Young Scientists, Making the Rounds

“Can you make a photosynthetic human?!” an 8th grader enthusiastically asks me while staring at a tiny fern in a jar.

He’s not the only one who asked me that either — another student asked if Superman was a plant, since he gets his power from the sun.

These aren’t the normal questions I get about my research as a Biology PhD candidate studying how plants get nutrients, but they were perfect for the day’s activity –A science round robin with Durham eighth-graders.

Biology grad student Leslie Slota showing Durham 8th graders some fun science.

After seeing a post under #scicomm on Twitter describing a public engagement activity for scientists, I put together a group of Duke graduate scientists to visit local middle schools and share our science with kids. We had students from biomedical engineering, physics, developmental biology, statistics, and many others — a pretty diverse range of sciences.

With help from David Stein at the Duke-Durham Neighborhood Partnership, we made connections with science teachers at the Durham School of the Arts and Lakewood Montessori school, and the event was in motion!

The outreach activity we developed works like speed dating, where people pair up, talk for 3-5 mins, and then rotate. We started out calling it “Science Speed Dating,” but for a middle school audience, we thought “Science Round-Robin” was more appropriate. Typically, a round-robin is a tournament where every team plays each of the other teams. So, every middle schooler got to meet each of us graduate students and talk to us about what we do.

The topics ranged from growing back limbs and mapping the brain, to using math to choose medicines and manipulating the different states of matter.

The kids were really excited for our visit, and kept asking their teachers for the inside scoop on what we did.

After much anticipation, and a little training and practice with Jory Weintraub from the Science & Society Initiative, two groups of 7-12 graduate students armed themselves with photos, animals, plants, and activities related to our work and went to visit these science classes full of eager students.

First-year MGM grad student Tulika Singh (top right) brought cardboard props to show students how antibodies match up with cell receptors.

“The kids really enjoyed it!” said Alex LeMay, middle- and high-school science teacher at the Durham School of the Arts. “They also mentioned that the grad students were really good at explaining ideas in a simple way, while still not talking down to them.”

That’s the ultimate trick with science communication: simplifying what we do, but not talking to people like they’re stupid.

I’m sure you’ve heard the old saying, “dumb it down.” But it really doesn’t work that way. These kids were bright, and often we found them asking questions we’re actively researching in our work. We don’t need to talk down to them, we just need to talk to them without all of the exclusive trappings of science. That was one thing the grad students picked up on too.

“It’s really useful to take a step back from the minutia of our projects and look at the big picture,” said Shannon McNulty, a PhD candidate in Molecular Genetics and Microbiology.

The kids also loved the enthusiasm we showed for our work! That made a big difference in whether they were interested in learning more and asking questions. Take note, fellow scientists: share your enthusiasm for what you do, it’s contagious!

Another thing that worked really well was connecting with the students in a personal way. According to Ms. LeMay, “if the person seemed to like them, they wanted to learn more.” Several of the grad students would ask each student their names and what they were passionate about, or even talk about their own passions outside of their research, and these simple questions allowed the students to connect as people.

There was one girl who shared with me that she didn’t know what she wanted to do when she grew up, and I told her that’s exactly where I was when I was in 8th grade too. We then bonded over our mutual love of baking, and through that interaction she saw herself reflected in me a little bit; making a career in science seem like a possibility, which is especially important for a young girl with a growing interest in science.

Making the rounds in these science classrooms, we learned just as much from the students we spoke to as they did from us. Our lesson being: science outreach is a really rewarding way to spend our time, and who knows, maybe we’ll even spark someone who loves Superman to figure out how to make the first photosynthesizing super-person!

Guest post by Ariana Eily , PhD Candidate in Biology, shown sharing her floating ferns at left.

 

The Man Who Knew Infinity, and his biggest fan

Ken Ono, a distinguished professor of mathematics at Emory University, was visibly thrilled to be at Duke last Thursday, January 26. Grinning from ear to ear, he announced that he was here to talk about three of his favorite things: math, movies, and “one of the most inspirational figures in my life”: Srinivasa Ramanujan.

Professor Ken Ono of Emory University poses with a bust of Newton and one of Ramanujan’s legendary notebook pages. Source: IFC Films.

Ramanujan, I learned, is one of the giants of mathematics; an incontestable genius, his scrawls in letters and notebooks have spawned whole fields of study, even up to 100 years after his death. His life story continues to inspire mathematicians around the globe—as well as, most recently, a movie which Ono helped produce: The Man Who Knew Infinity, featuring Hollywood stars Dev Patel and Jeremy Irons.

I didn’t realize until much too late that this lecture was essentially one massive spoiler for the movie. Nevertheless, I got to appreciate the brains and the heart behind the operation in hearing Ono express his passion for the man who, at age 16, inspired him to see learning in a new light. Ramanujan’s story follows.

Ramanujan was born in Kambakunam, India in 1887, the son of a cloth merchant and a singer at a local temple. He was visibly gifted from a young age, not only an outstanding student, but also a budding intellectual: by age 13, he had discovered most of modern trigonometry by himself.

Ramanujan’s brilliance earned him scholarships to attend college, only for him to flunk out not once, but twice: he was so engrossed in mathematics that he paid little heed to his actual schoolwork and let his grades suffer. His family and friends, aware of his genius, supported him anyway.

Thus, he spent the daytime in a low-level accounting job that earned him barely enough income to live, and spent the night scribbling groundbreaking mathematics in his notebooks.

A photo portrait of Srinivasa Ramanujan, a brilliant Indian mathematician born in the late 19th century. Source: IFC Films.

Unable to share his discoveries and explain their importance to those around him, Ramanujan finally grew so frustrated that, in desperation, he wrote to dozens of prominent English mathematics professors asking for help. The first of these to respond was G. H. Hardy (for any Biology nerds, this is the Hardy of the Hardy-Weinberg equilibrium), who examined the mathematics Ramanujan included in his letters and was so astounded by what he found that, at first, he thought it was a hoax perpetrated by his friend.

Needless to say, it wasn’t a hoax.

Ramanujan left India to join Hardy in England and publish his discoveries. The meat of the movie, according to Ono, is “the transformation of the relationship between these two characters:” one, a devout Hindu with no formal experience in higher education; the other, a haughty English professor who happened to be an atheist.

The two push past their differences and manage to jointly publish 30 papers based on Ramanujan’s work. Overcoming impossible odds—poverty, World War I, and racism in particular—Ramanujan’s discoveries finally found the light of day.

Sadly, Ramanujan’s story was cut short: a lifelong vegetarian, he fell ill of malnutrition while working in England, returning to India for the last year of his life in the hopes that the warmer climate would improve his health. He died in 1920, at 32 years old.

He continued writing to Hardy from his deathbed, his last letter including revolutionary ideas, which, like much of his work, were so far ahead of his time that mathematicians only began to wrap their minds around them decades after his death.

“Ramanujan was a great anticipator of mathematics, writing formulas that seemed foreign or random at the time but later inspired deep and revolutionary discoveries in math,” Ono said.

Ono’s infatuation with Ramanujan began when he was 16 years old, himself the son of a mathematics professor at Johns Hopkins University. Upon receiving a letter from Ramanujan’s widow, Ono’s father—by Ono’s account, a very stoic, stern man—was brought to tears. Shocked, Ono began to research the origin of the letter, discovering Ramanujan’s story and reaching a turning point in his own life when he realized that there were aspects to learning that were far more important than grades.

That seems to have worked out quite well for Ono, considering his success and expertise in his own area of study—not to mention that he now has “Hollywood producer” under his belt.

Professor Ken Ono chats with actor Dev Patel on the set of The Man Who Knew Infinity. Photo credit: Sam Pressman.

 

Post by Maya Iskandarani

Bass Connections and GHANDI – Understanding Disability from a Global Perspective

Duke prides itself on being a research institution that is not only intellectually curious, but also extremely interdisciplinary. Through Duke’s Bass Connections initiative, students and faculty come together in project teams that tackle complex issues using multiple disciplines and approaches. The program held its annual fair last week to showcase its work and to get new students connected with these exciting projects.

How does it work?

Graduate students, undergraduates, and faculty members apply for a research project in any of these five areas: Brain and Society, Information Society & Culture, Global Health, Education & Development, and Energy. Once accepted, group members work on a year-long research project, that often includes a field work component. One project in particular that combines many disciplines and interests to address an issue of global importance GANDHI, a Global Health project that studies disability from multiple cultural perspectives.

What is GANDHI?

GANDHI team members meet with Dr. Rune Simeonsson at UNC to discuss the WHO ICF-CY (International Classification of Functioning – Children and Youth), a document he helped co-write that provides a framework for diagnosing and addressing disability.

The Global Alliance on Disease and Health Innovation (GANDHI) was created in 2016 to support disabled individuals by providing them with the community reintegration tools necessary to live a healthy, comfortable life. Yukhai Lin, a Duke undergrad and GANDHI team member, shared that many hospital systems are not good at helping those the disabled reintegrate themselves in their community, and often forget about their patients after they are released. The research team recognized this flaw, and began a thorough data collection process to understand the reason for this lack of care. In the fall of 2016, team members took a seminar course, “Living with Disability Around the Globe”, in which they were paired with global partners in ten different countries to examine disability from a more specific context. In this interdisciplinary class, team members not only strengthened their knowledge of disability and its implications on global societies, but they were also able to develop strong research skills, for they ultimately synthesized their findings by creating a thorough comparison of disability in each of the countries studied.

The team also attended a conference in New Orleans to network with organizations that were conducting similar research. Lin said she interviewed doctors from The Netherlands, as well as leaders of influential health organizations to holistically understand the issues that come with helping the disabled. The team hopes to present their findings at a forum this spring, and, like many other Bass Connection projects, will continue throughout the 2017-2018 academic year. They encourage all to apply, and hope to broaden the scope of their research by adding countries in Southeast Asia and creating new opportunities for fieldwork. Some eager students have already showed interest in going to China to interview families with disabled members, says Lin.

Other Bass Connections projects at the fair spread across all disciplines, ranging from the development of effective chemotherapy drugs to the study of urban development in cities across the globe. But, what all projects share in common is a strong emphasis on research that is hands-on, collaborative, and relevant to society.

 

Post by Lola Sanchez-Carrion

Posted in Global Health, Medicine, Students | Comments Off on Bass Connections and GHANDI – Understanding Disability from a Global Perspective

Creating Technology That Understands Human Emotions

“If you – as a human – want to know how somebody feels, for what might you look?” Professor Shaundra Daily asked the audience during an ECE seminar last week.

“Facial expressions.”
“Body Language.”
“Tone of voice.”
“They could tell you!”

Over 50 students and faculty gathered over cookies and fruits for Dr. Daily’s talk on designing applications to support personal growth. Dr. Daily is an Associate Professor in the Department of Computer and Information Science and Engineering at the University of Florida interested in affective computing and STEM education.

Dr. Daily explaining the various types of devices used to analyze people’s feelings and emotions. For example, pressure sensors on a computer mouse helped measure the frustration of participants as they filled out an online form.

Affective Computing

The visual and auditory cues proposed above give a human clues about the emotions of another human. Can we use technology to better understand our mental state? Is it possible to develop software applications that can play a role in supporting emotional self-awareness and empathy development?

Until recently, technologists have largely ignored emotion in understanding human learning and communication processes, partly because it has been misunderstood and hard to measure. Asking the questions above, affective computing researchers use pattern analysis, signal processing, and machine learning to extract affective information from signals that human beings express. This is integral to restore a proper balance between emotion and cognition in designing technologies to address human needs.

Dr. Daily and her group of researchers used skin conductance as a measure of engagement and memory stimulation. Changes in skin conductance, or the measure of sweat secretion from sweat gland, are triggered by arousal. For example, a nervous person produces more sweat than a sleeping or calm individual, resulting in an increase in skin conductance.

Galvactivators, devices that sense and communicate skin conductivity, are often placed on the palms, which have a high density of the eccrine sweat glands.

Applying this knowledge to the field of education, can we give a teacher physiologically-based information on student engagement during class lectures? Dr. Daily initiated Project EngageMe by placing galvactivators like the one in the picture above on the palms of students in a college classroom. Professors were able to use the results chart to reflect on different parts and types of lectures based on the responses from the class as a whole, as well as analyze specific students to better understand the effects of their teaching methods.

Project EngageMe: Screenshot of digital prototype of the reading from the galvactivator of an individual student.

The project ended up causing quite a bit of controversy, however, due to privacy issues as well our understanding of skin conductance. Skin conductance can increase due to a variety of reasons – a student watching a funny video on Facebook might display similar levels of conductance as an attentive student. Thus, the results on the graph are not necessarily correlated with events in the classroom.

Educational Research

Daily’s research blends computational learning with social and emotional learning. Her projects encourage students to develop computational thinking through reflecting on the community with digital storytelling in MIT’s Scratch, learning to use 3D printers and laser cutters, and expressing ideas using robotics and sensors attached to their body.

VENVI, Dr. Daily’s latest research, uses dance to teach basic computational concepts. By allowing users to program a 3D virtual character that follows dance movements, VENVI reinforces important programming concepts such as step sequences, ‘for’ and ‘while’ loops of repeated moves, and functions with conditions for which the character can do the steps created!

 

 

Dr. Daily and her research group observed increased interest from students in pursuing STEM fields as well as a shift in their opinion of computer science. Drawings from Dr. Daily’s Women in STEM camp completed on the first day consisted of computer scientist representations as primarily frazzled males coding in a small office, while those drawn after learning with VENVI included more females and engagement in collaborative activities.

VENVI is a programming software that allows users to program a virtual character to perform a sequence of steps in a 3D virtual environment!

In human-to-human interactions, we are able draw on our experiences to connect and empathize with each other. As robots and virtual machines grow to take increasing roles in our daily lives, it’s time to start designing emotionally intelligent devices that can learn to empathize with us as well.

Post by Anika Radiya-Dixit

Science Meets Policy, and Maybe They Even Understand Each Other!

As we’ve seen many times, when complex scientific problems like stem cells, alternative energy or mental illness meet the policy world, things can get a little messy. Scientists generally don’t know much about law and policy, and very few policymakers are conversant with the specialized dialects of the sciences.

A screenshot of SciPol’s handy news page.

Add the recent rapid emergence of autonomous vehicles, artificial intelligence and gene editing, and you can see things aren’t going to get any easier!

To try to help, Duke’s Science and Society initiative has launched an ambitious policy analysis group called SciPol that hopes to offer great insights into the intersection of scientific knowledge and policymaking. Their goal is to be a key source of non-biased, high-quality information for policymakers, academics, commercial interests, nonprofits and journalists.

“We’re really hoping to bridge the gap and make science and policy accessible,” said Andrew Pericak, a contributor and editor of the service who has a 2016 masters in environmental management from the Nicholas School.

The program also will serve as a practical training ground for students who aspire to live and work in that rarefied space between two realms, and will provide them with published work to help them land internships and jobs, said SciPol director Aubrey Incorvaia, a 2009 masters graduate of the Sanford School of Public Policy.

Aubrey Incorvaia chatted with law professor Jeff Ward (center) and Science and Society fellow Thomas Williams at the kickoff event.

SciPol launched quietly in the fall with a collection of policy development briefs focused on neuroscience, genetics and genomics. Robotics and artificial intelligence coverage began at the start of January. Nanotechnology will launch later this semester and preparations are being made for energy to come online later in the year. Nearly all topics are led by a PhD in that field.

“This might be a different type of writing than you’re used to!” Pericak told a meeting of prospective undergraduate and graduate student authors at an orientation session last week.

Some courses will be making SciPol brief writing a part of their requirements, including law professor Jeff Ward’s section on the frontier of robotics law and ethics. “We’re doing a big technology push in the law school, and this is a part of it,” Ward said.

Because the research and writing is a learning exercise, briefs are published only after a rigorous process of review and editing.

A quick glance at the latest offerings shows in-depth policy analyses of aerial drones, automated vehicles, genetically modified salmon, sports concussions and dietary supplements that claim to boost brain power.

To keep up with the latest developments, the SciPol staff maintains searches on WestLaw, the Federal Register and other sources to see where science policy is happening. “But we are probably missing some things, just because the government does so much,” Pericak said.

Post by Karl Leif Bates

Brain Makes Order From Disorder

A team of scientists from Duke, the National Institutes of Health and Johns Hopkins biomedical engineering has found that the formation and retrieval of new memories relies on disorganized brain waves, not organized ones, which is somewhat contrary to what neuroscientists have previously believed. Brain waves, or oscillations, are the brain’s way of organizing activity and are known to be important to learning, memory, and thinking.

Alex Vaz is a Duke MD/PhD student and biomedical engineering alumnus.

Although brain waves have been measured and studied for decades, neuroscientists still aren’t sure what they mean and whether or not they help cognition, said Alex Vaz, an M.D.-Ph.D. student at Duke who is the first author on the paper.

In a study appearing Jan. 6 in NeuroImage, the neuroscientists showed that brain activity became less synchronized during the formation and retrieval of new memories. This was particularly true in a brain region known as the medial temporal lobe, a structure thought to play a critical role in the formation of both short-term and long-term memories

Excessive synchronization of brain oscillations has been implicated in Parkinson’s disease, epilepsy, and even psychiatric disorders. Decreasing brain wave synchronization by electrical stimulation deep in the brain has been found to decrease the tremors of Parkinson’s. But the understanding of brain waves in movement disorders is ahead of the understanding of human memory.

The researchers had neurosurgeons at the National Institutes of Health implant recording electrodes onto the brain surface of 33 epileptic patients during seizure evaluation and then asked them to form and retrieve memories of unrelated pairs of words, such as ‘dog’ and ‘lime.’

They found that  during memory formation, brain activity became more disorganized in the frontal lobe, an area involved in

A graphical abstract from Alex’s paper.

executive control and attention, and in the temporal lobe, an area more implicated in memory and language.

“We think this study, and others like it, provide a good starting point for understanding possible treatments for memory disorders,” Vaz said. “The aging American population will be facing major neurocognitive disorders such as Alzheimer’s disease and vascular dementia and will be demanding more medical attention.”

CITATION: “Dual origins of measured phase-amplitude coupling reveal distinct neural mechanisms underlying episodic memory in the human cortex,” Alex P. Vaz, Robert B. Yaffe, John H. Wittig, Sara K. Inati, Kareem A. Zaghloul. NeuroImage, Online Jan. 6, 2017. DOI: 10.1016/j.neuroimage.2017.01.001

http://www.sciencedirect.com/science/article/pii/S1053811917300010

Post by Karl Leif Bates

Karl Leif Bates