Students Share Research Journeys at Bass Connections Showcase

From the highlands of north central Peru to high schools in North Carolina, student researchers in Duke’s Bass Connections program are gathering data in all sorts of unique places.

As the school year winds down, they packed into Duke’s Scharf Hall last week to hear one another’s stories.

Students and faculty gathered in Scharf Hall to learn about each other’s research at this year’s Bass Connections showcase. Photo by Jared Lazarus/Duke Photography.

The Bass Connections program brings together interdisciplinary teams of undergraduates, graduate students and professors to tackle big questions in research. This year’s showcase, which featured poster presentations and five “lightning talks,” was the first to include teams spanning all five of the program’s diverse themes: Brain and Society; Information, Society and Culture; Global Health; Education and Human Development; and Energy.

“The students wanted an opportunity to learn from one another about what they had been working on across all the different themes over the course of the year,” said Lori Bennear, associate professor of environmental economics and policy at the Nicholas School, during the opening remarks.

Students seized the chance, eagerly perusing peers’ posters and gathering for standing-room-only viewings of other team’s talks.

The different investigations took students from rural areas of Peru, where teams interviewed local residents to better understand the transmission of deadly diseases like malaria and leishmaniasis, to the North Carolina Museum of Art, where mathematicians and engineers worked side-by-side with artists to restore paintings.

Machine learning algorithms created by the Energy Data Analytics Lab can pick out buildings from a satellite image and estimate their energy consumption. Image courtesy Hoël Wiesner.

Students in the Energy Data Analytics Lab didn’t have to look much farther than their smart phones for the data they needed to better understand energy use.

“Here you can see a satellite image, very similar to one you can find on Google maps,” said Eric Peshkin, a junior mathematics major, as he showed an aerial photo of an urban area featuring buildings and a highway. “The question is how can this be useful to us as researchers?”

With the help of new machine-learning algorithms, images like these could soon give researchers oodles of valuable information about energy consumption, Peshkin said.

“For example, what if we could pick out buildings and estimate their energy usage on a per-building level?” said Hoël Wiesner, a second year master’s student at the Nicholas School. “There is not really a good data set for this out there because utilities that do have this information tend to keep it private for commercial reasons.”

The lab has had success developing algorithms that can estimate the size and location of solar panels from aerial photos. Peshkin and Wiesner described how they are now creating new algorithms that can first identify the size and locations of buildings in satellite imagery, and then estimate their energy usage. These tools could provide a quick and easy way to evaluate the total energy needs in any neighborhood, town or city in the U.S. or around the world.

“It’s not just that we can take one city, say Norfolk, Virginia, and estimate the buildings there. If you give us Reno, Tuscaloosa, Las Vegas, Pheonix — my hometown — you can absolutely get the per-building energy estimations,” Peshkin said. “And what that means is that policy makers will be more informed, NGOs will have the ability to best service their community, and more efficient, more accurate energy policy can be implemented.”

Some students’ research took them to the sidelines of local sports fields. Joost Op’t Eynde, a master’s student in biomedical engineering, described how he and his colleagues on a Brain and Society team are working with high school and youth football leagues to sort out what exactly happens to the brain during a high-impact sports game.

While a particularly nasty hit to the head might cause clear symptoms that can be diagnosed as a concussion, the accumulation of lesser impacts over the course of a game or season may also affect the brain. Eynde and his team are developing a set of tools to monitor both these impacts and their effects.

A standing-room only crowd listened to a team present on their work “Tackling Concussions.” Photo by Jared Lazarus/Duke Photography.

“We talk about inputs and outputs — what happens, and what are the results,” Eynde said. “For the inputs, we want to actually see when somebody gets hit, how they get hit, what kinds of things they experience, and what is going on in the head. And the output is we want to look at a way to assess objectively.”

The tools include surveys to estimate how often a player is impacted, an in-ear accelerometer called the DASHR that measures the intensity of jostles to the head, and tests of players’ performance on eye-tracking tasks.

“Right now we are looking on the scale of a season, maybe two seasons,” Eynde said. “What we would like to do in the future is actually follow some of these students throughout their career and get the full data for four years or however long they are involved in the program, and find out more of the long-term effects of what they experience.”

Kara J. Manke, PhD

Post by Kara Manke

Durham Students Give Themselves a Hand Up

Picture this: a group of young middle schoolers are gathered trying to get a “hand” they’ve built out of drinking straws, thread and clay to grasp a small container. What could such a scene possibly have to do with encouraging kids to stay in school and pursue science? It turns out, quite a lot!

brothers keeper

Angelo Moreno (right), a graduate student in molecular genetics and microbiology, helps students with their soda straw hand.

This scene was part of an event designed just for boys from Durham schools that took place one March evening at the Durham Marriot and Convention Center. It was hosted by Made in Durham, a local non-profit focused on helping Durham’s young people graduate from high school, go to college, and ultimately be prepared for their careers, and My Brother’s Keeper Durham, the local branch of former President Obama’s mentoring initiative for young men of color.

The first evening of a convention centered on building equity in education and was geared toward career exploration. Each of the boys got to choose from a series of workshops that highlighted careers in science, technology, engineering, art, and mathematics — also known as STEAM. The workshops ranged from architectural design to building body parts, which was where they learned to build the artificial hands.

Sharlini Sankaran, the executive director of Duke’s Regeneration Next Initiative, who heard about my outreach activities from earlier this year, contacted me, and together we drummed up a group of scientists for the event.

With the help of Victor Ruthig in Cell Biology, Angelo Moreno in Molecular Genetics and Microbiology, Ashley Williams in Biomedical Engineering, and Devon Lewis, an undergraduate in the Biology program, we dove into the world of prosthetics and tissue engineering with the young men who came to our workshop.

Biology undergrad Devon Lewis (top) worked with several of the students.

After some discussion on what it takes to build an artificial body part, we let the boys try their hand at building their own. We asked them what the different parts of the hand were that allowed us to bend them and move them in certain ways, and from there, they developed ideas for how to turn our household materials into fully functioning hands. We used string as tendons and straws as finger bones, cutting notches where we wanted to create joints.

There was a lot of laughter in the room, but also a lot of collaboration between the different groups of kids. When one team figured out how to make a multi-jointed finger, they would share that knowledge with other groups. Similar knowledge sharing happened when one group figured out how to use the clay to assemble all their fingers into a hand. Seeing these young men work together, problem solve, and be creative was amazing to watch and be a part of!

According to feedback from event organizers, “ours was the most popular session!” Sharlini said. When we reached the end of our session, the kids didn’t want to leave, and instead wanted to keep tinkering with their hands to see what they could accomplish.

The boys had a lot of fun, asked a lot of good questions, and got to pick our brains for advice on staying in school and using it to propel them towards career success. I have distilled some of the best pieces of advice from that night, since they’re good for everyone to hear:

  • Don’t be afraid to ask a lot of questions.
  • Don’t be discouraged when someone tells you no. Go for it anyways.
  • Don’t be afraid of failure.
  • And don’t think you have to fit a particular mold to succeed at something.

“I left feeling really inspired about our future generation of scientists and engineers,” Sharlini said. ”It’s good to know there are so many Duke students with the genuine and selfless desire to help others.”

It was a joy to participate in this event. We all had fun, and left having learned a lot — even the parents who came with their sons!

Outreach like this is incredibly important. Being mentors for young people with a budding interest in science can make the difference between them pursuing it further or dropping it altogether. Engaging with them to show them the passion we have for our work and that we were kids just like they are allows them to see that they can do it too.

Guest Post by Ariana Eily

Data Geeks Go Head to Head

For North Carolina college students, “big data” is becoming a big deal. The proof: signups for DataFest, a 48-hour number-crunching competition held at Duke last weekend, set a record for the third time in a row this year.

DataFest 2017

More than 350 data geeks swarmed Bostock Library this weekend for a 48-hour number-crunching competition called DataFest. Photo by Loreanne Oh, Duke University.

Expected turnout was so high that event organizer and Duke statistics professor Mine Cetinkaya-Rundel was even required by state fire code to sign up for “crowd manager” safety training — her certificate of completion is still proudly displayed on her Twitter feed.

Nearly 350 students from 10 schools across North Carolina, California and elsewhere flocked to Duke’s West Campus from Friday, March 31 to Sunday, April 2 to compete in the annual event.

Teams of two to five students worked around the clock over the weekend to make sense of a single real-world data set. “It’s an incredible opportunity to apply the modeling and computing skills we learn in class to actual business problems,” said Duke junior Angie Shen, who participated in DataFest for the second time this year.

The surprise dataset was revealed Friday night. Just taming it into a form that could be analyzed was a challenge. Containing millions of data points from an online booking site, it was too large to open in Excel. “It was bigger than anything I’ve worked with before,” said NC State statistics major Michael Burton.

DataFest 2017

The mystery data set was revealed Friday night in Gross Hall. Photo by Loreanne Oh.

Because of its size, even simple procedures took a long time to run. “The dataset was so large that we actually spent the first half of the competition fixing our crushed software and did not arrive at any concrete finding until late afternoon on Saturday,” said Duke junior Tianlin Duan.

The organizers of DataFest don’t specify research questions in advance. Participants are given free rein to analyze the data however they choose.

“We were overwhelmed with the possibilities. There was so much data and so little time,” said NCSU psychology major Chandani Kumar.

“While for the most part data analysis was decided by our teachers before now, this time we had to make all of the decisions ourselves,” said Kumar’s teammate Aleksey Fayuk, a statistics major at NCSU.

As a result, these budding data scientists don’t just write code. They form theories, find patterns, test hunches. Before the weekend is over they also visualize their findings, make recommendations and communicate them to stakeholders.

This year’s participants came from more than 10 schools, including Duke, UNC, NC State and North Carolina A&T. Students from UC Davis and UC Berkeley also made the trek. Photo by Loreanne Oh.

“The most memorable moment was when we finally got our model to start generating predictions,” said Duke neuroscience and computer science double major Luke Farrell. “It was really exciting to see all of our work come together a few hours before the presentations were due.”

Consultants are available throughout the weekend to help with any questions participants might have. Recruiters from both start-ups and well-established companies were also on site for participants looking to network or share their resumes.

“Even as late as 11 p.m. on Saturday we were still able to find a professor from the Duke statistics department at the Edge to help us,” said Duke junior Yuqi Yun, whose team presented their results in a winning interactive visualization. “The organizers treat the event not merely as a contest but more of a learning experience for everyone.”

Caffeine was critical. “By 3 a.m. on Sunday morning, we ended initial analysis with what we had, hoped for the best, and went for a five-hour sleep in the library,” said NCSU’s Fayuk, whose team DataWolves went on to win best use of outside data.

By Sunday afternoon, every surface of The Edge in Bostock Library was littered with coffee cups, laptops, nacho crumbs, pizza boxes and candy wrappers. White boards were covered in scribbles from late-night brainstorming sessions.

“My team encouraged everyone to contribute ideas. I loved how everyone was treated as a valuable team member,” said Duke computer science and political science major Pim Chuaylua. She decided to sign up when a friend asked if she wanted to join their team. “I was hesitant at first because I’m the only non-stats major in the team, but I encouraged myself to get out of my comfort zone,” Chuaylua said.

“I learned so much from everyone since we all have different expertise and skills that we contributed to the discussion,” said Shen, whose teammates were majors in statistics, computer science and engineering. Students majoring in math, economics and biology were also well represented.

At the end, each team was allowed four minutes and at most three slides to present their findings to a panel of judges. Prizes were awarded in several categories, including “best insight,” “best visualization” and “best use of outside data.”

Duke is among more than 30 schools hosting similar events this year, coordinated by the American Statistical Association (ASA). The winning presentations and mystery data source will be posted on the DataFest website in May after all events are over.

The registration deadline for the next Duke DataFest will be March 2018.

DataFest 2017

Bleary-eyed contestants pose for a group photo at Duke DataFest 2017. Photo by Loreanne Oh.

s200_robin.smith

Post by Robin Smith

Mental Shortcuts, Not Emotion, May Guide Irrational Decisions

If you participate in a study in my lab, the Huettel Lab at Duke, you may be asked to play an economic game. For example, we may give you $20 in house money and offer you the following choice:

  1. Keep half of the $20 for sure
  2. Flip a coin: heads you keep all $20; tails you lose all $20

In such a scenario, most participants choose 1, preferring a sure win over the gamble.

Now imagine this choice, again starting with $20 in house money:

  1. Lose half of the $20 for sure
  2. Flip a coin: heads you keep all $20; tails you lose all $20

In this scenario, most participants prefer the gamble over a sure loss.

If you were paying close attention, you’ll note that both examples are actually numerically identical – keeping half of $20 is the same as losing half of $20 – but changing whether the sure option is framed as a gain or a loss results in different decisions to play it safe or take a risk. This phenomenon is known as the Framing Effect. The behavior that it elicits is weird, or as psychologists and economists would say, “irrational”, so we think it’s worth investigating!

Brain activity when people make choices consistent with (hot colors) or against (cool colors) the Framing Effect.

Brain activity when people make choices consistent with (hot colors) or against (cool colors) the Framing Effect.

In a study published March 29 in the Journal of Neuroscience, my lab used brain imaging data to test two competing theories for what causes the Framing Effect.

One theory is that framing is caused by emotion, perhaps because the prospect of accepting a guaranteed win feels good while accepting a guaranteed loss feels scary or bad. Another theory is that the Framing Effect results from a decision-making shortcut. It may be that a strategy of accepting sure gains and avoiding sure losses tends to work well, and adopting this blanket strategy saves us from having to spend time and mental effort fully reasoning through every single decision and all of its possibilities.

Using functional magnetic resonance imaging (fMRI), we measured brain activity in 143 participants as they each made over a hundred choices between various gambles and sure gains or sure losses. Then we compared our participants’ choice-related brain activity to brain activity maps drawn from Neurosynth, an analysis tool that combines data from over 8,000 published fMRI studies to generate neural maps representing brain activity associated with different terms, just as “emotions,” “resting,” or “working.”

As a group, when our participants made choices consistent with the Framing Effect, their average brain activity was most similar to the brain maps representing mental disengagement (i.e. “resting” or “default”). When they made choices inconsistent with the Framing Effect, their average brain activity was most similar to the brain maps representing mental engagement (i.e. “working” or task”). These results supported the theory that the Framing Effect results from a lack of mental effort, or using a decision-making shortcut, and that spending more mental effort can counteract the Framing Effect.

Then we tested whether we could use individual participants’ brain activity to predict participants’ choices on each trial. We found that the degree to which each trial’s brain activity resembled the brain maps associated with mental disengagement predicted whether that trial’s choice would be consistent with the Framing Effect. The degree to which each trial’s brain activity resembled brain maps associated with emotion, however, was not predictive of choices.

Our findings support the theory that the biased decision-making seen in the Framing Effect is due to a lack of mental effort rather than due to emotions.

This suggests potential strategies for prompting people to make better decisions. Instead of trying to appeal to people’s emotions – likely a difficult task requiring tailoring to different individuals – we would be better off taking the easier and more generalizable approach of making good decisions quick and easy for everyone to make.

Guest post by Rosa Li

The Fashion Trend Sweeping East Campus

During the months of January and February, there was one essential accessory seen on many first-year Duke students’ wrists: the Jawbone. The students were participating in a study listed on DukeList by Ms. Madeleine George solely for first-year students regarding their lives at Duke. The procedures for the study were simple:

  1. Do a preliminary test involving a game of cyberball, a game psychologists have adapted for data collection.
  2. Wear the Jawbone for the duration of the study (10 days)
  3. Answer the questions sent to your phone every four hours. You will need to answer five a day. The questions are brief.
  4. Answer all the questions every day (you can miss one of the question times) and get $32.

About a hundred first-year Duke students participated.

Some of the questions on the surveys asked how long you slept, how stressed you felt, what time did you woke up, did you talk to your parents today, how many texts did you send, and so on. It truly did feel as though it were a study on the daily life of Duke students. However, there was a narrower focus on this study.

Ms. Madeleine George

Ms. George is a Ph.D. candidate in developmental psychology in her 5th year at Duke. She is interested in relationships and how daily technology usage and social support such as virtual communication can influence adolescent and young adult well-being.

Her dissertation is about how parents may be able to provide daily support to their children in their first year of college as face to face interactions are replaced by virtual communication through technology in modern society. This was done in three pieces.

The jawbone study is the third part. George is exploring why these effects occur, if they are uniquely a response to parents, or if people can simply feel better from other personal interactions. Taking the data from the surveys, George has been using models that allow for comparison between each person to themselves and basic ANOVA tests that allow her to examine the differences between groups. She’s still working on that analysis.

For her first test, she found that students who talked to their parents were feeling worse. But, on days students had a stressor, they were in a better mood after talking to their parents. In addition, based on the cyberball experiment where students texted a parent, stranger, or no one, George infers that texting anyone is better than no one because it can make people feel supported.

So far, George seems to have found that technology doesn’t necessarily take away relationship value and quality. Online relationships tend to reflect offline relationships. While talking with parents might not always make a student feel better, there can be circumstances where it can be beneficial.

Post by Meg Shieh.

Young Scientists, Making the Rounds

“Can you make a photosynthetic human?!” an 8th grader enthusiastically asks me while staring at a tiny fern in a jar.

He’s not the only one who asked me that either — another student asked if Superman was a plant, since he gets his power from the sun.

These aren’t the normal questions I get about my research as a Biology PhD candidate studying how plants get nutrients, but they were perfect for the day’s activity –A science round robin with Durham eighth-graders.

Biology grad student Leslie Slota showing Durham 8th graders some fun science.

After seeing a post under #scicomm on Twitter describing a public engagement activity for scientists, I put together a group of Duke graduate scientists to visit local middle schools and share our science with kids. We had students from biomedical engineering, physics, developmental biology, statistics, and many others — a pretty diverse range of sciences.

With help from David Stein at the Duke-Durham Neighborhood Partnership, we made connections with science teachers at the Durham School of the Arts and Lakewood Montessori school, and the event was in motion!

The outreach activity we developed works like speed dating, where people pair up, talk for 3-5 mins, and then rotate. We started out calling it “Science Speed Dating,” but for a middle school audience, we thought “Science Round-Robin” was more appropriate. Typically, a round-robin is a tournament where every team plays each of the other teams. So, every middle schooler got to meet each of us graduate students and talk to us about what we do.

The topics ranged from growing back limbs and mapping the brain, to using math to choose medicines and manipulating the different states of matter.

The kids were really excited for our visit, and kept asking their teachers for the inside scoop on what we did.

After much anticipation, and a little training and practice with Jory Weintraub from the Science & Society Initiative, two groups of 7-12 graduate students armed themselves with photos, animals, plants, and activities related to our work and went to visit these science classes full of eager students.

First-year MGM grad student Tulika Singh (top right) brought cardboard props to show students how antibodies match up with cell receptors.

“The kids really enjoyed it!” said Alex LeMay, middle- and high-school science teacher at the Durham School of the Arts. “They also mentioned that the grad students were really good at explaining ideas in a simple way, while still not talking down to them.”

That’s the ultimate trick with science communication: simplifying what we do, but not talking to people like they’re stupid.

I’m sure you’ve heard the old saying, “dumb it down.” But it really doesn’t work that way. These kids were bright, and often we found them asking questions we’re actively researching in our work. We don’t need to talk down to them, we just need to talk to them without all of the exclusive trappings of science. That was one thing the grad students picked up on too.

“It’s really useful to take a step back from the minutia of our projects and look at the big picture,” said Shannon McNulty, a PhD candidate in Molecular Genetics and Microbiology.

The kids also loved the enthusiasm we showed for our work! That made a big difference in whether they were interested in learning more and asking questions. Take note, fellow scientists: share your enthusiasm for what you do, it’s contagious!

Another thing that worked really well was connecting with the students in a personal way. According to Ms. LeMay, “if the person seemed to like them, they wanted to learn more.” Several of the grad students would ask each student their names and what they were passionate about, or even talk about their own passions outside of their research, and these simple questions allowed the students to connect as people.

There was one girl who shared with me that she didn’t know what she wanted to do when she grew up, and I told her that’s exactly where I was when I was in 8th grade too. We then bonded over our mutual love of baking, and through that interaction she saw herself reflected in me a little bit; making a career in science seem like a possibility, which is especially important for a young girl with a growing interest in science.

Making the rounds in these science classrooms, we learned just as much from the students we spoke to as they did from us. Our lesson being: science outreach is a really rewarding way to spend our time, and who knows, maybe we’ll even spark someone who loves Superman to figure out how to make the first photosynthesizing super-person!

Guest post by Ariana Eily , PhD Candidate in Biology, shown sharing her floating ferns at left.