noise, one would expect a downward distortion on the 

correlation coefficient between positively correlated assets because market inefficiencies 

cause asset prices to have independent variability. This is indeed the case with all pairs of 

assets tested. Figure 2 exemplifies the downward distortion on asset returns correlations. 

The overall appearance of figure 2 generalizes to correlations signature plots of all asset 

pairs examined. The distortions caused by microstructure noise are especially significant 

when working with data more dense than that at the 5-minute sampling frequency.  

The volatility and correlation signature plots both demonstrate the potential 

significant distortionary effects that market microstructure noise can cause. However, the 

distortions seem to be dramatically less significant beyond the 10-minute level. The 11-

minute sampling frequency was chosen as the optimal to be used for statistical inference 

in this research. The 11 minute sampling frequency balances the trade-offs between 

sample size and noise distortions. Moreover, 11 divides event into 385, the number of 

minutes in a trading day. Thus the choice of 11 minute sampling frequency is also 

convenient when working with the data set.  
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3.4 Data Partitions 

 To get a better sense of the fundamental relationship between market standard 

deviation and asset returns correlation coefficients examined in this research, it is 

desirable to explore the relationship over different length of periods. Thus, three 

partitions were used to make statistical inferences for each asset pair. The first partition 

separates the data into disjoint 1-day periods; the second partition separates the data into 

disjoint 5-day periods; and the third partition separates the data into disjoint 20-day 

periods. For each partition, realized market standard deviation and realized asset-pair 

returns correlation coefficients were calculated over each separated period and matched 

up for analysis.  

 

 

 

 

 

 

 

 

 

 

 

 



Examination of Time-Variant Asset Correlations Using High-Frequency Data 

 

17 

 

4. Fisher Transformation  

This research utilizes a common method in statistics called the Fisher 

Transformation. Hypotheses about the value of the population correlation coefficient 

between variables X and Y can be tested using the Fisher transformation applied to the 

sample correlation coefficient (G�. The transformation is defined by: 

GH = �
� ln

�DJ
��J     (15) 

If �K, L� has a bivariate normal distribution and the �KM, LM� pairs used to form the sample 

correlation coefficient are independent, then GH is approximately distributed 

N	 O	�� ln
�DJ
��J	 ,

�
√Q�RS	          (16) 

where n is the sample size. The Fisher transformation maps the correlation coefficient, 

which has a range of [-1, 1], to the entire real numbers set (-∞, ∞). 

 If one were to examine the relationship between two variables, say G and A, 

where G is distributed on [-1, 1] and A on (-∞, ∞), it would not be ideal to directly 

implement a linear regression analysis on the variables. This is because linear regression 

works the best when it is implemented on two variables that are both distributed on (-∞, 

∞). It does not provide reliable results for a variable that is distributed between -1 and 1. 

In this case, since G  is distributed on [-1, 1], a regression analysis should instead be done 

on the Fisher transformed	G, call this GH, and A. Now, the regression becomes 

GH = �
� ln	�

�DJ
��J� = TU= + TU� × A    (17) 

where TU= and TU� are the regression coefficients. The Fisher transformation establishes the 

quasi-normality that is desired for regression analysis.  
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If one uses the estimated regressions for forecasting or just plotting the regression 

line, the output values would be in units of the transformed variable, GH; however, since 

the primary objective is to examine the relationship between G and A, one has to reverse 

the transformation on the predicted value of GH. Thus, the relationship becomes: 

G = WXYZ��
WXYZD� =

WX�[\]^[\_`���
WX�[\]^[\_`�D�    (18) 

This process is exactly analogous to using the log of a variable as the dependent variable 

in a linear regression. The logarithmic function transforms a variable that is strictly 

positive to the entire real number set. Like the Fisher transformation, log transformation 

is often used to establish normality for linear regression analysis.  

The Fisher transformation adjustment of asset correlations provides a scale that 

allows for direct implementation of linear regression analysis. For the purposes of the 

research presented in this paper, Fisher transformation is primarily implemented to 

transform the realized correlation coefficient, which is distributed on the interval [-1, 1], 

to a normally distributed random variable with range equal to the entire real number set. 

This new random variable is well-behaved and thus could be used for a more significant 

implementation of regression analysis.  

 

 

 

 

 

 

 



Examination of Time-Variant Asset Correlations Using High-Frequency Data 

 

19 

 

5. Results 

This section presents some striking evidence supporting the time variability of 

correlations. These results are presented through a myriad of plots and linear regression 

results. In order to effectively show the results, this section first offers a discussion of the 

process to create the plots using high-frequency data. Next, the results of different linear 

regression implementations are presented. Finally, this section concludes with a 

discussion of the results of linear regression analysis.   

Numerous plots were created throughout the research process for various asset 

pairs using different partitions. The plots of the asset-pair Bank of America and Goldman 

Sachs using the 5-day sampling period length partition are provided in this paper for 

visual representation (figures 1 through 5). The choice to present this asset pair is 

random. Moreover, it should be noted that the correlation trends shown in the provided 

plots generalize to all data partitions as well as all other asset pairs examined in the 

research. 

The first set of figures plot the realized correlation coefficients and realized 

market standard deviation to get an initial sense of the data. The realized correlation 

coefficient of the asset pair and the realized market standard deviation of the S&P 500 

were calculated for each partition (1-day, 5-days, 20-days length sampling periods) using 

method described in the section 2.  A scatter plot was generated for each partition with 

returns correlation coefficient on the vertical-axis and market returns standard deviation 

on the horizontal (in the case of figure 3, 5-day sampling period partition). Each data 

point on the graph plots the realized returns correlation of the two assets (in the case of 

figure 3, Bank of America and Goldman Sachs) and the realized market standard 

deviation for a particular sampling period. The graph seems to show a positive 

relationship between two variables, however, the relationship does not look linear.  
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Next, log-transformations were implemented on market standard deviation in an 

attempt to achieve normality for regression analysis.  Because realized market standard 

deviation is always positive, it is not a good input for regression analysis. The logarithmic 

function maps the realized market standard deviation from [0, ∞) to (-∞, ∞). This 

transformation produces a near-normal distribution and provides a better scale for 

regression analysis. The plot of realized returns correlation versus log-transformed 

realized market standard deviation is provided in figure 4. Each data point on the graph 

plots the realized returns correlation coefficient and the log-transformed realized market 

standard deviation for a particular sampling period. The scatter plot still does not seem to 

suggest a completely linear relationship. This is because the realized correlation 

coefficients have not been normalized yet, but a regression analysis was nonetheless 

implemented. Specifically, the regression analysis was implemented on the realized asset 

returns correlation versus log-transformed realized market standard deviation for each 

partition: 

 !��M = TU= + TU� × 3a��9����M�	    (19) 

The results of the linear regression are shown in tables 1 through 3 and a graph of the 

linear regression for the asset pair Bank of America and Goldman Sachs using the 5 

minute sampling frequency is included in figure 5. 

Finally, the realized asset correlation coefficients are normalized through the 

Fisher transformations. Since correlation coefficients is distributed between -1 and 1, 

directly linear regression analysis may not be desirable. Instead, the Fisher transformation 

maps realized asset correlation coefficients from [-1, 1] to (-∞, ∞). The distribution of the 

new variable is near-normal, allowing for robust regression analysis. The plot of Fisher-

transformed realized asset returns correlation versus log-transformed realized market 

standard deviation is provided in figure 5. Each data point on the graph plots the Fisher-

transformed realized returns correlation coefficient and the log-transformed realized 
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market standard deviation for a particular sampling period. The scatter plot seems to 

suggest a linear relationship between the two variables. Moreover, both Fisher-

transformed realized asset correlation coefficients and log-transformed realized market 

standard deviation are near-normally distributed. Thus, linear regression analysis could 

implemented to effectively analyze their relationship.  

Linear regressions of Fisher transformed realized asset returns correlation 

coefficients versus log-transformed realized market standard deviation were generated: 

�
� ln	�

�D&'bbc
��&'bbc

� = TU= + TU� × ln	��9����M�	   (20) 

The numerical results of the regressions are presented in tables 1 through 3 and a graph of 

the regression for the asset pair Bank of America and Goldman Sachs using the 5 minute 

sampling frequency is included in figure 5. 

All of the regression coefficients and t-statistics are summarized in tables 1-3. The t-

statistics suggests that the relationship between returns correlation and log market 

standard deviation, Fisher transformed returns correlation and market standard deviation, 

as well as Fisher transformed standard deviation and log market standard deviation are 

significant at virtually every significance level for every asset pair examined, suggesting 

the existence of a positive relationship exists between the returns correlation of stocks 

and market volatility. 

Figure 5 presents striking evidence supporting the time variant nature of asset 

correlations. It is clear from figure 5 that there is a significant positive linear relationship 

between Fisher-transformed asset correlation coefficients and log-transformed market 

standard deviation. This suggests that there is also a significant relationship between asset 

correlation coefficients and market standard deviation. Although this relationship is not 

linear, it is still reasonable to infer that asset correlation changes as volatility in the 
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market changes. Since it is known that market volatility is time variant, one can conclude 

that asset correlations are time variant as well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Examination of Time-Variant Asset Correlations Using High-Frequency Data 

 

23 

 

6. Conclusion and Discussions 

The aim of this research is to explore the time-variant nature of volatility using high-

frequency data. This is done through an empirical exploration of the relationship between 

asset correlations and market volatility using high-frequency data. The most notable 

difference between this research and previous research on the topic is the use of high-

frequency data. High-frequency data generates very reliable measures of volatility and 

correlations which could be used to produce more accurate results. The results of this 

research present striking evidence supporting the time-variant nature of asset correlations 

(figure 5). Specially, the research results strongly support the existence of a statistically 

significant positive relationship between assets returns correlation and market volatility. 

The finding has crucial implications for portfolio managers as well as risk management 

practices.  

In addition to the potential problems that the link between correlation and market 

volatility could cause for risk managers discussed in the introduction, the validity of 

stress testing and worst case scenario analysis could also be threatened by this 

phenomenon. These risk measures utilize recent price data to consider the possible risks 

that could be experience in a period of high volatility; however, the measures do not 

explicitly take into account the increase in asset correlations during period of market 

stress. These techniques could mislead the risk manager into a false sense of security 

when the portfolio is in fact not sufficiently diversified. Instead, risk managers should 

also consider information from historical periods of heightened volatility to form 

estimates of correlation conditioned on volatility. These conditional correlations could be 

more relevant then be used to evaluate the possible detrimental effects due to a period of 

high volatility. Risk managers should not consider the possible effects of a period of high 

volatility without also taking into account the effect of increased asset correlations.  
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Finally portfolio managers must understand the relationship between volatility and 

correlations. Portfolio managers largely depend on diversification to hedge various 

potential market risks. The degrees to which managers diversify their portfolio mainly 

depend on the returns correlation of assets held in their portfolio. If diversification was 

done on the basis of correlations calculated with data from periods of low market 

volatility, it may not be sufficient in a bear market when market experience high 

volatility. Correlation breakdowns occur in periods of high market volatility, causing a 

decrease in the degree of diversification precisely when it is needed the most. Portfolio 

manager must be aware of this phenomenon and diversify with the link between volatility 

and correlation in mind.   
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Table 1- Regression Results (Sampling Period Length- 1 day) 

 

 

 X-variable Y-variable β
1
 t-stat β

0
 t-stat R

2
 

BAC & 
GS 

Corr log(MktStd) 0.148 17.55 1.140 28.39 0.0955 

 Fisher Corr log(MktStd) 0.229 18.11 1.600 26.20 0.1200 

JPM & 
GS 

Corr log(MktStd) 0.134 15.77 1.098 27.36 0.0835 

 Fisher Corr log(MktStd) 0.214 16.51 1.572 25.06 0.1058 

WMT 
& JPM 

Corr log(MktStd) 0.1563 18.68 1.086 27.76 0.1019 

 Fisher Corr log(MktStd) 0.207 18.54 1.373 25.92 0.1151 

WMT 
& KO 

Corr log(MktStd) 0.148 15.29 0.983 21.59 0.0851 

 Fisher Corr log(MktStd) 0.188 15.55 1.206 21.02 0.0975 

WMT 
& VZ 

Corr log(MktStd) 0.195 22.66 1.243 30.42 0.1634 

 Fisher Corr log(MktStd) 0.247 21.97 1.533 28.30 0.1768 

 

 

 

 

 

 

KEY 

Corr: Correlation Coefficient 

Fisher Corr: Fisher Transformed Correlation Coefficient 

MktStd: Market Standard Deviation 

log(MktStd): Log Market Standard Deviation 
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Table 2- Regression Results (Sampling Period Length- 5 days) 

 

 

 X-
variable 

Y-variable β
1
 t-stat β

0
 t-stat R

2
 

BAC & 
GS 

Corr log(MktStd) 0.1290 9.50 0.956 17.79 0.1131 

 Fisher Corr log(MktStd) 0.1878 10.01 1.248 16.52 0.1348 

JPM & 
GS 

Corr log(MktStd) 0.1004 8.42 0.881 18.44 0.0860 

 Fisher Corr log(MktStd) 0.1537 8.85 1.161 10.45 0.1014 

WMT 
& JPM 

Corr log(MktStd) 0.1233 10.17 0.832 17.82 0.1336 

 Fisher Corr log(MktStd) 0.1531 10.31 0.976 16.84 0.1431 

WMT 
& KO 

Corr log(MktStd) 0.1242 8.78 0.768 13.97 0.1298 

 Fisher Corr log(MktStd) 0.1504 8.65 0.889 13.02 0.1439 

WMT 
& VZ 

Corr log(MktStd) 0.1725 13.14 0.987 18.91 0.2462 

 Fisher Corr log(MktStd) 0.210 12.88 1.156 17.68 0.2679 

 

 

 

 

 

KEY 

Corr: Correlation Coefficient 

Fisher Corr: Fisher Transformed Correlation Coefficient 

MktStd: Market Standard Deviation 

log(MktStd): Log Market Standard Deviation 
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Table 3- Regression Results (Sampling Period Length- 20 days) 

 

 

 X-
variable 

Y-variable β
1
 t-stat β

0
 t-stat R

2
 

BAC & 
GS 

Corr log(MktStd) 0.1314 5.74 0.869 11.64 0.1338 

 Fisher Corr log(MktStd) 0.186 6.10 1.098 10.80 0.1562 

JPM & 
GS 

Corr log(MktStd) 0.0843 4.60 0.763 11.98 0.0858 

 Fisher Corr log(MktStd) 0.1316 5.03 0.979 10.67 0.1030 

WMT 
& JPM 

Corr log(MktStd) 0.1229 6.69 0.735 12.59 0.2021 

 Fisher Corr log(MktStd) 0.1470 6.84 0.836 11.99 0.2084 

WMT 
& KO 

Corr log(MktStd) 0.1240 5.90 0.672 9.92 0.2040 

 Fisher Corr log(MktStd) 0.1463 5.80 0.756 9.20 0.2149 

WMT 
& VZ 

Corr log(MktStd) 0.1618 8.12 0.828 12.39 0.3351 

 Fisher Corr log(MktStd) 0.1947 8.06 0.951 11.70 0.3593 

 

 

 

 

 

KEY 

Corr: Correlation Coefficient 

Fisher Corr: Fisher Transformed Correlation Coefficient 

MktStd: Market Standard Deviation 

log(MktStd): Log Market Standard Deviation 
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Figure 1 

SPY Volatility Signature Plot 
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Figure 2 

BAC and GS Correlation Coefficient Signature  

(Sampling Period Length- 5 day) 
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Figure 3 

BAC and GS Returns Correlation Coefficient versus Market 

Standard Deviation  

(Sampling Period Length- 5 Days) 

 

 

 

 

 

Each data point represents the Bank of America and Goldman Sachs realized returns correlation coefficient 
and market (SPY) realized returns standard deviation calculated over a 5-day period. The market standard 
deviation is graphed on the x-axis while the correlation coefficient is graphed on the y-axis. 
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Figure 4 

BAC and GS Returns Correlation Coefficient versus Log Market 

Standard Deviation 

(Sampling Period Length- 5 days) 

 

 

 

 

 

Each data point represents the Bank of America and Goldman Sachs realized returns correlation coefficient 
and log-transformed market (SPY) realized returns standard deviation calculated over a 5-day period. A 
linear regression ( !��M = 0.956 	 0.1290 - 3a��9����M�	) is also shown. The log-transformed market 
standard deviation is graphed on the x-axis while the correlation coefficient is graphed on the y-axis. 
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Figure 5 

BAC and GS Fisher-Transformed Returns Correlation versus Log-

Transformed Market Standard Deviation  

(Sampling Period Length- 5 days) 

 

 

 

 

Each data point represents the Bank of America and Goldman Sachs Fisher-transformed realized returns 
correlation coefficient and log-transformed market (SPY) realized returns standard deviation calculated 
over a 5-day period. A linear regression (ghij/� !��M � 1.248 	 0.1878 - 3a��9����M�	) is also shown. 
The natural log-transformed market standard deviation is graphed on the x-axis while the Fisher-
transformed correlation coefficient is graphed on the y-axis. 
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