Students Share Research Journeys at Bass Connections Showcase

From the highlands of north central Peru to high schools in North Carolina, student researchers in Duke’s Bass Connections program are gathering data in all sorts of unique places.

As the school year winds down, they packed into Duke’s Scharf Hall last week to hear one another’s stories.

Students and faculty gathered in Scharf Hall to learn about each other’s research at this year’s Bass Connections showcase. Photo by Jared Lazarus/Duke Photography.

The Bass Connections program brings together interdisciplinary teams of undergraduates, graduate students and professors to tackle big questions in research. This year’s showcase, which featured poster presentations and five “lightning talks,” was the first to include teams spanning all five of the program’s diverse themes: Brain and Society; Information, Society and Culture; Global Health; Education and Human Development; and Energy.

“The students wanted an opportunity to learn from one another about what they had been working on across all the different themes over the course of the year,” said Lori Bennear, associate professor of environmental economics and policy at the Nicholas School, during the opening remarks.

Students seized the chance, eagerly perusing peers’ posters and gathering for standing-room-only viewings of other team’s talks.

The different investigations took students from rural areas of Peru, where teams interviewed local residents to better understand the transmission of deadly diseases like malaria and leishmaniasis, to the North Carolina Museum of Art, where mathematicians and engineers worked side-by-side with artists to restore paintings.

Machine learning algorithms created by the Energy Data Analytics Lab can pick out buildings from a satellite image and estimate their energy consumption. Image courtesy Hoël Wiesner.

Students in the Energy Data Analytics Lab didn’t have to look much farther than their smart phones for the data they needed to better understand energy use.

“Here you can see a satellite image, very similar to one you can find on Google maps,” said Eric Peshkin, a junior mathematics major, as he showed an aerial photo of an urban area featuring buildings and a highway. “The question is how can this be useful to us as researchers?”

With the help of new machine-learning algorithms, images like these could soon give researchers oodles of valuable information about energy consumption, Peshkin said.

“For example, what if we could pick out buildings and estimate their energy usage on a per-building level?” said Hoël Wiesner, a second year master’s student at the Nicholas School. “There is not really a good data set for this out there because utilities that do have this information tend to keep it private for commercial reasons.”

The lab has had success developing algorithms that can estimate the size and location of solar panels from aerial photos. Peshkin and Wiesner described how they are now creating new algorithms that can first identify the size and locations of buildings in satellite imagery, and then estimate their energy usage. These tools could provide a quick and easy way to evaluate the total energy needs in any neighborhood, town or city in the U.S. or around the world.

“It’s not just that we can take one city, say Norfolk, Virginia, and estimate the buildings there. If you give us Reno, Tuscaloosa, Las Vegas, Pheonix — my hometown — you can absolutely get the per-building energy estimations,” Peshkin said. “And what that means is that policy makers will be more informed, NGOs will have the ability to best service their community, and more efficient, more accurate energy policy can be implemented.”

Some students’ research took them to the sidelines of local sports fields. Joost Op’t Eynde, a master’s student in biomedical engineering, described how he and his colleagues on a Brain and Society team are working with high school and youth football leagues to sort out what exactly happens to the brain during a high-impact sports game.

While a particularly nasty hit to the head might cause clear symptoms that can be diagnosed as a concussion, the accumulation of lesser impacts over the course of a game or season may also affect the brain. Eynde and his team are developing a set of tools to monitor both these impacts and their effects.

A standing-room only crowd listened to a team present on their work “Tackling Concussions.” Photo by Jared Lazarus/Duke Photography.

“We talk about inputs and outputs — what happens, and what are the results,” Eynde said. “For the inputs, we want to actually see when somebody gets hit, how they get hit, what kinds of things they experience, and what is going on in the head. And the output is we want to look at a way to assess objectively.”

The tools include surveys to estimate how often a player is impacted, an in-ear accelerometer called the DASHR that measures the intensity of jostles to the head, and tests of players’ performance on eye-tracking tasks.

“Right now we are looking on the scale of a season, maybe two seasons,” Eynde said. “What we would like to do in the future is actually follow some of these students throughout their career and get the full data for four years or however long they are involved in the program, and find out more of the long-term effects of what they experience.”

Kara J. Manke, PhD

Post by Kara Manke

Hidden No More: Women in STEM reflect on their Journeys

Back when she was a newly-minted Ph.D., Ayana Arce struggled to picture her future life as an experimental physicist. An African American woman in a field where the number of black women U.S. doctorates is still staggeringly small, Arce could not identify many role models who looked like her.

“I didn’t know what my life would look like as a black postdoc or faculty member,” Arce said.

But in the end, Arce – an associate professor of physics at Duke who went on to join the international team of physicists who discovered the Higgs Boson in 2012 — drew inspiration from her family.

“I looked to the women such as my mother who had had academic careers, and tried to think about how I could shape my life to look something like that, and I realized that it could be something I could make work,” Arce said.

Adrienne Stiff-Roberts, Fay Cobb Payton, Kyla McMullen, Robin Coger and Valerie Ashby on stage at the Hidden Figures No More panel discussion.

Adrienne Stiff-Roberts, Fay Cobb Payton, Kyla McMullen, Robin Coger and Valerie Ashby on stage at the Hidden Figures No More panel discussion. Credit: Chris Hildreth, Duke Photography.

Arce joined five other African American women faculty on the stage of Duke’s Griffith Film Theater March 23 for a warm and candid discussion on the joys and continuing challenges of their careers in science, technology, engineering and math (STEM) fields.

The panel, titled “Hidden Figures No More: Highlighting Phenomenal Women in STEM,” was inspired by Hidden Figures, a film which celebrates three pioneering African American women mathematicians who overcame racial segregation and prejudice to play pivotal roles in NASA’s first manned space flight.

The panel discussion was spearheaded by Johnna Frierson, Director of the Office of Diversity and Inclusion at the Pratt School of Engineering, and co-sponsored by the Duke Women’s Center. It was followed by a free screening of the film.

Though our society has made great strides since the days depicted in the film, women and minorities still remain under-represented in most STEM fields. Those who do pursue careers in STEM must overcome numerous hurdles, including unconscious bias and a lack of colleagues and role models who share their gender and race.

“In my field, at some of the smaller meetings, I am often the only black woman present at the conference, many times I’m the only black person at all,” said Adrienne Stiff-Roberts, an Associate Professor of Electrical and Computer Engineering at Duke. “In that atmosphere often it can be very challenging to engage with others in the way that you are supposed to, and you can feel like an outsider.”

Valerie Ashby and Ayana Arce onstage at the Hidden Figures No More panel discussion

Valerie Ashby and Ayana Arce shared their experiences. Credit: Chris Hildreth, Duke Photography

Stiff-Roberts and the other panelists have all excelled in the face of these challenges, making their marks in fields that include physics, chemistry, computer science, mechanical engineering and electrical engineering. On Thursday they shared their thoughts and experiences with a diverse audience of students, faculty, community members and more than a few kids.

Many of the panelists credited teams of mentors and sponsors for bolstering them when times got tough, and encouraged young scientists to form their own support squads.

Valerie Ashby, Dean at Duke’s Trinity College of Arts and Sciences, advised students to look for supporters who have a vision for what they can become, and are eager to help them get there. “Don’t assume that your help might come from people who you might expect your help to come from,” Ashby said.

The importance of cheerleading from friends, and particularly parents, can never be overestimated, the panelists said.

“Having someone who will celebrate every single positive with you is a beautiful thing,” said Ashby, in response to a mother seeking advice for how to support a daughter majoring in biomedical engineering. “If your daughter is like many of us, we’ll do 99 great things but if we do one wrong thing we will focus on the one wrong thing and think we can’t do anything.”

Women in STEM can also be important and powerful allies to each other, noted Kyla McMullen, an Assistant Professor of Computer and Information Science at the University of Florida.

“I have seen situations where a woman suggests something and then the male next her says the same thing and gets the credit,” McMullen said. “That still happens, but one thing that I see help is when women make an effort to reiterate the points made by other women so people can see who credit should be attributed to.”

With all the advice out there for young people who are striving to succeed in STEM – particularly women and underrepresented minorities – the panelists advocated that everyone to stay true to themselves, above all.

“I want to encourage everyone in the room – whether you are a budding scientist or woman scholar – you can be yourself,” Ashby said. “You should make up in your mind that you are going to be yourself, no matter what.”

Kara J. Manke, PhD

Post by Kara Manke

Closing the Funding Gap for Minority Scientists

DURHAM, N.C. — The barriers to minority students in science, technology, engineering and math (STEM) don’t go away once they’ve finished school and landed a job, studies show. But one nationwide initiative aims to level the playing field once they get there.

With support from a 3-year, $500,0000 grant from the National Science Foundation, assistant professors and postdoctoral fellows who come from underrepresented minorities are encouraged to apply by May 5 for a free grant writing workshop to be held June 22-24 in Washington, D.C..

It’s no secret that STEM has a diversity problem. In 2015, African-Americans and Latinos made up 29 percent of the U.S. workforce, but only 11 percent of scientists and engineers.

A study published in the journal Science in 2011 revealed that minority scientists also were less likely to win grants from the National Institutes of Health, the largest source of research funding to universities.

Based on an analysis of 83,000 grant applications from 2000 to 2006, the study authors found that applications from black researchers were 13 percent less likely to succeed than applications from their white peers. Applications from Asian and Hispanic scientists were 5 and 3 percent less likely to be awarded, respectively.

Even when the study authors made sure they were comparing applicants with similar educational backgrounds, training, employers and publication records, the funding gap persisted — particularly for African-Americans.

Competition for federal research dollars is already tough. But white scientists won 29 percent of the time, and black scientists succeeded only 16 percent of the time.

Pennsylvania State University chemistry professor Squire Booker is co-principal investigator of a $500,000 initiative funded by the National Science Foundation to help underrepresented minority scientists write winning research grants.

“That report sent a shock wave through the scientific community,” said Squire Booker, a Howard Hughes Medical Institute investigator and chemistry professor at Pennsylvania State University. Speaking last week in the Nanaline H. Duke building on Duke’s Research Drive, Booker outlined a mentoring initiative that aims to close the gap.

In 2013, Booker and colleagues on the Minority Affairs Committee of the American Society for Biochemistry and Molecular Biology decided to host a workshop to demystify the grant application process and help minority scientists write winning grants.

Grant success is key to making it in academia. Even at universities that don’t make funding a formal requirement for tenure and promotion, research is expensive. Outside funding is often required to keep a lab going, and research productivity — generating data and publishing results — is critical.

To insure underrepresented minorities have every chance to compete for increasingly tight federal research dollars, Booker and colleagues developed the Interactive Mentoring Activities for Grantsmanship Enhancement program, known as IMAGE. Program officers from NIH and NSF offer tips on navigating the funding process, crafting a successful proposal, decoding reviews and revising and resubmitting. The organizers also stage a mock review panel, and participants receive real-time, constructive feedback on potential research proposals.

Participants include researchers in biology, biophysics, biochemistry and molecular biology. More than half of the program’s 130 alumni have been awarded NSF or NIH grants since the workshop series started in 2013.

Booker anticipates this year’s program will include more postdoctoral fellows. “Now we’re trying to expand the program to intervene at an earlier stage,” Booker said.

To apply for the 2017 workshop visit http://www.asbmb.org/grantwriting/.  The application deadline is May 5.

s200_robin.smith

Post by Robin Smith

Linking Climate Change, Air Pollution and Public Health

We often view climate change and air pollution as two separate entities. But, the two issues are united by one common driving factor: human emissions. Nicholas School of the Environment Earth Sciences Professor Drew Shindell reminds us how interconnected these issues truly are, and how we must begin viewing them as such to create change.

Shindell argues that climate change and air pollution are often misrepresented. Air pollution is a problem that seems elusive to the individual, and yet it is the

Dr. Shindell with Marcelo Mena (far left), Vice Minister of the Environment of Chile, and Governor Jerry Brown (CA) at the COP21 in Paris.

number one cause of premature death. The problem is often polarized from us, and we forget that we are largely at fault for its increasing effect. We place the blame on the emissions of large corporations, when our own car emissions are just as detrimental. Shindell argues that it is the “othering” of these issues that makes it hard for us feel a need to create change.

But, by clearly linking climate change and air pollution together, and linking those two to human health, Shindell believes we will develop a greater sense of responsibility for our environment. He gives the example of Pakistan, where increased ozone levels due to human emissions have severely decreased the air quality. As a result, there has been a 36% decline wheat and rice production. This dent in Pakistan’s agricultural systems poses a great threat on food security for the entire nation, and could potentially create a wave of health issues.

But policy often blurs the line between air pollution, climate change and human health. Shindell says he doesn’t know of a single jurisdiction that explicitly mentions the scope of negative effects air pollution and climate change can have on our health (stroke, lung cancer, new disease vectors, to name a few). He suggests expanding our metrics and developing a broader-based impact analysis so that humans are well-informed of the interconnectedness of these issues.

Is it easier to blame a big factory for pollution than to look at your own travel habits?

If we included public health in our impact estimates for methane emissions, for example, the cost would be much larger than anticipated. But, Shindell highlights that to bring these emissions down requires a change that is not easy to ask of our energy-dependent, consumer-driven world. Decreasing our meat consumption by 48%, for example, would save us billions of dollars, but to trigger such a change would demand a desire from the public to alter their behavior, which time and time again has proven to be challenging.

At the end of the day, this scientific issue is a largely psychological one. We assume our contributions make a negligible difference, when in reality it is our consumer behavior that will drive the change we wish to see in our environment. But, how are we expected to feel the burden of air pollution on our health, when policy isn’t directly linking the two together? How can we see climate change as an issue that threatens the security of global agricultural systems when legislation fails to draw the two together explicitly? It is here where we must see a change.

Post by Lola Sanchez-Carrion

 

Rooftop Observatory Tracks Hurricane Rain and Winter Snow

Jonathan Holt replaces the protective cover over the rain gauge.

Jonathan Holt replaces the protective cover over the rain gauge.

On Friday night, while most of North Carolina braced against the biting sleet and snow with hot cocoa and Netflix, a suite of research instruments stood tall above Duke’s campus, quietly gathering data on the the storm.

The instruments are part of a new miniature cloud and precipitation-monitoring laboratory installed on the roof of Fitzpatrick CIEMAS by graduate student Jonathan Holt and fellow climate researchers in Ana Barros’s lab.

The team got the instruments up and running in early October, just in time for their rain gauge to register a whooping six inches of rain in six hours at the height of Hurricane Matthew — an accumulation rate comparable to that of Hurricane Katrina when it made landfall in Mississippi. Last weekend, they collected similar data on the winter storm, their Micro Rain Radar tracking the rate of snowfall throughout the night.

The rooftop is just the latest location where the Barros group is gathering precipitation data, joining sites in the Great Smokies, the Central Andes of Peru, and Southern Africa. These three instruments, with a fourth added in early January, are designed to continuously track the precipitation rate, the size and shape of raindrops or snow flakes – which climatologists collectively dub hydrometeors — and the formation and height of clouds in the air above Duke.

Ana Barros, a professor of civil and environmental engineering at Duke, says that her team uses these field observations, combined with atmospheric data from institutions like NOAA and NASA, to study how microscopic particles of dust, smoke, or other materials in the air called aerosols interact with water vapor to form clouds and precipitation. Understanding these interactions is a key prerequisite to building accurate weather and climate models.

“What we are trying to do here is to actually follow the lifecycle of water droplets in the air, and understand how that varies depending on weather systems, on conditions, on the climatic region and the location on the landscape,” Barros said.

A distrometer on the roof of Fitzpatrick CIEMAS.

A laser beam passing between the two heads of the distrometer detects the numbers and sizes of passing raindrops or snowflakes.

Besides tracking dramatic events like Matthew, Barros says they are also interested in gathering data on light rainfall, defined as precipitation at a rate of less than 3 mm of an hour, throughout the year. Light rainfall is a significant source of water in the region, comprising about 35 percent of the annual rainfall. Studies have shown that it is particularly prone to climate change because even modest bumps in temperature can cause these small water droplets to evaporate back to gas.

Eliminating this water source, “is not a dramatic change,” Barros said. “But it is one of those very important changes that has implications for how we manage water, how we use water, how we design infrastructure, how we have to actually plan for the future.”

Barros says she is unaware of any similar instrument suites in North Carolina, putting their rooftop site in position to provide unique insights about the region’s climate. And unlike their mountainous field sites, instruments on the roof are less prone to being co-opted by itchy bears.

“When we can gather long term rain gauge data like this, that puts our research group in a really unique position to come up with results that no one else has, and to draw conclusions about climate change that no one else can,” Holt said. “It is fun to have a truly unique perspective into the meteorology, hydrology and weather in this place.”

Micro Rain Radar data from Hurricane Matthew and the snowstorm on Jan. 6th.

The Micro Rain Radar (MRR) shoots radio waves into the sky where they reflect off water droplets or snowflakes, revealing the size and height of clouds or precipitation. The team collected continuous MRR data during Hurricane Matthew (top) and last Friday’s snow storm (bottom), creating these colorful plots that illustrate precipitation rates during the storms.

Kara J. Manke, PhD

Post by Kara Manke

Seeing Nano

Take pictures at more than 300,000 times magnification with electron microscopes at Duke

Sewer gnat head

An image of a sewer gnat’s head taken through a scanning electron microscope. Courtesy of Fred Nijhout.

The sewer gnat is a common nuisance around kitchen and bathroom drains that’s no bigger than a pea. But magnified thousands of times, its compound eyes and bushy antennae resemble a first place winner in a Movember mustache contest.

Sewer gnats’ larger cousins, horseflies are known for their painful bite. Zoom in and it’s easy to see how they hold onto their furry livestock prey:  the tiny hooked hairs on their feet look like Velcro.

Students in professor Fred Nijhout’s entomology class photograph these and other specimens at more than 300,000 times magnification at Duke’s Shared Material & Instrumentation Facility (SMIF).

There the insects are dried, coated in gold and palladium, and then bombarded with a beam of electrons from a scanning electron microscope, which can resolve structures tens of thousands of times smaller than the width of a human hair.

From a ladybug’s leg to a weevil’s suit of armor, the bristly, bumpy, pitted surfaces of insects are surprisingly beautiful when viewed up close.

“The students have come to treat travels across the surface of an insect as the exploration of a different planet,” Nijhout said.

Horsefly foot

The foot of a horsefly is equipped with menacing claws and Velcro-like hairs that help them hang onto fur. Photo by Valerie Tornini.

Weevil

The hard outer skeleton of a weevil looks smooth and shiny from afar, but up close it’s covered with scales and bristles. Courtesy of Fred Nijhout.

fruit fly wing

Magnified 500 times, the rippled edges of this fruit fly wing are the result of changes in the insect’s genetic code. Courtesy of Eric Spana.

You, too, can gaze at alien worlds too small to see with the naked eye. Students and instructors across campus can use the SMIF’s high-powered microscopes and other state of the art research equipment at no charge with support from the Class-Based Explorations Program.

Biologist Eric Spana’s experimental genetics class uses the microscopes to study fruit flies that carry genetic mutations that alter the shape of their wings.

Students in professor Hadley Cocks’ mechanical engineering 415L class take lessons from objects that break. A scanning electron micrograph of a cracked cymbal once used by the Duke pep band reveals grooves and ridges consistent with the wear and tear from repeated banging.

cracked cymbal

Magnified 3000 times, the surface of this broken cymbal once used by the Duke Pep Band reveals signs of fatigue cracking. Courtesy of Hadley Cocks.

These students are among more than 200 undergraduates in eight classes who benefitted from the program last year, thanks to a grant from the Donald Alstadt Foundation.

You don’t have to be a scientist, either. Historians and art conservators have used scanning electron microscopes to study the surfaces of Bronze Age pottery, the composition of ancient paints and even dust from Egyptian mummies and the Shroud of Turin.

Instructors and undergraduates are invited to find out how they could use the microscopes and other nanotech equipement in the SMIF in their teaching and research. Queries should be directed to Dr. Mark Walters, Director of SMIF, via email at mark.walters@duke.edu.

Located on Duke’s West Campus in the Fitzpatrick Building, the SMIF is a shared use facility available to Duke researchers and educators as well as external users from other universities, government laboratories or industry through a partnership called the Research Triangle Nanotechnology Network. For more info visit http://smif.pratt.duke.edu/.

Scanning electron microscope

This scanning electron microscope could easily be mistaken for equipment from a dentist’s office.

s200_robin.smith

Post by Robin Smith