Seeing Nano

Take pictures at more than 300,000 times magnification with electron microscopes at Duke

Sewer gnat head

An image of a sewer gnat’s head taken through a scanning electron microscope. Courtesy of Fred Nijhout.

The sewer gnat is a common nuisance around kitchen and bathroom drains that’s no bigger than a pea. But magnified thousands of times, its compound eyes and bushy antennae resemble a first place winner in a Movember mustache contest.

Sewer gnats’ larger cousins, horseflies are known for their painful bite. Zoom in and it’s easy to see how they hold onto their furry livestock prey:  the tiny hooked hairs on their feet look like Velcro.

Students in professor Fred Nijhout’s entomology class photograph these and other specimens at more than 300,000 times magnification at Duke’s Shared Material & Instrumentation Facility (SMIF).

There the insects are dried, coated in gold and palladium, and then bombarded with a beam of electrons from a scanning electron microscope, which can resolve structures tens of thousands of times smaller than the width of a human hair.

From a ladybug’s leg to a weevil’s suit of armor, the bristly, bumpy, pitted surfaces of insects are surprisingly beautiful when viewed up close.

“The students have come to treat travels across the surface of an insect as the exploration of a different planet,” Nijhout said.

Horsefly foot

The foot of a horsefly is equipped with menacing claws and Velcro-like hairs that help them hang onto fur. Photo by Valerie Tornini.

Weevil

The hard outer skeleton of a weevil looks smooth and shiny from afar, but up close it’s covered with scales and bristles. Courtesy of Fred Nijhout.

fruit fly wing

Magnified 500 times, the rippled edges of this fruit fly wing are the result of changes in the insect’s genetic code. Courtesy of Eric Spana.

You, too, can gaze at alien worlds too small to see with the naked eye. Students and instructors across campus can use the SMIF’s high-powered microscopes and other state of the art research equipment at no charge with support from the Class-Based Explorations Program.

Biologist Eric Spana’s experimental genetics class uses the microscopes to study fruit flies that carry genetic mutations that alter the shape of their wings.

Students in professor Hadley Cocks’ mechanical engineering 415L class take lessons from objects that break. A scanning electron micrograph of a cracked cymbal once used by the Duke pep band reveals grooves and ridges consistent with the wear and tear from repeated banging.

cracked cymbal

Magnified 3000 times, the surface of this broken cymbal once used by the Duke Pep Band reveals signs of fatigue cracking. Courtesy of Hadley Cocks.

These students are among more than 200 undergraduates in eight classes who benefitted from the program last year, thanks to a grant from the Donald Alstadt Foundation.

You don’t have to be a scientist, either. Historians and art conservators have used scanning electron microscopes to study the surfaces of Bronze Age pottery, the composition of ancient paints and even dust from Egyptian mummies and the Shroud of Turin.

Instructors and undergraduates are invited to find out how they could use the microscopes and other nanotech equipement in the SMIF in their teaching and research. Queries should be directed to Dr. Mark Walters, Director of SMIF, via email at mark.walters@duke.edu.

Located on Duke’s West Campus in the Fitzpatrick Building, the SMIF is a shared use facility available to Duke researchers and educators as well as external users from other universities, government laboratories or industry through a partnership called the Research Triangle Nanotechnology Network. For more info visit http://smif.pratt.duke.edu/.

Scanning electron microscope

This scanning electron microscope could easily be mistaken for equipment from a dentist’s office.

s200_robin.smith

Post by Robin Smith

When Art Tackles the Invisibly Small

Huddled in a small cinderblock room in the basement of Hudson Hall, visual artist Raewyn Turner and mechatronics engineer Brian Harris watch as Duke postdoc Nick Geitner positions a glass slide under the bulky eyepiece of an optical microscope.

To the naked eye, the slide is completely clean. But after some careful adjustments of the microscope, a field of technicolor spots splashes across the viewfinder. Each point shows light scattering off one of the thousands of silver nanoparticles spread in a thin sheet across the glass.

“It’s beautiful!” Turner said. “They look like a starry sky.”

AgAlgae_40x_Enhanced3

A field of 10-nanometer diameter silver nanoparticles (blue points) and clusters of 2-4 nanoparticles (other colored points) viewed under a dark-field hyperspectral microscope. The clear orbs are cells of live chlorella vulgaris algae. Image courtesy Nick Geitner.

Turner and Harris, New Zealand natives, have traveled halfway across the globe to meet with researchers at the Center for the Environmental Implications of Nanotechnology (CEINT). Here, they are learning all they can about nanoparticles: how scientists go about detecting these unimaginably small objects, and how these tiny bits of matter interact with humans, with the environment and with each other.

img_2842

The mesocosms, tucked deep in the Duke Forest, currently lay dormant.

The team hopes the insights they gather will inform the next phases of Steep, an ongoing project with science communicator Maryse de la Giroday which uses visual imagery to explore how humans interact with and “sense” the nanoparticles that are increasingly being used in our electronics, food, medicines, and even clothing.

“The general public, including ourselves, we don’t know anything about nanoparticles. We don’t understand them, we don’t know how to sense them, we don’t know where they are,” Turner said. “What we are trying to do is see how scientists sense nanoparticles, how they take data about them and translate it into sensory data.”

Duke Professor and CEINT member Mark Wiesner, who is Geitner’s postdoctoral advisor, serves as a scientific advisor on the project.

“Imagery is a challenge when talking about something that is too small to see,” Wiesner said. “Our mesocosm work provides an opportunity to visualize how were are investigating the interactions of nanomaterials with living systems, and our microscopy work provides some useful, if not beautiful images. But Raewyn has been brilliant in finding metaphors, cultural references, and accompanying images to get points across.”

img_2872

Graduate student Amalia Turner describes how she uses the dark-field microscope to characterize gold nanoparticles in soil. From left: Amalia Turner, Nick Geitner, Raewyn Turner, and Brian Harris.

On Tuesday, Geitner led the pair on a soggy tour of the mesocosms, 30 miniature coastal ecosystems tucked into the Duke Forest where researchers are finding out where nanoparticles go when released into the environment. After that, the group retreated to the relative warmth of the laboratory to peek at the particles under a microscope.

Even at 400 times magnification, the silver nanoparticles on the slide can’t really be “seen” in any detail, Geitner explained.

“It is sort of like looking at the stars,” Geitner said. “You can’t tell what is a big star and what is a small star because they are so far away, you just get that point of light.”

But the image still contains loads of information, Geitner added, because each particle scatters a different color of light depending on its size and shape: particles on their own shine a cool blue, while particles that have joined together in clusters appear green, orange or red.

During the week, Harris and Turner saw a number of other techniques for studying nanoparticles, including scanning electron microscopes and molecular dynamics simulations.

steepwashing-cake-copy-23

An image from the Steep collection, which uses visual imagery to explore how humans interact with the increasingly abundant gold nanoparticles in our environment. Credit: Raewyn Turner and Brian Harris.

“What we have found really, really interesting is that the nanoparticles have different properties,” Turner said. “Each type of nanoparticle is different to each other one, and it also depends on which environment you put them into, just like how a human will behave in different environments in different ways.”

Geitner says the experience has been illuminating for him, too. “I have never in my life thought of nanoparticles from this perspective before,” Geitner said. “A lot of their questions are about really, what is the difference when you get down to atoms, molecules, nanoparticles? They are all really, really small, but what does small mean?”

Kara J. Manke, PhD

Post by Kara Manke

Meet the New Blogger: Shanen Ganapathee

Hi y’all! My name is Shanen and I am from the deep, deep South… of the globe. I was born and raised in Mauritius, a small island off the coast of Madagascar, once home to the now-extinct Dodo bird.

Shanen Ganapathee

Shanen Ganapathee is a senior who wishes to be ‘a historian of the brain’

The reason I’m at Duke has to do with a desire to do what I love most — exploring art, science and their intersection. You will often find me writing prose; inspired by lessons in neuroanatomy and casting a DNA strand as the main character in my short story.

I’m excited about Africa, and the future of higher education and research on the continent. I believe in ideas, especially when they are big and bold. I’m a dreamer, an idealist but some might call me naive. I am deeply passionate about research but above all how it is made accessible to a wide audience.

I am currently a senior pursuing a Program II in Human Cognitive Evolution, a major I designed in my sophomore year with the help of my advisor, Dr. Leonard White, whom I had to luck to meet through the Neurohumanities Program in Paris.

This semester, I am working on a thesis project under the guidance of Dr. Greg Wray, inspired by an independent study I did under Dr. Steven Churchill, where we examined the difference in early human and Neandertal cognition and behavior. I am interested in using ancient DNA genomics to answer the age-old question: what makes us human? My claim is that the advent of artistic ventures truly shaped the beginning of behavioral modernity. In a sense, I want to be a historian of the brain.

My first exposure to the world of genomics was through the FOCUS program — Genome in our Lives — my freshman fall. Ever since, I have been fascinated by what the human genome can teach us. It is a window into our collective pasts as much as it informs us about our present and future. I am particularly intrigued by how the forces of evolution have shaped us to become the species we are.

I am excited about joining the Duke Research blog and sharing some great science with you all.

Cracking a Hit-and-Run Whodunit — With Lasers

The scratch was deep, two feet long, and spattered with paint flecks. Another vehicle had clearly grazed the side of Duke graduate student Jin Yu’s silver Honda Accord.

But the culprit had left no note, no phone number, and no insurance information.

Pump-Probe-Microscope-Pigment

Duke graduate student Jin Yu used laser-based imaging to confirm the source of a large scratch on the side of her car. Paint samples from an undamaged area on her Honda Accord (top left) and a suspected vehicle (top right) gave her the unique pump-probe microscopy signatures of the pigments on each car. The damaged areas of the Honda (bottom left) and the suspected vehicle on right (bottom right) show pigment signatures from both vehicles.

The timing of the accident, the location of the scratch, and the color of the foreign paint all pointed to a likely suspect: another vehicle in her apartment complex parking lot, also sporting a fresh gash.

She had a solid lead, but Yu wasn’t quite satisfied. The chemistry student wanted to make sure her case was rock-solid.

“I wanted to show them some scientific evidence,” Yu said.

And lucky for her, she had just the tools to do that.

As a researcher in the Warren Warren lab, Yu spends her days as scientific sleuth, investigating how a laser-based tool called pump-probe microscopy can be used to differentiate between individual pigments of paint, even if they appear identical to the human eye.

The team is developing the technique as a way for art historians and conservators peer under the surface of priceless paintings, without causing damage to the artwork. But Yu thought there was no reason the technique couldn’t be used for forensics, too.

“The idea popped into my mind — car paint is made up of pigments, just like paintings,” Yu said. “So, if I can compare the pigments remaining on my car with the suspected car, and they match up, that would be a pretty nice clue for finding the suspected car.”

Using a clean set of eyebrow tweezers, Yu carefully gathered small flecks of paint from her car and from the suspected vehicle and sealed them up inside individual Ziploc bags. She collected samples both from the scratched up areas, where the paint was mixed, and from undamaged areas on both cars.

She left a note on the car, citing the preliminary evidence and stating her plan to test the paint samples. Then, back at the lab, she examined all four samples with the pump-probe microscope. Unlike a standard optical microscope, this device illuminates each sample with a precisely timed series of laser pulses; each pigment absorbs and then re-emits this laser light in a slightly different pattern depending on its chemical structure, creating a unique signature.

Optical-Microscope-and-Note

After finding the gash on her Accord (top left), Yu left a note (top right) on the car that she suspected of having caused the accident. Under an optical microscope, samples from damaged areas on the cars show evidence of the same two kinds of paint (bottom). Yu used pump-probe microscopy to confirm that the pigments in the paint samples matched.

The samples from the undamaged areas gave her the characteristic pigment signatures from both of the two vehicles.

She then looked at the paint samples taken from the scratched areas. She found clear evidence of paint pigment from the suspected car on her Honda, and clear evidence of paint pigment from her Honda on the suspected car. This was like DNA evidence, of the automotive variety.

Fortunately, the owner of the suspect vehicle contacted Yu to confess and pay to have her car fixed, without demanding the results of the paint analysis. “But it was reassuring to have some scientific evidence in case she denied the accident,” Yu said.

Yu says she had no interest in forensic science when she started the investigation, but the experience has certainly piqued her curiosity.

“I had never imagined that I can use pump-probe microscopy for forensic science before this car accident happened,” Yu said. “But I think it shows some interesting possibilities.”

Kara J. Manke, PhD

Post by Kara Manke

Sandcastles of Stars Make Stable Structures

Sandcastles are not known for their structural stability; even the most steadfast seaside fortresses won’t survive a crashing wave or a bully’s kick.

But what if, instead of round grains of sand, you built your castle from tiny stars?

Duke graduate student Yuchen Zhao tests the stability of a tower made from six-armed stars or “hexapods.”

Duke graduate student Yuchen Zhao has spent the last year studying such “sandcastles of stars” — towers crafted from hundreds of six-armed stars or “hexapods” which bear a remarkable resemblance to the jacks you might have played with as a kid.

To build these towers, Zhao simply pours the stars into a hollow tube, and then removes the tube. But unlike columns of sand, these towers stand on their own, stay up when shaken, and can even bear up to twice their own weight.

“When you remove the support, you see that the star particles have really jammed together!” said Zhao. “Nobody understands exactly how this rigidity comes about.”

Sand is a classic example of a granular material, and like other types of granular materials — rice, flour, marbles, or even bags of jacks — it sometimes pours like a liquid, and other times “jams” up, forming a rigid solid.

The physics of jamming has been well-studied for round and spherical particles, says Duke physics professor Bob Behringer, an expert on granular materials who advises Zhao. But much less is understood about jamming in particles with more complex shapes, like hexapods.

“As soon as you move away from spheres, you can create jammed systems at the drop of a hat,” said Behringer. “People think they understand these systems, but there are still a lot of outstanding questions about how they behave: how do they break? Or how do they respond to shear stress?”

These questions aren’t only interesting to physicists, Behringer says. Architects Karola Dierichs and Achim Menges, collaborators on the project, are experimenting with using custom-designed granular materials, from hexapods to hooks, to create structures like walls and bridges.

Similar to a sandcastle or a bird’s nest, structures made this way can be porous, light, recyclable and even adaptable.

“One of their big ideas is, can you actually design a structure that could build itself or be constructed at random, rather than designing something very precise?” said Zhao.

Zhaos says that the first goal of his project was simply to explore the physical limits of towers built from hexapods. To do so, he constructed towers out stars ranging in size from 2 to 10 centimeters and made from two different materials. For each combination, he investigated how high he could build the tower before it collapsed. He then subjected the towers to various stressors, including vibration, tilting, and added weight.

One of the most surprising findings, Zhao said, was that the friction between the particles — whether they were made of smooth acrylic or rougher nylon — had the biggest impact on the stability of the towers. He also noted that when these towers collapse, they don’t just fall over in a heap, they fall apart in a series of mini avalanches.

CT-Scan of jacks

A 3D illustration of a tower of stars reconstructed from CT-scan data. The red dots indicate the points of contact between the stars. Image courtesy of Jonathan Barés.

The team has published this initial study, which they hope will be used as a “handbook of mechanical rules” to improve the design of aggregate structures, in a special edition of the journal Granular Matter.

As a next step in the experiment, Zhao and collaborator Jonathan Barés are using a CT scanner in the Duke SMIF lab to take detailed 3D pictures of the “skeletons” of these structures. With the data, they hope to find a better understanding of how all the individual contacts between stars add up to a stable tower.

“It is amazing to see how these particles can make stable structures capable of supporting big loads,” said Jonathan Barés, who is a former Duke postdoc. “Just changing a small property of the particles — their ability to interlock — creates a dramatic change in the behavior of the system.”

CITATION: “Packings of 3D stars: stability and structure.” Yuchen Zhao, Kevin Liu, Matthew Zheng, Jonathan Barés, Karola Dietrichs, Achim Menges, and Robert P. Behringer. Granular Matter, April 11, 2016. DOI: 10.1007/s10035-016-0606-4

Kara J. Manke, PhD

Post by Kara Manke

What Makes a Face? Art and Science Team Up to Find Out

From the man in the moon to the slots of an electrical outlet, people can spot faces just about everywhere.

As part of a larger Bass Connections project exploring how our brains make sense of faces, a Duke team of students and faculty is using state-of-the-art eye-tracking to examine how the presence of faces — from the purely representational to the highly abstract — influences our perception of art.

The Making Faces exhibit is on display in the Nasher Museum of Art’s Academic Focus Gallery through July 24th.

The artworks they examined are currently on display at the Nasher Museum of Art in an installation titled, “Making Faces: At the Intersection of Art and Neuroscience.”

“Faces really provide the most absorbing source of information for us as humans,” Duke junior Sophie Katz said during a gallery talk introducing the installation last week. “We are constantly attracted to faces and we see them everywhere. Artists have always had an obsession with faces, and recently scientists have also begun grappling with this obsession.”

Katz said our preoccupation with faces evolved because they provide us with key social cues, including information about another individual’s gender, identity, and emotional state. Studies using functional Magnetic Resonance Imaging (fMRI) even indicate that we have a special area of the brain, called the fusiform face area, that is specifically dedicated to processing facial information.

The team used eye-tracking in the lab and newly developed eye-tracking glasses in the Nasher Museum as volunteers viewed artworks featuring both abstract and representational images of faces. They created “heat maps” from these data to illustrate where viewers gazed most on a piece of art to explore how our facial bias might influence our perception of art.

This interactive website created by the team lets you observe these eye-tracking patterns firsthand.

When looking at faces straight-on, most people direct their attention on the eyes and the mouth, forming a triangular pattern. Katz said the team was surprised to find that this pattern held even when the faces became very abstract.

“Even in a really abstract representation of a face, people still scan it like they would a face. They are looking for the same social information regardless of how abstract the work is,” said Katz.


A demonstration of the eye-tracking technology used to track viewers gaze at the Nasher Museum of Art. Credit: Shariq Iqbal, John Pearson Lab, Duke University.

Sophomore Anuhita Basavaraju pointed out how a Lonnie Holley piece titled “My Tear Becomes the Child,” in which three overlapping faces and a seated figure emerge from a few contoured lines, demonstrates how artists are able to play with our facial perception.

“There really are very few lines being used, but at the same time it’s so intricate, and generates the interesting conversation of how many lines are there, and which face you see first,” said Basavaraju. “That’s what’s so interesting about faces. Because human evolution has made us so drawn towards faces, artists are able to create them out of really very few contours in a really intricate way.”

IMG_8354

Sophomore Anuhita Basavaraju discusses different interpretations of the face in Pablo Picasso’s “Head of a Woman.”

In addition to comparing ambiguous and representational faces, the team also examined how subtle changes to a face, like altering the color contrast or applying a mask, might influence our perception.

Sophomore Eduardo Salgado said that while features like eyes and a nose and mouth are the primary components that allow our brains to construct a face, masks may remove the subtler dimensions of facial expression that we rely on for social cues.

For instance, participants viewing a painting titled “Decompositioning” by artist Jeff Sonhouse, which features a masked man standing before an exploding piano, spent most of their time dwelling on the man’s covered face, despite the violent scene depicted on the rest of the canvas.

“When you cover a face, it’s hard to know what the person is thinking,” Salgado said. “You lack information, and that calls more attention to it. If he wasn’t masked, the focus on his face might have been less intense.”

In connection with the exhibition, Nasher MUSE, DIBS, and the Bass Connections team will host visiting illustrator Hanoch Piven this Thursday April 7th and Friday April 8th  for a lunchtime conversation and hands-on workshop about his work creating portraits with found objects.

Making Faces will be on display in the Nasher Museum of Art’s Academic Focus Gallery through July 24th.

Kara J. Manke, PhD

Post by Kara Manke