Puhleeeeese Can We Win It All This Time?

The research analytics folks over at Thomson Reuters are once again running the “Metrics Mania” bracket challenge.

Cameron Crazies doing their thing.

Cameron Crazies doing their thing.

They start with the 64 universities whose teams have made the NCAA men’s basketball tournament, and then slice and dice their academic publishing records pair-wise to see which of the best college basketball schools can also kick butt in the academic journals. The contest is based on Thomson Reuters InCites, an analytics site designed to allow institutions to measure research output and benchmark their performance against peers.

Surely, you’re not surprised to learn that Duke is always in the Final Four of Metrics Mania?

How about if I told you we LOST in the finals the last TWO YEARS IN A ROW?

In 2013, Duke made the Final Four. But in that first-ever contest, UC Berkeley beat Harvard by 0.01 points in the finals, which I guess is the Metrics Mania equivalent of a buzzer-beater.

Then in 2014, covered on this blog, we lost to Stanford in the final. (Mascot: anthropomorphized pine tree.)

The 2015 NCAA basketball championship was Duke's fifth.

The 2015 NCAA basketball championship was Duke’s fifth.

Last year — also covered here with waning enthusiasm — we lost to Harvard. (HARVARD?!) but at least our ballers brought home a sweet trophy.

Bitter? Naaaaah, not us. That would be unscientific.

So, what’s it gonna be this year, Thomson Reuters? What combination of measures will put is in our rightful place atop the bracket at the end? The final four face “Category Normalized Citation Impact,” then it’s on to “# of Hot Papers” to pick the winner. We can hardly wait.

My Final Four prediction: Cal, Duke, Michigan, Michigan State. (Remember, this is based on science, not basketball.) Winner? No idea.

Come on back for results right here in two weeks.

UPDATE _ April 6, 2016. Oh yeah, the tournament. We sort of lost track after Duke fell out of the basketball contest. Well, it turns out we fell out of the academic publishing contest too, falling to Yale in the second round over something called “average percentile.”

Let’s see here…

“Winners from this round are determined by the Percentage of International Collaborations. The % of International Collaborations is the number of International Collaborations for an institution divided by the total number of documents for the same entity represented as a percentage.”

The % of International Collaborations is an indication of an institution’s ability to attract international collaborations.”

So there you have it. Our first failure to reach the Final Four in four years. Cal Berkeley won it all for the second time, out-earning Wisconsin on Number of Hot Papers.

Later, Thomson-Reuters.

Post by Karl Leif Bates

Karl Leif Bates

“Debugging the Gender Gap” in Tech

Lenna“Why isn’t Lenna wearing any clothes?” I implored my friend, shocked at seeing the shoulders-up nude photo of a woman on a mundane Monday in the Duke library. I had been going through a MATLAB tutorial on computer vision, and the sample image was, surprisingly, a naked lady. Apparently, when the USC developers behind a computer vision algorithm needed a sample face in 1973, someone just happened to walk into the lab with a Playboy magazine. The face of the woman on the centerfold, Lenna, has since become the default data for computer vision classes around the world. Because, of course, it’s totally normal to walk into an academic setting waving around a copy of Playboy, which would naturally be the first place one would go looking for a face.

Unfortunately, seeing female objectification in professional programming environments isn’t exactly an isolated incident. With the advent of the “brogrammer” culture, women have reported being exposed to workplaces in which male programmers share porn over open communication channels, according to CODE: Debugging the Gender Gap. When they’ve asked their male coworkers to stop, they were told, “Stop being such a girl.”

A showing of CODE was put on by RENCI, the Renaissance Computing Institute, and the

new doc 6_1 (1)

The percentage of women earning degrees in computer science has been decreasing, rather than increasing, since the 1980s.

Carolina Women’s Center, on February 29 at UNC. RENCI, while addressing issues of staffing diversity within its own organization, was inspired to bring the issue to light in the greater UNC community. By 2020, we expect to see more than one million unfilled software engineering jobs. As of now, only 23% of technical jobs nationwide are filled by women, leaving a huge gap to fill in this important workspace.

The response of the largely female audience to the film was overwhelmingly positive. Lilly, a first-year math student at UNC, noted that the issues the film addressed were “obvious,” both in academic settings and in the online blogosphere. She appreciated the positive messages, such as in this GoldieBlox superbowl ad, that counter expectations of young girls to study more “social” subjects and encourage them to pursue science, technology, engineering and math. Addy, a first-year computer science student, noted that a supportive group of women in her CS401 class at UNC makes the dearth of women less noticeable.

Olivia, Tabatha, and Addy with a collage of "Why We Love Tech"

Olivia, Tabatha, and Megan with a collage of “Why We Love Tech”

Tabatha, a first-year computer science student at UNC, said that she feels intimidated in introductory computer science classes, where male students often have years of background knowledge that she doesn’t. She hesitates to show men her code until it is perfect, since she feels that as a woman, she has to prove that she is just as good as a man. This additional pressure and worry, CODE observed, often causes women to perform worse in quantitative classes. Tabatha, Megan, and Olivia attended the screening as part of a Women’s Studies class. Megan echoed Tabatha’s sentiment, relating that as a beginning programmer, she felt behind during HackNC, where most men already knew how to build apps.

Clearly, issues of female representation in tech persist into the university and industry level. However, CODE insists that we must remedy the problem during childhood, when girls receive societal messages that deter them from studying science and tech subjects.

If we’re going to be “changing/saving the world,” “making a better version of you,” and deciding how to “do the right thing,” (all rhetoric from the tech industry), we should probably have all genders and races represented in those responsible for effecting the change that will supposedly impact all of humanity.

For more information on CODE, check out shescoding.org.

By Olivia Zhuprofessionalpicture

Why care about the gender gap in science and tech?

A day on the job for Christine McKinley

A day on the job for Christine McKinley

Scenes like the one above are engineer Christine McKinley’s favorite views of the construction sites where she manages building designs and contracts with other engineers. McKinley, a mechanical engineer, musician, and author, enjoys the complexities, high stakes and surprises of her job. Engineers, she says, “design against [surprises] but live for surprises.”

One of these surprises, McKinley told an audience last Thursday Feb. 25 in the Nelson Music Room at Duke, was a talk she had with the director of a community college district. He told her “women aren’t as good as math and science.” Shocked and disappointed that a man in charge of the education of the young students would believe this, McKinley pointed out that several of her accomplished colleagues were women. McKinley, like many other women, was frustrated that she has to work harder than men to get a promotion.

Is this changing? Are women today more prevalent in engineering fields than they were twenty to thirty years ago?

The chart below depicts the distribution of engineers in 1989: only 15 percent are women.

Distribution of Engineering Graduates in 1989

Of course, 1989 was 27 years ago and a different cultural time, with Nintendo’s Game Boy and Prince William’s seventh birthday. But the chart below shows how little those numbers have changed.

Distribution of Engineering Graduates in 2015

For mechanical engineers, the gap is much larger: only 7 percent are women (yellow faces), while the blue faces represent men, with the some frowning ones unhappy to be working with the women.

Percent of female mechanical engineers

Percent of female mechanical engineers

When the workers are broken down into teams, according to McKinley, the image below is what it actually feels like to be working as a female mechanical engineer.

What it actually feels like to be a female mechanical engineer

What it actually feels like to be a female mechanical engineer

Let’s start with the most troubling issue regarding the lack of diversity in engineering. If women and people of color are told that we are not good at math and science, and we believe it, then we are choosing a form of helplessness. Specifically, if we don’t pick apart the data and challenge those who made up this story, then it sticks, and the “rumor” becomes a narrative – and that’s dangerous, McKinley said. However, everyone needs to know basic chemistry, math, and physics to participate in conversations about topics such as medicine, NASA, one’s cholesterol level, and energy conservation as a knowledgeable adult. People need to be STEM-literate to be able to analyze this data, and men, especially in the 1950s, didn’t want women to research the facts and prove a competition.

Why should we care about women choosing careers in STEM fields?

Reason 1: Gender financial inequity: STEM grads make more than non-STEM grads

If we care about the gender pay gap, and only 19 percent of engineering graduates are women, then that aggravates the situation. This gender inequity can be addressed – partly – by women choosing to study engineering, McKinley said.

Of course, money is not the only thing in life; we want jobs with meaning, she added. However, even civil engineers understand that they are in a helping profession, always excited to build a new bridge, for example, to help people cross a flooded river. At the same time, money gives one the ability to leave a spouse, to take care of a disabled child, to find a better job, to afford healthier food; making real money gives one a way to become independent and make better choices. Working a job, however, does not imply that we must “sacrifice [our] life and fun.” McKinley enjoys what she does and has a lot of fun on the job; studying math and science, she says, is not that complex with the right motivation and support.

Reason 2: Humanity’s Survival

A coronal mass ejection (CME) is an enormous eruption of gas and magnetic field that launches billions of tons of plasma from the sun’s surface into space. Such an event occurred in 1859. As a result, farmers plowing field with horses noticed a bright flash of light, steam engines continued to run on schedule, and telegraph operators were confused when their telegraph batteries stopped working. Overall, there were few problems due to the limited technology at the time.

Imagine a CME happening today. All our large pieces of equipment – power stations, transformers, and transmission lines – would get fried.

Equipment involved in the transportation of energy from power plants to users

If these power houses blow up, what are we going to do? With three-year lead-time and $2 trillion cost, they will not be repaired in time for us to continue our daily functions. We now have a civilization-changing event on our hands – what Hurricane Katrina gave us, but now, for entire countries. We are in a time where our dependence on technology is constantly rising – until it’s not. In such a disastrous scenario, we will need more engineers. At this time, everyone – men and women – will come together to work on simple, elegant solutions to make the world better.

Currently, we have a mass shortage of engineers, so those today are overbooked with work. If these engineers are unable to find time to think through the entire solution and review all possible sources of error, then it creates a problem not only for engineering but also for the entire world in general. We are in need of good engineers and a diverse workforce to bring together all our ideas for a better world.

McKinley notes that she finds herself more comfortable when there are other women in the room. As a result, the whole team gets more relaxed, “elevating everyone’s game,” and people get more creative and feel more secure in sharing their ideas.

Grace Hopper created the computers advertised in this flyer.

Grace Hopper created the computers advertised in this flyer.

 

Reason 3: The third reason we care about this view about engineering is the history of STEM achievements by women being ignored or the credit being taken by men.

Women who became mathematicians in the 1900s had to fight hard to have their contributions to the field recognized. The world misses out significantly if the achievements of half of humanity are ignored.

Hertha Aryton was a brilliant mathematician who had been elected the first female member of the Institution of Electrical Engineers in 1899. In 1902, she became the first woman nominated a Fellow of the Royal Society of London. “Because she was married, however,” McKinley quoted, “legal counsel advised that the charter of the Royal Society did not allow the Society to elect her to this distinction.”

Amalie Noether was another incredible mathematician who invented a theorem that united symmetry in nature and the universal laws of conservation. Some consider Noether’s theorem, as it is now called, to be as important as Albert Einstein’s theory of relativity. Einstein himself regarded her as most “significant” and “creative” female mathematician of all time. However, McKinley tells the audience, she was denied a working position at universities simply because they did not hire female professors.

In the 1900’s, more than 1000 women joined an organization called Women Airforce Service Pilots. They transported newly-made planes to the fighter pilots; however, many of the planes were untested, causing 38 of them to die in service. While they went through intense military training and had prior experience, the women were considered “civilian volunteers” and had to fight to be recognized. Further, most of the accepted women to the organization were white, and the only African American applicant was asked to withdraw her application.

Nancy Fitzroy was American engineer and heat transfer expert in the 1900s. She received plenty of criticism as well, but she said it didn’t affect her: “The reaction I pretty much have gotten most of my life is ‘little girl, what are you doing here?’ but I was a good engineer. That’s what made all the difference.”

 

Curiosity, inventiveness, and the urge to improve are not male traits. They are human traits. Women are half of humanity; they are not the spectators. Women must step up and contribute even if it is more difficult. Constantly underestimated as a female mechanical engineer, McKinley says she uses this underestimation as fuel to work harder and become better.

Being an engineer is worth it. Ask great questions, and be really good.

Remember, McKinley told her audience, that engineering is full of surprises. And for people who underestimate you, you’ll be that surprise.

 

—–

C

Christine McKinley gave her talk in the Nelson Music Building at Duke last Thursday for Feminist/Women’s month.

Christine McKinley is a mechanical engineer, musician, and author. Her musical Gracie and the Atom, won a Portland Drammy for Original Score. Her book Physics for Rock Stars was published in 2014 by Penguin Random House. Christine hosted Brad Meltzer’s Decoded on History Channel and Under New York on Discovery Channel.

You can view her website, read her book, or contact her via email.

—–

Anika_RD_hed100_2 By Anika Radiya-Dixit

 

 

Charles Darwin Artifacts You Can Find at Duke

In this letter written nearly 150 years ago, Charles Darwin asks whether nest-building is something birds instinctively know how to do from birth, or whether it’s a skill they get better at with practice -- a question researchers continue to investigate today.

In this letter written nearly 150 years ago, Charles Darwin asks whether nest-building is something birds instinctively know how to do from birth, or whether it’s a skill they get better at with practice — a question researchers continue to study today.

Hidden among more than four million books and documents stacked three stories high, in a room kept a constant 50 degrees with 30 percent humidity, Duke’s Rubenstein Library houses several letters and early edition publications by one of history’s greatest scientists — the British naturalist Charles Darwin.

Born more than 200 years ago today, Darwin famously wrote thousands of letters in his lifetime. You can find several of the handwritten originals at Duke, on topics ranging from how birds moult to the behavior of blow flies.

“I begin to think that the pairing of birds must be as delicate and tedious an operation as the pairing of young gentlemen and ladies,” a 59-year-old Darwin wrote to his bird-loving friend and frequent correspondent John Jenner Weir on April 18, 1868.

Also available is an 1855 copy of Darwin’s firsthand account of the voyage of the Beagle. These and other Darwin writings are available by request at http://library.duke.edu/rubenstein/.

741A4146

Visitors to Duke’s Rubenstein Library can browse an 1855 copy of Darwin’s firsthand account of the voyage of the Beagle, “Journal of Researches into the Natural History and Geology of the Countries Visited During the Voyage of H.M.S. Beagle Round the World, Under the Command of Capt. Fitz Roy, R.N.”

Post by Robin A. Smith Robin Smith

 

 

 

When the Data Get Tough, These Researchers Go Visual

Ever wondered what a cleaner shrimp can see?

Or how the force of a footstep moves from particle to particle through a layer of sand?

How about what portion of our renewable energy comes from wind versus solar power?

The winning submission, created by Nicholas School PhD candidate Brandon Morrison, illustrates the flow of agricultural and forestry crops from raw materials to consumer products. The colors correspond to the type of crop – brown for wood, green for vegetables, etc. – and the width of the lines correspond to the quantity of the crop. You can check out the full image and caption on the Duke Data Visualization Flickr Gallery.

The winning submission, created by Nicholas School PhD candidate Brandon Morrison, illustrates the flow of agricultural and forestry crops from raw materials to consumer products. The colors correspond to the type of crop – brown for wood, green for vegetables, etc. – and the width of the lines correspond to the quantity of the crop. You can check out the full image and caption on the Duke Data Visualization Flickr Gallery.

The answers to these questions and more are stunningly rendered in the entries to the 2016 Student Data Visualization Contest, which you can check out now on the Duke Data Visualization Flickr Gallery.

“Visualizations take advantage of our powerful ability to detect and process shapes to reveal detailed trends that you otherwise wouldn’t be able to see,” said Angela Zoss, Data Visualization Coordinator at Duke Data and Visualization Services (DVS), who runs the contest. “This year’s winners were all able to take very complex topics and use visualization to make them more accessible.”

One winner and two finalists were selected from the 14 submissions on the basis of five criteria: insightfulness, broad appeal, aesthetics, technical merit, and novelty. The submissions represent data from all areas of research at Duke – from politics and health to fundamental physics and biology.

“This year’s entrants showed a lot of sophistication and advanced scholarship,” Zoss said.  “We’re seeing more advanced graduate work and multi-year research projects that are really benefiting from visualization.”

Eric Monson, a Data Visualization Analyst with DVS, hopes the contest will inspire more students to consider data visualization when grappling with intricate data sets.

“A lot of this work only gets shared within courses or small academic communities, so it’s exciting to give people this opportunity to have their work reach a broader audience,” Monson said.

Posters of the winning submissions will soon be on display in the Brandaleone Lab for Data and Visualization Services in The Edge on the first floor of Bostock Library.

The second-place entry, by Art History PhD student Katherine McCusker, depicts an archaeological site in Viterbo, Italy. The colored lines indicate the likely locations of buried structures like walls, platforms, and pavement, based on an interpretation of data from ground-penetrating radar (represented by a dark red, yellow, white colormap). You can check out the full image and caption on the Duke Data Visualization Flickr Gallery.

The second-place entry, by Art History PhD student Katherine McCusker, depicts an archaeological site in Viterbo, Italy. The colored lines indicate the likely locations of buried structures like walls, platforms, and pavement, based on an interpretation of data from ground-penetrating radar (represented by a dark red, yellow, white colormap). You can check out the full image and caption on the Duke Data Visualization Flickr Gallery.

Kara J. Manke, PhD

Post by Kara Manke

 

Middle Schoolers Ask: What’s it Like to be a Scientist?

PostdocsWhen a group of local middle schoolers asked four Duke postdocs what it’s like to be a scientist, the answers they got surprised them.

For toxicologist Laura Maurer, it means finding out if the tiny silver particles used to keep socks and running shirts from getting smelly might be harmful to your health.

For physics researcher Andres Aragoneses, it means using lasers to stop hackers and make telecommunications more secure.

And for evolutionary anthropologist Noah Snyder-Mackler, it means handling a lot of monkey poop.

The end result is a series of short video interviews filmed and edited by 5th-8th graders in Durham, North Carolina. Read more about the project and the people behind it at http://sites.duke.edu/pdocs/, or watch the videos below: