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Abstract

Financial risk assessment plays a vital role in accelerating
the global energy transition and achieving the 1.5°C climate
target. This study develops a three-stage machine learning
framework to analyze the impact of fossil fuel price volatility
on the weighted average cost of capital (WACC) for energy
transition projects. First, a hybrid Long Short-Term Memory-
Gaussian Regression Process (LSTM-GRP) model forecasts
fossil fuel prices, followed by an LSTM-based inflation pre-
dictor. In the final stage, an AutoML (AutoGluon) regression
model evaluates how variations in fossil fuel prices and infla-
tion influence WACC across nine energy sectors and multiple
global regions.

The results show that the WACC in energy-importing regions
like Europe (R?=0.67) and China(R?=0.64) is highly sensitive
to price shocks, making their decarbonization pathways vul-
nerable to external market instability. Conversely, the energy-
exporting countries in Middle East (R?=0.54) exhibit lower
sensitivity, indicating a fiscal cushion that may reduce the
economic impetus for transition. The findings demonstrate
how energy price volatility shapes financing conditions and
investment risks for renewable energy deployment. This ap-
proach integrates Al-driven forecasting with climate finance
modeling, providing an interpretable and data-driven tool
to support policy design, green investment strategies, and
climate-resilient energy planning.

Introduction

The urgency of mitigating global warming necessitates a
rapid energy transition to achieve the Sustainable Develop-
ment Goals (SDGs) (Messerli et al. 2019). Since energy con-
sumption is the primary source of global greenhouse gas
emissions (Bogdanov et al. 2021), a transformation of en-
ergy systems is essential. This transition is not solely a tech-
nological endeavor (Chen et al. 2019); it also encompasses
critical economic dimensions (Anonymous 2024), Among
which the weighted average cost of capital (WACC) is a
critical metric (Stewart and Shirvan 2022). It represents the
average return required by capital providers, balancing the
costs of debt and equity financing (Bachner, Mayer, and
Steininger 2019). The environmental consequences of this
financial indicator are profound; modeling shows that high
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capital costs in developing economies can reduce green en-
ergy production by 35% and delay the achievement of net-
zero emissions by a full decade(Ameli et al. 2021).

A pernicious challenge for the energy transition is its in-
herent vulnerability to shocks from the legacy fossil fuel
system it seeks to replace. Volatility in global oil, gas, and
coal prices propagates through the financial system, influ-
encing inflation, interest rates, and investor risk perception,
thereby destabilizing the WACC for capital-intensive renew-
able projects(Melodia and Karlsson 2022). This financial
vulnerability translates directly into environmental risk, as
it can slow the pace of decarbonization(Egli, Steffen, and
Schmidt 2019). Existing research has successfully eluci-
dated the impact of fossil fuel price volatility on market risk
for energy companies (Dobrowolski et al. 2022a; Ayinde and
Adeyemi 2024). However, less attention has been devoted to
evaluating its influence on WACC within the context of en-
ergy transition projects. Additionally, the varied impacts of
fossil fuel price volatility across different energy sectors and
regions have not been fully explored.

Therefore, this study focuses on the upcoming decade and
seeks to answer the following questions:

* How do fossil fuel price fluctuations affect the WACC of
energy transition projects, influencing the pace of renew-
able energy deployment?

* How do these price dynamics affect capital costs across
regions, particularly between fuel-importing and fuel-
exporting countries, and how should financing strategies
for low-carbon projects be shaped?

Literature review
Calculation of WACC

For the WACC data, this study mainly uses previous study’s
(Calcaterra et al. 2024) dataset, which contains their predic-
tions for the WACC for different regions. The calculation be-
gins with analyzing past financial data at the enterprise level,
calculating the cost of debt and equity, and incorporating
the leverage ratio and tax rate to determine each company’s
WACC as follows(Polzin et al. 2019; Kling et al. 2021) :

WACCU = Lit X Tpit X (1 —TaxRateit) + (1 — Lit) XTEit
where W ACC; represents the weighted average cost of
capital for firm i at time t, L;; is the leverage ratio, rp;;



is the cost of debt, r ;¢ is the cost of equity, and TaxRate;; is
the tax rate for firm i at time t.

And the national WACC is then derived by weighting and
averaging each company’s WACC based on its share of the
national market revenue. (Egli, Steffen, and Schmidt 2019;
Kling et al. 2021).

WACCy =)

Revenue;;
Total Revenue,;

) x WACCy

Where W ACC\; represents the weighted average cost of
capital for country c at time t, Revenue;; is the revenue of
firm i at time t, and Total Revenue.; is the total revenue of
country c at time t.

After that, previous study(Calcaterra et al. 2024) intro-
duces a time dimension and financial learning, simulating
how technological progress and experience accumulation
can lower WACC by reducing technological risks and the
required safety margin. The CoC-convergence scenario ex-
amines the trend of WACC in developing countries converg-
ing towards levels seen in developed countries.

( }/tn T ) -
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Where CoCy,1 is the cost of capital for country n at time

t and technology T, CoCoy, T is the initial cost of capital,

Yin, T is the cumulative technology deployment, Yo, T is the

initial technology deployment , and bT' is a parameter.
Utilizing the aforementioned data and assumptions, it can

employ a suite of climate-energy-economy models to simu-

late the WACC across various regions and energy sectors.

Impact of Fossil Fuel Prices on WACC Components

Previous subsection outlines calculating W ACC}; using
firm-level data, in which the cost of equity (rg;:) and the
cost of debt (rp;¢) are not static. They are profoundly influ-
enced by broader market dynamics, among which fossil fuel
prices play a critical role (Melodia and Karlsson 2022).
The cost of equity(r g;¢) is estimated using the Capital As-
set Pricing Model (CAPM), defining the expected return as:

TEit =Tft+ ﬂi(rm,t - 71f,if)

Where 1+ is the risk-free rate at time t, B3; is the firm’s sys-
tematic risk, and (v — T5+) is the equity risk premium
(ERP).

Fossil fuel price could influence each component of the
CAPM equation. The substitution effect shows that higher
fossil fuel prices enhance the economic competitiveness of
renewable energy projects, lowering their perceived risk and
thus the overall required return, rg;; (Melodia and Karls-
son 2022). Additionally, the impact on systematic risk (53;) is
ambiguous. Renewable assets can act as a hedge against fos-
sil fuel price volatility due to their zero fuel cost, implying a
lower S(Millischer et al. 2024). Conversely, if investors fo-
cus on substitution logic, renewable energy stock prices may
correlate with oil prices, leading to a higher 5 (Lieberman
2009). On the other hand, persistent fossil fuel price volatil-
ity highlights climate transition risks, leading investors to

demand a "brown penalty" for fossil fuel assets and offer
a "green premium" for renewables, effectively lowering the
required ERP for green projects (Shrimali 2021).

Similarly, the cost of debt(rp¢) is also susceptible to fos-
sil fuel price shocks, which are a major driver of inflation, of-
ten compelling central banks to raise policy rates (Vrinceanu
et al. 2020). This directly increases the economy-wide risk-
free rate (77 ), which serves as a benchmark for all borrow-
ing and raises 7 p;; for capital-intensive renewable projects
(Kjellevoll and Wilberg 2023). At the project level, high fos-
sil fuel prices can improve the value of a renewable project’s
fixed-price Power Purchase Agreement (PPA), reducing its
credit risk and potentially lowering the credit spread compo-
nent of rp;¢ (Duma, Cabré, and Kruger 2023). This is sup-
ported by growing evidence of a "green premium" in debt
markets, where lenders offer more favorable terms to renew-
able projects.

Therefore, the final calculated W ACC;; for a renewable
energy firm is a function not only of its internal financial
structure (L;;) but also of these external pressures that al-
ter the fundamental costs of its capital (rg;; and rp;;). The
interplay of these mechanisms is summarized in the table
below.

Table 1: Theoretical Channels of Fossil Fuel Price Transmis-
sion to Renewable Energy WACC

Price Signal Affected Component | Transmission Channel

Level Increase rg (Cost of Equity) Substitution Effect

Level/Volatility rg (Cost of Equity) Market Correlation

Volatility Increase | rg (Cost of Equity) Hedging Property

Volatility Increase | rg (Cost of Equity) Climate Risk Pricing
Volatility Increase | rp (Cost of Debt) Macroeconomic Contagion
Level Increase rp (Cost of Debt) Oft-taker Stability

Level Increase rp (Cost of Debt) PPA Contract Value

Volatility Increase | rp (Cost of Debt) Debt Market "Green Premium"

Ultimately, the net impact on the WACC of renewable en-
ergy projects hinges on the relative magnitude of these op-
posing forces: the project-level advantages stemming from
higher fossil fuel prices versus the detrimental consequences
of macroeconomic contagion.

Methodology

This study proposes a three-stage approach to assess the im-
pact of fossil fuel price fluctuations on WACC for energy
transition projects. The first stage predicts fossil fuel prices
using a hybrid LSTM-GRP model, and the second stage cal-
culates the corresponding inflation rates.

After that, the third stage evaluates the impact of fossil
fuel prices on WACC using AutoGluon model based on per-
formance metrics of R2, MAPE, and RMSE.

Stagel: Prediction of Fossil Fuel Prices

Since previous studies have proved the proficiency of Long
Short-Term Memory (LSTM) in handling sequence data
with long-term dependencies (Al-Selwi et al. 2024; Lin-
demann et al. 2021), and the advantages of Gaussian Re-
gression Process (GRP) (Lahmiri 2024; Rasmussen 2003)



in predicting fossil energy prices. This study uses a hy-
brid model combining LSTM and GRP to predict fossil fuel
prices (coal, oil, and natural gas) from 2026 to 2035(Figure

D).

Step 1.1: LSTM Model The primary forecasting model is
a LSTM network designed to learn intricate non-linear pat-
terns from historical time-series data. To represent the cycli-
cal nature of monthly patterns, we transform the month of
the year, m, into two continuous sinusoidal features :

. [ 2mm 2mm |
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The model architecture integrates a convolutional layer for
local pattern extraction, followed by bidirectional LSTM
and GRU layers to capture long-range temporal dependen-
cies. An attention mechanism is subsequently applied, en-
abling the model to dynamically weight the importance of
different time steps in the input sequence during prediction
generation. The model predicts the price for the next time
step, and this prediction is then used to update the feature
set for the subsequent step, which is fed back into the model
to generate the next forecast.

Step 1.2: Forecast Refinement with Gaussian Process

Regression The point estimates generated by the LSTM

model are subsequently refined using a GRP model. We em-

ploy a composite kernel to model the underlying price func-
tion:

/ ||t — t/||2 2 /

k(t,t")y = C -exp <_2l2> +o2d(t,t)  (2)

where C' is the constant kernel and [ is the length-scale pa-
rameter.

This kernel incorporates a Radial Basis Function compo-
nent that encodes the assumption of smoothness in the un-
derlying function space. Given the initial predictions from
the LSTM model, represented as the vector ypr. The GRP
computes a predictive mean, serving as the price P, for
Stage 3, which is calculated as:

P.=K({t,X)K(X,X)+021 'ypr A3)

where K (t, X) is the vector of covariances between the test
point t and the training inputs X, and K (X, X) is the co-
variance matrix of the training inputs.

Stage2: Calculation of Inflation Rate

Inclusion of Inflation Rate as a Covariate In the model,
the inflation rate is included as a crucial covariate. As a
macroeconomically sensitive indicator, WACC is directly in-
fluenced by the prevailing interest rate environment, and the
inflation rate is a primary basis for central banks to adjust
monetary policies (Dobrowolski et al. 2022b). Additionally,
fossil fuel prices themselves are closely correlated with the
macroeconomic inflation levels (Kang, Park, and Suh 2020).

Forecasting Framework This study adopts a methodol-
ogy proven to be accurate in predicting inflation rate (Paran-
hos 2025), which models the inflation rate as a non-linear
function fitting problem :

Yzth = G(xz§ @h) + €24n 4

Figure 1: Architecture for Price-Prediction model: It in-
cludes a network with CNN, LSTM/GRU, attention(A), and
Normalization(N) layer, which is then smoothed by a GRP.

where Yy, is the inflation rate at a future horizon h, and
x4 is the vector of predictor variables containing relevant
macroeconomic indicators and their lags.

The function G(-) combines an LSTM structure with a
fully connected feed-forward (FF) network:

G(2.;0n) = grr(LSTM(2,;Ors7Mm); OFrF)  (5)

In this architecture, the LSTM first processes the sequential
input data to extract a set of dynamic factors. Subsequently,
the feed-forward takes these dynamic factors as input to gen-
erate the final inflation forecast.

To address the high sensitivity of neural network training
to random parameter initializations, we can employ an En-
semble Learning strategy for model optimization.

Specifically, the final forecast is calculated by averaging
the outputs of N independently trained models, each with a
different initialization:

N
. 1 .
Yens,z+h = N nZl Yn,z+h (6)

where Gy, .1, is the prediction from the n-th model.
The parameters Oy, for all models are estimated by mini-
mizing MSE:

z—h
A . 1
O, = argH@ﬂ}? { ~_h Z(szrh - G(xz§ Gh))2} (7

z=1
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Figure 2: Accuracy of Prediction Model: forecast results of oil prices from 2021 to 2024, using different models (LSTM-GRP,

SARIMA, XGBoost, LightGBM).

Stage3: Evaluation of WACC Based on Fossil Fuel
Price

To quantify the impact of fossil fuel price fluctuations on
the WACC, we employed an Automated Machine Learning
(AutoML) model, which can automate model selection, hy-
perparameter tuning, and ensembling.

Modeling Design This assessment model involves three
fossil fuel prices (Coal, Natural Gas, and Oil) and nine types
of energy transition projects. To isolate variables, we con-
structed and trained a total of 3 X 9 = 27 independent re-
gression models. In each model, the independent variables
consist of an energy price and the contemporaneous infla-
tion rate, while the dependent variable is the WACC for the
project. This approach aims to find a function f for each
project type p and energy source e, such that:

WACC,, = f(Pev genS,t) +e ®)

where WACC), is the capital cost for a specific project, P,
is the price, {ens ¢ represents the inflation rate, and € is the
irreducible error term.

Automated Modeling with AutoGluon We selected the
AutoGluon-Tabular framework to perform training and op-
timization. Since it could enhance model robustness and ac-
curacy through the following two techniques:
¢ j-fold Cross-Validation Bagging: It trains multiple base
models h; on different subsets of the training data created
via cross-validation. The final result, §jy,s is the average
of output of all base models:

1 J
e (2) = 5 D hy(w) ©)
j=1

* Auto Stacking: Let the set of base models be {h,,, }M_,.
A higher-level meta-model, H, is trained on the out-of-
fold predictions of these base models. The final result,

Ustack» 18 generated by this meta-model, which learns the
optimal way to combine the base model outputs:

Ustack () = H (h1(x), ha(z), ..., ha(x)) (10)

Through this automated process, we generated an optimized
model for each of the 27 regressions, best adapted to its data
characteristics.

Model Performance Evaluation Although AutoGluon
has built-in optimization targets during its training process,
we conducted an independent performance evaluation for
each final model after training was complete. The evalua-
tion metrics included R?, MAPE, and RMSE. These three
metrics were chosen to provide a comprehensive assessment
of the model’s performance from different perspectives: R?
measures the extent to which the model explains the vari-
ance in WACC, MAPE intuitively reflects the average per-
centage of prediction deviation, and RMSE quantifies the
dispersion of errors between predicted and actual values.
Together, these metrics provide a comprehensive and robust
basis for evaluating the predictive power of fossil fuel prices
on WACC.

Accuracy of the Prediction models

To validate the accuracy of the LSTM-GRP model, this
study employed four models (LSTM-GRP, SARIMA, XG-
Boost, and LightGBM) to forecast WTI crude oil prices
from 2021 to 2024 using data from 1982 to 2020. The pre-
dictions generated by these models were subsequently com-
pared with actual oil prices, as shown in Figure (2). Eval-
uation metrics revealed that the LSTM-GRP model outper-
formed the other models, achieving a coefficient of deter-
mination of 0.966. Additionally, the LSTM-GRP model ex-
hibited lower RMSE and MAE values of 2.105 and 1.6342,
respectively. Additionally, the accuracy of forecasting the in-
flation rate has been examined in previous studies(Paranhos
2025).
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Figure 3: Model Performance for Each Project:Comparison of R2, MAPE, and RMSE for estimating WACC across various

regions and energy transition projects.

Results

As shown in Figure 3, the experiment results demonstrate
that fossil fuel price fluctuations differentially impact vari-
ous energy transition projects. Solar and wind(both onshore
and offshore) projects demonstrate the highest sensitivity,
with average R? values all exceeding 0.7. In contrast, other
projects, including hydropower, biomass, and coal, exhibit a
lower level of sensitivity. Their average R? values are gener-
ally 0.5, suggesting that their capital costs are likely driven
more by other, non-fossil-fuel-price factors.

From a regional perspective, the impact of fossil fuel
prices exhibits clear geographical characteristics. In major
energy-importing regions like Europe and China, the influ-
ence is considerably more pronounced, with average R? val-
ues of 0.67 and 0.65. Conversely, the impact is markedly
weaker in the Middle East, an energy-exporting region,
where the average R? value is only 0.54. This disparity is

also reflected in the prediction error, as the Middle East’s
average MAPE (0.0209) is substantially higher than that of
Europe (0.0050) and China (0.0061), implying greater un-
certainty in capital cost.

Discussion

Regional Differences

Europe As shown in Figure3, the WACC of European en-
ergy transition projects will continue to be influenced by the
volatility of fossil fuel prices(R?=0.67). This conclusion is
supported not only by the high R? calculated by this study,
but also by the structural characteristics of Europe’s energy
system (Roman-Collado and Casado Ruiz 2024), limitations
in policy regulation (European Commission 2023b,a), and
the amplification of external risks (OECD 2021).



Structural Dependence and Policy Limitations Despite
Europe’s global leadership in renewable energy technology
promotion, its short-term reliance on fossil fuel imports re-
mains difficult to reverse ((Li and Leung 2021)). Data in-
dicates that the proportion of fossil fuel imports in Europe
increased from 70% in 2018 to 82% in 2024(Table2). This
allows global price fluctuations to directly affect the en-
ergy market and, consequently, capital costs. Furthermore,
the elasticity coefficient of WACC volatility with respect to
import ratios in Europe is 0.48—the highest globally(Egli,
Steffen, and Schmidt 2019), underscoring Europe’s height-
ened sensitivity to price transmission.

On the other hand, the regulatory effectiveness of the EU
Emissions Trading System exhibits diminishing marginal
returns. Research shows that for every 10-euro increase
in carbon prices per ton, WACC sensitivity decreases
by 0.15 R? points. However, when carbon prices exceed
100 euros per ton, the smoothing effect diminishes by
40% (Bouzarovski and Tirado Herrero 2017; EEA 2022).
Additionally, the diffusion of technological innovation faces
constraints due to infrastructure bottlenecks (European
Commission 2023a). For example, Germany experienced
a wind power curtailment rate of up to 6% in 2023 due to
grid congestion, weakening the optimization potential of
accumulated wind power patents on capital costs (Schmidt
et al. 2019)

External Shocks and Financial Risks Geopolitical risks
further amplify the impacts of price fluctuations: during the
2022 Russia-Ukraine conflict, European natural gas prices
surged by 380%, causing a 58-basis-point spike in the
WACKC:s of offshore wind projects. Model simulations indi-
cate that similar crises could raise WACC peaks by an addi-
tional 70 basis points (IEA 2022; Cooper 2017).

Moreover, international capital flows supporting Europe’s
energy transition amplify risk transmission effects. With
62% of green bonds denominated in US dollars, Fed in-
terest rate hikes may add 25-40 basis points to financing
costs (Ehlers and Packer 2017). A $10-per-barrel increase
in oil prices triggers a $120-million outflow from European
clean energy ETFs, further elevating financing costs (Flam-
mer 2021).

Table 2: Fossil Energy Import Ratios (2018-2024)

Year Middle East China Europe

2018 0% 60% 70%
2019 0% 62% 72%
2020 0% 60% 75%
2021 0% 58% 73%
2022 0% 55% 78%
2023 0% 60% 80%
2024 0% 58% 82%

China The WACC of China’s energy transition projects
also exhibits correlation with international fossil energy

prices(R?=0.64). It could be mainly driven by structural de-
pendence, policy intervention, and energy heterogeneity.

Import Dependence As one of the world’s largest fossil
energy importers(Table2), China’s energy security and price
stability rely heavily on international markets (Sun, Li, and
Shang 2022; Wang et al. 2023). In 2022, import dependence
for crude oil and natural gas reached 73.5% and 42% respec-
tively (EEA 2022). This vulnerability causes international
price fluctuations to quickly affect domestic markets through
the "imported inflation-financing premium" mechanism. For
example, a $10 per barrel rise in Brent crude oil prices raises
WACC for photovoltaic projects by 12-18 basis points (Ben-
Salha et al. 2022).

Government Intervention To mitigate the risks of price
fluctuations, the Chinese government has developed a dis-
tinctive energy price management system (Glocker and
Wegmiiller 2024; He and Lin 2017). By implementing a
"price corridor,” the government has constrained thermal
coal price fluctuations to within £15%. From 2021 to 2023,
the standard deviation of China’s thermal coal prices was
only $7.2 per ton, markedly lower than the $18.5 per ton
observed in the European API2 index during the same pe-
riod (Glocker and Wegmiiller 2024). Fiscal subsidies have
also played a critical role; in 2023, $44 billion in fossil en-
ergy subsidies reduced the volatility of WACC for China’s
energy transition projects to 3.1%, equivalent to just 53% of
the volatility in market-oriented countries.

Middle East The data from the Middle East region ex-
hibit a relatively low model fit, with an average R? of 0.54
(Figure3), lower than that observed in other regions. This
phenomenon can be attributed to its unique position as a fos-
sil fuel exporter, the specific institutional framework, and the
entrenched technological path dependence.

Economic Structure In the Middle East, revenues from
fossil fuel exports constitute 68% of total fiscal income
(World Bank 2023; Fattouh and El-Katiri 2013a), and their
economies are highly dependent on the stable cash flow gen-
erated by oil and gas trade (Karanfil and Omgba 2023). For
example, Saudi Arabia secures its revenue through long-
term export contracts, which account for 82% of its trade
volume (GECF 2023). Additionally, it leverages sovereign
wealth funds, such as the Public Investment Fund (PIF)
with assets exceeding $700 billion, to directly invest in re-
newable energy projects, thereby mitigating market financ-
ing risks. 76% of green hydrogen and photovoltaic projects
in the Middle East are financed through sovereign guaran-
tees(IRENA 2023), resulting in a WACC with a risk pre-
mium of only 1.2%, significantly lower than that in Europe
(3.5%). This "fiscal cushion" ensures the rigidity of capital
costs; even if international oil prices fluctuate from $80 per
barrel to $60 per barrel, the WACC for Saudi photovoltaic
projects varies by merely 0.3% (S&P Global Ratings 2024).

Institutional Design Middle Eastern governments use a
three-tier framework to reduce the impact of fossil fuel price
volatility on energy transition costs(Surkov and Simonov
2023), creating a "policy isolation layer."



1. Dual-track system: Low domestic energy prices (Saudi
gasoline at $0.6 per liter, one-third of U.S. rates) sup-
press alternative energy demand (Fattouh and El-Katiri
2013b). Subsidies enhance renewable energy competitive-
ness; for instance, Gulf countries’ fossil fuel subsidies ac-
count for 8.2% of GDP (IMF 2023). Long-term agreements,
like Dubai Solar Park’s 20-year fixed electricity price (4.5
cents/kWh), decouple capital costs from short-term price
fluctuations.

2. Strategic reserves and production adjustments: Middle
East oil reserves cover 214 days of demand (IMF 2023).
Governments stabilize prices by adjusting production.

3. Sovereign guaranties: Using the Barakah nuclear power
plant in the United Arab Emirates as an example, 90% of its
funding originates from state-owned banks, maintaining a
stable debt cost of 3.2%. The correlation coefficient R? be-
tween its financing costs and oil price fluctuations is only
0.02 (OECD 2019).

Environmental Implications of Financial
Sensitivity

The regional disparities in WACC sensitivity identified in
our results (Figure3) are not merely financial metrics; they
are proxies for the stability and velocity of decarbonization,
linking financial market to tangible climate outcomes.

For energy-importing regions like Europe and China (av-
erage R? = 0.67 and 0.65), the strong correlation means that
financial risk translates directly into environmental risk. The
resulting uncertainty in financing costs can deter or delay the
large-scale, capital-intensive investments. Consequently, the
pace of their energy transition becomes hostage to the insta-
bility of the very markets they aim to exit, jeopardizing the
deployment required to align with a 1.5°C trajectory.

Conversely, the weaker correlation in the Middle East (av-
erage R? = 0.54) presents a different environmental paradox.
The financial stability afforded to renewable projects by a
"fiscal cushion" from fossil fuel revenues mutes the urgent
market-based incentive to transition. While this de-risks in-
dividual projects, it can foster a decarbonization pace driven
by deliberate policy choices rather than pressing economic
necessities. This decoupling may lead to a slower transition,
as the region remains insulated from market signals.

Ultimately, our findings reveal that the financial mech-
anisms shaping climate outcomes are divergent across the
globe. It frames the topic for the next subsection: designing
policy that can either mitigate market volatility to ensure a
stable transition (as needed in Europe and China) or create
sufficient incentives to overcome economic inertia (as in the
Middle East).

Climate Finance & Policy

In Europe, the WACC for renewable energy projects is
highly sensitive to fluctuations in fossil fuel prices. The high
R2 and low MAPE values(0.67 and 0.004) indicate that re-
newable investments remain exposed to energy price volatil-
ity. To meet the 1.5°C climate target, European policymak-
ers could prioritize developing financial instruments such as
green bonds, subsidies, and climate risk insurance. These

mechanisms can stabilize financing costs, reduce investor
risk, and stimulate greater private investment in renewable
energy.

China’s energy transition exhibits moderate sensitivity
(R?=0.64), partly due to government policies. While this
intervention brings short-term stability, it may obscure the
actual cost competitiveness of renewable energy and po-
tentially deter private sector investment. To align with the
1.5°C climate target, policymakers could consider gradually
introducing more market-driven price mechanisms, comple-
mented by targeted green finance initiatives to reduce capital
costs. Utilizing state-supported low-interest loans to lower
WACC can serve as an effective strategy to incentivize pri-
vate investment in clean energy while preserving broader
economic stability.

The Middle East’s low sensitivity to fossil fuel price fluc-
tuations is indicated by the R? of 0.54. It presents a po-
tential risk due to the region’s heavy dependence on fos-
sil fuel revenues. To ensure long-term economic resilience
and align with global decarbonization objectives, policy-
makers could prioritize the diversification of the energy mix
through increased investment in renewable energy. In this
context, sovereign wealth funds can serve as a strategic ve-
hicle by providing long-term, low-cost capital for renewable
energy projects, thereby reducing overall financing costs.
These funds can strategically allocate capital toward renew-
able energy infrastructure, enhancing financial stability and
mitigating project-related risks.

Conclusion & Future Work

This study introduces a three-stage machine learning model
to assess the effects of fossil fuel price volatility on the
WACC of energy transition projects. The findings emphasize
that achieving the 1.5°C target requires region-specific cli-
mate finance solutions. Policymakers and investors need to
tailor their strategies to address the unique challenges posed
by fossil fuel price volatility. Since it can promote renew-
able energy investments that remain financially viable and
resilient amid global market shifts.

While this study provides some insights into the financial
dynamics of the energy transition, further research is also
needed. Initially, some datasets and assumptions rely on sec-
ondary sources. Future work could enhance the robustness
of these findings by incorporating firm-level financial data.
Additionally, future work could transition from quantifying
predictive sensitivity to formal causal inference, using tech-
niques like Granger causality or Structural Equation Models
to handle policy variables, financial mechanisms, and tech-
nological learning rates. Finally, the framework itself can be
enhanced by benchmarking against advanced architectures
like Transformers and leveraging our GRP model’s predic-
tive variance to conduct full uncertainty quantification and
stress-testing.
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Appendix: Reproducibility Checklist
This appendix outlines the necessary data, models, and
configurations required for replication, organized accord-
ing to the study’s three-stage methodology. The re-
sources and instructions are available on the project’s
GitHub repository: https://github.com/GreenComp-ERC/
ImpactOfFossilFeulPrice .

General Configuration
* Environment: Python 3.11.4, AutoGluon 1.4.0, Tensor-
Flow 2.5.0+, Keras 2.4.3+.

* Hardware: Experiments were run on macOS (Darwin)
with an Apple (arm64) 10-core CPU and 16GB RAM.
See System Configuration Report.ipynb
for details.

Stage 1: Fossil Fuel Price Prediction

* Data: Historical fossil feul prices from the World
Bank. Files: Average_Coal_ Price.xlsx,
Average_Gas_price.xlsx,
Average_oil_price.xlsx.

* Code: Price_Prediction.ipynb (model) and
Price_Data_Processing.ipynb (processing).

Stage 2: Inflation Rate Prediction

* Data: Macroeconomic indicators colected by this study:
comprehensive_economic_data.xlsx and
worldBank_Inflation.csv.

¢ Code: Prediction_Inflation.ipynb.

Stage 3: WACC Impact Evaluation (AutoGluon)

* Data: Euope_WACC.x1lsx, China_WACC.xlsx,
and Middle EAST_ _WACC.xlsx.
¢ Code: Impact_FossilFuel.ipynb.

+ Evaluation: Metrics (R?, MAPE, RMSE) were calcu-
lated and stored in Result .x1sx.



Table 3: Model Hyperparameter

Stage 1 Stage 2 Stage 3
Parameter Value Parameter Value Parameter Value
time_step 12 Imputer Neighbors 3 Scaler MinMaxScaler
scaler (0,1)  Scaler StandardScaler Time Limit 600 seconds
Conv1D Filters 80 Lookback / Time Step 4  Bagging Folds 10
Conv1D Kernel Size 3 Ensemble Size 'N’ 5 Stacking auto_stack=True
Dropout 1 Rate 0.3 LSTM 1 Units 32  Dynamic Stacking True (auto-set)
Bidirectional LSTM Units 128 LSTM 1 Kernel Regularization 12(0.01) GBM: max_depth 3

Dropout 2 Rate 0.5 Dropout 1 Rate 0.3 GBM: learning_rate 0.01
GRU Units 64  BatchNormalization 1 Applied GBM: num_boost_round 100
Dropout 3 Rate 0.5 LSTM 2 Units 16 CAT: depth 3
Hidden Dense Units 80 LSTM 2 Kernel Regularization 12(0.01)  CAT: learning_rate 0.01
Learning Rate 0.0005 Dropout 2 Rate 0.3  CAT: iterations 100
Epochs 200 BatchNormalization 2 Applied num_layers 1
Batch Size 32 Dense 1 Units 64 hidden_size 16
EarlyStopping Patience 20 Dense 1 Kernel Regularization 12(0.01)  dropout 0.3
ReduceL.ROnPlateau Patience 10 Dropout 3 Rate 02 -

ReduceLROnPlateau Factor 0.2 Dense 2 Units 32 -

GPR n_restarts_optimizer 10 Random Seed 42 -

GRP alpha (Regularization) 0.01 Learning Rate 0.001 -

GPR random_state 42 Loss Function mse - -
- - Epochs 300 - -
- - Batch Size 8 - -
- - Validation Split 02 - -
- - EarlyStopping Patience 50 - -
- - ReduceLROnPlateau Patience 20 - -
- - ReduceLROnPlateau Factor 0.5 - -

Table 4: Data Dictionary

Variable Name

Description

Role

Source / Data File

Crude_oil_average
(Engineered Feat.)

Predicted_Price

FP_CPI_TOTL_ZG
NY_GDP_MKTP_KD_ZG
SL_UEM_TOTL_ZS
FR_INR_RINR

(Other Macro Feat.)

Onshore
Offshore
(Other Projects)

inflation rate
Coal Price
Gas Price
0il Price

R?
MAPE

RMSE

Historical average crude oil price (proxy
for all fuels)

Cyclical time features (Month_Sin) &
rolling averages

GRP-smoothed fuel price forecast (2024-
2035)

Inflation, consumer prices (annual %)
GDP growth (annual %)

Unemployment, total (% of labor force)
Real interest rate (%)

13 other macro-indicators (e.g., M2, trade
balance)

WACC for Onshore Wind projects

WACC for Offshore Wind projects

WACC for Nuclear, Solar, CCS, Coal, Gas,
etc.

Inflation rate (from Stage 2) as predictor
Fossil fuel price (from Stage 1) as predictor
Fossil fuel price (from Stage 1) as predictor
Fossil fuel price (from Stage 1) as predictor

R-squared score of the fitted Stage 3 model
Mean Absolute Percentage Error of the
model

Root Mean Squared Error of the model

Stage 1 Target
Stage 1 Feature

Stage 1 Output — Stage 3 Input

Stage 2 Target
Stage 2 Feature
Stage 2 Feature
Stage 2 Feature
Stage 2 Features

Stage 3 Target (iterated)
Stage 3 Target (iterated)
Stage 3 Target (iterated)

Stage 3 Feature
Stage 3 Feature
Stage 3 Feature
Stage 3 Feature

Stage 3 Output
Stage 3 Output

Stage 3 Output

Average_oil_price.xlsx
Generated from Stage 1 data

oil_price_forecast_to_2035.csv

comprehensive_economic_data.xlsx

World Bank
World Bank
World Bank
World Bank, Yahoo Finance

x1lsx
x1lsx
x1lsx

_WACC.
_WACC.
_WACC.
_WACC.x1sx
_WACC.x1lsx
_WACC.x1lsx
_WACC.x1lsx

_results.csv
_results.csv

_results.csv




