Linking Climate Change, Air Pollution and Public Health

We often view climate change and air pollution as two separate entities. But, the two issues are united by one common driving factor: human emissions. Nicholas School of the Environment Earth Sciences Professor Drew Shindell reminds us how interconnected these issues truly are, and how we must begin viewing them as such to create change.

Shindell argues that climate change and air pollution are often misrepresented. Air pollution is a problem that seems elusive to the individual, and yet it is the

Dr. Shindell with Marcelo Mena (far left), Vice Minister of the Environment of Chile, and Governor Jerry Brown (CA) at the COP21 in Paris.

number one cause of premature death. The problem is often polarized from us, and we forget that we are largely at fault for its increasing effect. We place the blame on the emissions of large corporations, when our own car emissions are just as detrimental. Shindell argues that it is the “othering” of these issues that makes it hard for us feel a need to create change.

But, by clearly linking climate change and air pollution together, and linking those two to human health, Shindell believes we will develop a greater sense of responsibility for our environment. He gives the example of Pakistan, where increased ozone levels due to human emissions have severely decreased the air quality. As a result, there has been a 36% decline wheat and rice production. This dent in Pakistan’s agricultural systems poses a great threat on food security for the entire nation, and could potentially create a wave of health issues.

But policy often blurs the line between air pollution, climate change and human health. Shindell says he doesn’t know of a single jurisdiction that explicitly mentions the scope of negative effects air pollution and climate change can have on our health (stroke, lung cancer, new disease vectors, to name a few). He suggests expanding our metrics and developing a broader-based impact analysis so that humans are well-informed of the interconnectedness of these issues.

Is it easier to blame a big factory for pollution than to look at your own travel habits?

If we included public health in our impact estimates for methane emissions, for example, the cost would be much larger than anticipated. But, Shindell highlights that to bring these emissions down requires a change that is not easy to ask of our energy-dependent, consumer-driven world. Decreasing our meat consumption by 48%, for example, would save us billions of dollars, but to trigger such a change would demand a desire from the public to alter their behavior, which time and time again has proven to be challenging.

At the end of the day, this scientific issue is a largely psychological one. We assume our contributions make a negligible difference, when in reality it is our consumer behavior that will drive the change we wish to see in our environment. But, how are we expected to feel the burden of air pollution on our health, when policy isn’t directly linking the two together? How can we see climate change as an issue that threatens the security of global agricultural systems when legislation fails to draw the two together explicitly? It is here where we must see a change.

Post by Lola Sanchez-Carrion

 

Rooftop Observatory Tracks Hurricane Rain and Winter Snow

Jonathan Holt replaces the protective cover over the rain gauge.

Jonathan Holt replaces the protective cover over the rain gauge.

On Friday night, while most of North Carolina braced against the biting sleet and snow with hot cocoa and Netflix, a suite of research instruments stood tall above Duke’s campus, quietly gathering data on the the storm.

The instruments are part of a new miniature cloud and precipitation-monitoring laboratory installed on the roof of Fitzpatrick CIEMAS by graduate student Jonathan Holt and fellow climate researchers in Ana Barros’s lab.

The team got the instruments up and running in early October, just in time for their rain gauge to register a whooping six inches of rain in six hours at the height of Hurricane Matthew — an accumulation rate comparable to that of Hurricane Katrina when it made landfall in Mississippi. Last weekend, they collected similar data on the winter storm, their Micro Rain Radar tracking the rate of snowfall throughout the night.

The rooftop is just the latest location where the Barros group is gathering precipitation data, joining sites in the Great Smokies, the Central Andes of Peru, and Southern Africa. These three instruments, with a fourth added in early January, are designed to continuously track the precipitation rate, the size and shape of raindrops or snow flakes – which climatologists collectively dub hydrometeors — and the formation and height of clouds in the air above Duke.

Ana Barros, a professor of civil and environmental engineering at Duke, says that her team uses these field observations, combined with atmospheric data from institutions like NOAA and NASA, to study how microscopic particles of dust, smoke, or other materials in the air called aerosols interact with water vapor to form clouds and precipitation. Understanding these interactions is a key prerequisite to building accurate weather and climate models.

“What we are trying to do here is to actually follow the lifecycle of water droplets in the air, and understand how that varies depending on weather systems, on conditions, on the climatic region and the location on the landscape,” Barros said.

A distrometer on the roof of Fitzpatrick CIEMAS.

A laser beam passing between the two heads of the distrometer detects the numbers and sizes of passing raindrops or snowflakes.

Besides tracking dramatic events like Matthew, Barros says they are also interested in gathering data on light rainfall, defined as precipitation at a rate of less than 3 mm of an hour, throughout the year. Light rainfall is a significant source of water in the region, comprising about 35 percent of the annual rainfall. Studies have shown that it is particularly prone to climate change because even modest bumps in temperature can cause these small water droplets to evaporate back to gas.

Eliminating this water source, “is not a dramatic change,” Barros said. “But it is one of those very important changes that has implications for how we manage water, how we use water, how we design infrastructure, how we have to actually plan for the future.”

Barros says she is unaware of any similar instrument suites in North Carolina, putting their rooftop site in position to provide unique insights about the region’s climate. And unlike their mountainous field sites, instruments on the roof are less prone to being co-opted by itchy bears.

“When we can gather long term rain gauge data like this, that puts our research group in a really unique position to come up with results that no one else has, and to draw conclusions about climate change that no one else can,” Holt said. “It is fun to have a truly unique perspective into the meteorology, hydrology and weather in this place.”

Micro Rain Radar data from Hurricane Matthew and the snowstorm on Jan. 6th.

The Micro Rain Radar (MRR) shoots radio waves into the sky where they reflect off water droplets or snowflakes, revealing the size and height of clouds or precipitation. The team collected continuous MRR data during Hurricane Matthew (top) and last Friday’s snow storm (bottom), creating these colorful plots that illustrate precipitation rates during the storms.

Kara J. Manke, PhD

Post by Kara Manke

When Art Tackles the Invisibly Small

Huddled in a small cinderblock room in the basement of Hudson Hall, visual artist Raewyn Turner and mechatronics engineer Brian Harris watch as Duke postdoc Nick Geitner positions a glass slide under the bulky eyepiece of an optical microscope.

To the naked eye, the slide is completely clean. But after some careful adjustments of the microscope, a field of technicolor spots splashes across the viewfinder. Each point shows light scattering off one of the thousands of silver nanoparticles spread in a thin sheet across the glass.

“It’s beautiful!” Turner said. “They look like a starry sky.”

AgAlgae_40x_Enhanced3

A field of 10-nanometer diameter silver nanoparticles (blue points) and clusters of 2-4 nanoparticles (other colored points) viewed under a dark-field hyperspectral microscope. The clear orbs are cells of live chlorella vulgaris algae. Image courtesy Nick Geitner.

Turner and Harris, New Zealand natives, have traveled halfway across the globe to meet with researchers at the Center for the Environmental Implications of Nanotechnology (CEINT). Here, they are learning all they can about nanoparticles: how scientists go about detecting these unimaginably small objects, and how these tiny bits of matter interact with humans, with the environment and with each other.

img_2842

The mesocosms, tucked deep in the Duke Forest, currently lay dormant.

The team hopes the insights they gather will inform the next phases of Steep, an ongoing project with science communicator Maryse de la Giroday which uses visual imagery to explore how humans interact with and “sense” the nanoparticles that are increasingly being used in our electronics, food, medicines, and even clothing.

“The general public, including ourselves, we don’t know anything about nanoparticles. We don’t understand them, we don’t know how to sense them, we don’t know where they are,” Turner said. “What we are trying to do is see how scientists sense nanoparticles, how they take data about them and translate it into sensory data.”

Duke Professor and CEINT member Mark Wiesner, who is Geitner’s postdoctoral advisor, serves as a scientific advisor on the project.

“Imagery is a challenge when talking about something that is too small to see,” Wiesner said. “Our mesocosm work provides an opportunity to visualize how were are investigating the interactions of nanomaterials with living systems, and our microscopy work provides some useful, if not beautiful images. But Raewyn has been brilliant in finding metaphors, cultural references, and accompanying images to get points across.”

img_2872

Graduate student Amalia Turner describes how she uses the dark-field microscope to characterize gold nanoparticles in soil. From left: Amalia Turner, Nick Geitner, Raewyn Turner, and Brian Harris.

On Tuesday, Geitner led the pair on a soggy tour of the mesocosms, 30 miniature coastal ecosystems tucked into the Duke Forest where researchers are finding out where nanoparticles go when released into the environment. After that, the group retreated to the relative warmth of the laboratory to peek at the particles under a microscope.

Even at 400 times magnification, the silver nanoparticles on the slide can’t really be “seen” in any detail, Geitner explained.

“It is sort of like looking at the stars,” Geitner said. “You can’t tell what is a big star and what is a small star because they are so far away, you just get that point of light.”

But the image still contains loads of information, Geitner added, because each particle scatters a different color of light depending on its size and shape: particles on their own shine a cool blue, while particles that have joined together in clusters appear green, orange or red.

During the week, Harris and Turner saw a number of other techniques for studying nanoparticles, including scanning electron microscopes and molecular dynamics simulations.

steepwashing-cake-copy-23

An image from the Steep collection, which uses visual imagery to explore how humans interact with the increasingly abundant gold nanoparticles in our environment. Credit: Raewyn Turner and Brian Harris.

“What we have found really, really interesting is that the nanoparticles have different properties,” Turner said. “Each type of nanoparticle is different to each other one, and it also depends on which environment you put them into, just like how a human will behave in different environments in different ways.”

Geitner says the experience has been illuminating for him, too. “I have never in my life thought of nanoparticles from this perspective before,” Geitner said. “A lot of their questions are about really, what is the difference when you get down to atoms, molecules, nanoparticles? They are all really, really small, but what does small mean?”

Kara J. Manke, PhD

Post by Kara Manke

I Know What You Did Last Summer…

From June to August 2016, four Duke students: Emma Heneine, Casey MacDermod, Maria Perez, and Noor Tasnim, packed their bags and traveled to Guatemala. They were participants in the Student Research Training (SRT) Program, studying “indoor air quality, cooking, and bathing habits in Indigenous Mayan households in six villages surrounding Lake Atitlan in Guatemala.”

The poster they presented on their project recently won first place in the Global Health Undergraduate Research Fair.

img_2741

Maria Perez (left) and Casey MacDermod (right)

The Duke Research Blog caught up with student researchers Maria Perez and Casey MacDermod after the conference. Maria Perez is a senior majoring in International Comparative Studies (ICS) and Global Health; she had research experience prior to traveling to Guatemala. Casey MacDermod is a junior majoring in Cultural Anthropology; she had no research experience in high school or at Duke prior to this experience. MacDermod knew what type of research she was interested in, so she looked through faculty members who did that type, found Dr. David Boyd, met with him, and learned about his SRT team.

Boyd told the students what the focus of the research should be, and the students, “as a team… came up with the questions and how [to] do the research…” Perez said. In order to monitor indoor air pollution, the team measured the small and large particulate matter with an instrument known as Dylos and the carbon monoxide levels with a carbon monoxide monitor.

From January until June, the team conducted background research on air pollution in Durham. At the beginning of June, they traveled to Guatemala and “had about a week of orientation,” said Perez. During this time, they met with on-site assistants who taught them on how to give questionnaires and conduct interviews.

Mostly, the team was self-directed; that was part of the challenge. MacDermod said that, although Boyd was with them “about the first three or four days…” and there were translators (Micaela and Carolina) that “gave us all the information we needed and were with us every step of the way throughout the research,” the student researchers needed to be flexible and able to think on their feet.

Every day, the team of four would split up into two groups with one translator each, then go to a village and do research. They would meet up for lunch and then either head back to their living site or go back into the villages to conduct more research. Based on her observations, MacDermod infers that using wood-burning stoves and temescales, or sweatlodges, caused the particulate matter to be “off the charts.”

The SRT program is part of the Duke Global Health Institute and the students were under the guidance and support of Dr. Boyd, Dr. Craig Sinkinson, Mayan Medical Aid, the primary schools in the municipalities and Bass Connections.

Although their winning poster included some graphs, Perez and MacDermod emphasized that these charts were produced automatically by the apparatus used to monitor air pollution. Further analysis of their data will occur next term.

meg_shieh_100hedPost and photo by Meg Shieh

Starting Your Own Business in Social Entrepreneurship? Lessons from Four Founders

Interested in starting your own jazz festival? Or creating hydrogen-rich water to boost your circulation and improve muscle recovery?

These are the accomplishments of Cicely Mitchell and Gail Levy, who were among four inspiring leaders at the evening panel discussion in the Fuqua School of Business this past Wednesday. Excited students and faculty gathered in the Kirby Reading room to learn about the leaders’ unique perspectives as founders of non-profit and for-profit solutions to various social impact and sustainability issues.

socEntrep1

Students and faculty gathered for dinner and networking before the panel discussion.

Organized by the Duke Innovation & Entrepreneurship Initiative and the Center for the Advancement of Social Entrepreneurship (CASE), the panel served to enlighten the audience about the challenges the women have faced and the lessons they learned in starting and scaling their social ventures. Panel moderator Erin Worsham, the Executive Director of CASE, opened the discussion with a few statistics.

In the non-profit sector, women make up 75% of the workforce, but in leadership positions, this ratio drops to 45%. As of 2013 in the for-profit sector, only 2.7% of venture capital investments went to fund companies with a female CEO. While black women own 1.5 million businesses in the U.S., they receive only 0.2% of venture funding. Undoubtedly, Worsham concluded, there is a lot of work to do in terms of women getting funded and represented as leaders.

Erin Worsham opened up the panel with statistics about women in the workforce. Worsham is the Executive Director of the award-winning CASE based at Duke University’s Fuqua School of Business

To commence the discussion, Worsham asked the panelists to speak about the gender discrimination they faced while starting their own companies. Gail Levy, founder of H Factor Water, a health-focused company producing hydrogen-infused water in environmentally friendly packaging, answered with a time she was challenged to a drinking match in order to close a deal. “The lesson I learned is to not go and drink your way into making a deal,” Levy joked. “But more importantly, you need to have grit and tenacity. Let our presence be known, because eventually we will be heard.”

Gail

Gail Levy was the founder of the White House Millennium Green Committee under the Clinton Administration in 1999. She is passionate about advocating for women worldwide and is also the founder of H Factor Water.

Founder of The Art of Cool, a Durham nonprofit promoting music education to Durham-area youth, Cecily Mitchell remarked that she would be charged significantly more money than a male counterpart to work with the same artist.

Cicely Mitchell is co-founder of The Art of Cool, a Durham nonprofit promoting music education to Durham-area youth

Cicely Mitchell is co-founder of The Art of Cool, a Durham nonprofit promoting music education to Durham-area youth

Rebecca Ballard, lawyer and founder of Maven Women, a sustainability-focused fashion company dedicated to making professional wear for women, noted that “we live in a visual world, but we need to start looking at a person’s character rather than solely focusing on how they look.” Based on her experience with her medical real estate development company ACCESS Medical Development, angel investor Stephanie Wilson expanded on the comment, adding that the best thing to do about the prejudice against women is to know that it’s there and fight for it.

image6

Rebecca Ballard told the audience, “The most challenging thing about being a working woman is that appearance is considered ‘relevant.’” She started her career as a public interest lawyer and was previously the Executive Director of Social Impact 360.

I asked the founders to share their experiences in building a successful customer base. Wilson noted that to institute her company, she “determined who was the top real estate agent in our area and sought them out. I discussed my idea with them and asked for their advice on segueing into the market.” She suggested sending handwritten thank you notes to build relationships with your customers.

Stephanie Wilson founded ACCESS Medical Development and is also the co-founder of MillennialsMovingMillions.org.

Stephanie Wilson founded ACCESS Medical Development and is also the co-founder of MillennialsMovingMillions.org.

Mitchell added that The Art of Cool held the first few concerts for relatives and friends, and later partnered up with other small entrepreneurs. “Make sure what you do connects with people enough that they want to go and tell other people about what you’re doing,” she advised.

Cecily Mitchell talked about her experience with The Art of Cool. She handles the booking, contracts, networking, pitching for sponsorships and assisting in writing grants for the company.

Maven Woman founder Rebecca Ballard commented on the importance getting support from women in other sustainable industries, since “you are all driven by the same mission in the social entrepreneurship space.”

Rebecca

Rebecca Ballard is the founder of Maven Women, a sustainability-focused fashion company dedicated on making professional wear for women.

Worsham’s final question for the panel asked for any last pieces of advice. Ballard concluded the conversation with a reason why she started her company: “Social entrepreneurship exists because the status quo is not okay. There are externalities happening and people being treated badly; the status quo doesn’t have to be the way it is.”

From left to right:

Posing with the panelists! From left to right: Anika Radiya-Dixit (author), Gail Levy, Cecily Mitchell, Rebecca Ballard, and Stephanie Wilson.

By Anika Radiya-Dixit

Anika_RD_hed100_2

Girls Get An Eye-Opening Introduction to Photonics

14711502_10153733048287100_3205727043350847171_o

Demonstration of the Relationship between Solar Power and Hydrogen Fuel. Image courtesy of DukeEngineering.

Last week I attended the “Exploring Light Technologies” open house hosted by the Fitzpatrick Institute for Photonics, held to honor International “Introduce a Girl to Photonics” Week. It was amazing!

I was particularly enraptured by a MEDx Wireless Technology presentation and demonstration titled “Using Light to Monitor Health and View Health Information.” There were three “stations” with a presenter at each station.

At the first station, the presenter, Julie, discussed how wearable technologies are used in optical heart rate monitoring. For example, a finger pulse oximeter uses light to measure blood oxygen levels and heart rates, and fitness trackers typically contain LED lights in the band. These lights shine into the skin and the devices use algorithms to read the amount of light scattered by the flow of blood, thus measuring heart rate.

At the second station, the presenter, Jackie, spoke about head-mounted displays and their uses. The Google Glass helped inspire the creation of the Microsoft Hololens, a new holographic piece of technology resembling a hybrid of laboratory goggles and a helmet. According to Jackie, the Microsoft Hololens “uses light to generate 3D objects we can see in our environment.”

14589884_10153733048602100_2715427782090593871_o

Using the Microsoft Hololens. Image courtesy of DukeEngineering.

After viewing a video on how the holographic technology worked, I put on the Microsoft Hololens at the demonstration station. The team had set up 3D images of a cat, a dog and a chimpanzee. “Focus the white point of light on the object and make an L-shape with your fingers,” directed Eric, the overseer. “Snap to make the objects move.” With the heavy Hololens pressing down on my nose, I did as he directed. Moving my head moved the point of light. Using either hand to snap made the dog bark, the cat meow and lick its paws, and the chimpanzee eat. Even more interesting was the fact that I could move around the animals and see every angle, even when the objects were in motion. Throughout the day, I saw visitors of all ages with big smiles on their faces, patting and “snapping” at the air.

Applications of the Microsoft Hololens are promising. In the medical field, they can be used to display patient health information or electronic health records in one’s line of sight. In health education, students can view displays of interactive 3D anatomical animations. Architects can use the Hololens to explore buildings. “Imagine learning about Rome in the classroom. Suddenly, you can actually be in Rome, see the architecture, and explore the streets,” Jackie said. “[The Microsoft Hololens] deepens the educational experience.”

14707854_10153733048632100_7506613834348839624_o

Tour of the Facilities. Image courtesy of DukeEngineering.

Throughout the day, I oo-ed and aw-ed at the three floors-worth of research presentations lining the walls. Interesting questions were posed on easy-to-comprehend posters, even for a non-engineer such as myself. The event organizers truly did make sure that all visitors would find at least one presentation to pique their interest. There were photonic displays and demonstrations with topics ranging from art to medicine to photography to energy conservation…you get my point.

Truly an eye-opening experience!

Post by Meg Shiehmeg_shieh_100hed