Duke Research Blog

Following the people and events that make up the research community at Duke.

Category: Animals (Page 1 of 19)

Captive Lemurs Get a Genetic Health Checkup

DURHAM, N.C. — Careful matchmaking can restore genetic diversity for endangered lemurs in captivity, researchers report.

Ring-tailed lemurs born at the Duke Lemur Center have seen a recent infusion of new genetic material at key genes involved in the immune response, finds a new study.

Thanks to a long-term collaborative breeding program that transfers animals between institutions to preserve genetic diversity, genetic variation at one region was restored to levels seen in the wild.

The findings, published in the journal Ecology and Evolution, are important for the ability of future generations to fight disease.

Baby lemur twins Nemesis and Narcissa were the product of a breeding program developed by the American Association of Zoos and Aquariums to preserve the future genetic health of North America’s captive ring-tailed lemurs. Their mother Sophia was among 62 ring-tailed lemurs recommended for breeding across 20 institutions nationwide in 2016. Photo by David Haring, Duke Lemur Center.

Baby lemur twins Nemesis and Narcissa were the product of a breeding program developed by the American Association of Zoos and Aquariums to preserve the future genetic health of North America’s captive ring-tailed lemurs. Their mother Sophia was among 62 ring-tailed lemurs recommended for breeding across 20 institutions nationwide in 2016. Photo by David Haring, Duke Lemur Center.

Distant primate cousins with long black-and-white striped tails, ring-tailed lemurs live on the African island of Madagascar and nowhere else except in zoos and other captive facilities.

Some studies suggest that as few as 2,500 ring-tailed lemurs live in the wild today. Habit loss, hunting and the illegal pet trade have reduced their numbers by at least 50 percent in recent decades.

An additional estimated 2,500 ring-tailed lemurs live in zoos around the world, where experts work to maintain their genetic health in captivity.

The researchers studied DNA sequence variation at a region of the major histocompatibility complex, or MHC, a part of the genome that helps the immune system identify disease-causing bacteria, viruses and parasites.

Because different MHC gene variants recognize different types of pathogens, greater MHC diversity means animals are able to fend off a wider array of invaders.

The researchers estimated the number of MHC variants in 121 captive individuals born at the Duke Lemur Center and the Indianapolis and Cincinnati Zoos between 1980 and 2010.

They also compared them with 180 wild individuals from southwestern Madadgascar at the Bezà Mahafaly Special Reserve, where the animals regularly interbreed with lemurs from nearby forests.

Not surprisingly, MHC diversity was lower in captivity than in the wild.

Today’s captive ringtails came from a small group of ancestors that carried only a small fraction of the total genetic variation found in the larger wild population. Since their establishment, gene flow between captive populations and wild lemurs has been restricted.

Overall, the researchers found 20 unique MHC variants in the captive population, fewer than half the number in their wild counterparts.

However, efforts to identify good genetic matches across dozens of institutions have helped to preserve and even improve upon the diversity that is left.

For infants born at the Duke Lemur Center, MHC gene diversity remained low but stable for three decades from 1980 to 2010, then increased significantly from 2010 to 2013, researchers found.

Genetic contributions from several transplants contributed to the comeback.

An arranged marriage between ring-tailed lemurs at the Duke Lemur Center in North Carolina produced healthy twins Griselda and Hedwig in 2016. The infants are among 40 to 60 ring-tailed lemur infants born in North American zoos and other facilities each year. Photo by David Haring, Duke Lemur Center.

An arranged marriage between ring-tailed lemurs at the Duke Lemur Center in North Carolina produced healthy twins Griselda and Hedwig in 2016. The infants are among 40 to 60 ring-tailed lemur infants born in North American zoos and other facilities each year. Photo by David Haring, Duke Lemur Center.

The American Association of Zoos and Aquariums (AZA) tries to maintain a genetically healthy population by moving animals between institutions as potential mates. A team of experts uses computer software to help pick the best pairs for breeding.

Between 1980 and 2013, more than 1,160 ring-tailed lemurs were transferred between 217 institutions in North America alone.

In 2009, a male named Randy was transferred from the Saint Louis Zoo to the Duke Lemur Center for pairing with Sprite, a resident female. Experts also brought a mother-daughter pair, Schroeder and Leisl from the Zoo at Chehaw in Georgia, as potential mates for a resident male named Aracus.

“They saw an immediate improvement in the diversity of the offspring that were born,” said lead author Kathleen Grogan, who conducted the study while working on a doctorate with co-author Christine Drea at Duke University.

Grogan and colleagues are now examining whether MHC gene diversity helps the animals live longer or produce more offspring, as has been shown for other species.

“Not only do these lemurs serve as an assurance against extinction of their Malagasy counterparts, but maintaining as many variations of genes is important for keeping the individual lemurs, as well as the population healthy for any future challenges it may face,” said AZA Species Survival Plan Coordinator Gina Ferrie, a population biologist at Disney’s Animal Kingdom.

Conserving genetic diversity in captive populations over multiple generations is challenging due to their small size and relative isolation, but careful breeding can stem the loss, said Grogan, now a postdoctoral fellow at Pennsylvania State University.

Other authors include Michelle Sauther of the University of Colorado-Boulder and Frank Cuozzo at LaJuma Research Centre in South Africa.

This research was supported by Duke University, the International Primatological Society, Primate Conservation Inc., the University of Colorado-Boulder, the University of North Dakota, the National Science Foundation (BCS 0922465, BCS-1232570, IOS-071900), the Margot Marsh Biodiversity Foundation, the St. Louis Zoo and the American Society of Primatologists.

CITATION:  “Genetic Wealth, Population Health: Major Histocompatibility Complex Variation in Captive and Wild Ring-Tailed Lemurs (Lemur Catta),” Kathleen Grogan, Michelle Sauther, Frank Cuozzo and Christine Drea. Ecology and Evolution, Date. DOI: 10.1002/ece3.3317

Science on the Trail

Duke launches free two-week girls science camp in Pisgah National Forest.

Duke launches free two-week girls science camp in Pisgah National Forest.

DURHAM, N.C. — To listen to Destoni Carter from Raleigh’s Garner High School, you’d never know she had a phobia of snails. At least until her first backpacking trip, when a friend convinced her to let one glide over her outstretched palm.

Destoni Carter

Destoni Carter from Raleigh’s Garner High School was among eight high schoolers in a new two-week camp that combines science and backpacking.

Soon she started picking them up along the trail. She would collect a couple of snails, put them on a bed of rocks or soil or leaves, and watch to see whether they were speedier on one surface versus another, or at night versus the day.

The experiment was part of a not-so-typical science class.

From June 11-23, 2017, eight high school girls from across North Carolina and four Duke Ph.D. students left hot showers and clean sheets behind, strapped on their boots and packs, and ventured into Pisgah National Forest.

For the high schoolers, it was their first overnight hike. They experienced a lot of things you might expect on such a trip: Hefty packs. Sore muscles. Greasy hair. Crusty socks. But they also did research.

The girls, ages 15-17, were part of a new free summer science program, called Girls on outdoor Adventure for Leadership and Science, or GALS. Over the course of 13 days, they learned ecology, earth science and chemistry while backpacking with Duke scientists.

Duke ecology Ph.D. student Jacqueline Gerson came up with the idea for the program. “Backpacking is a great way to get people out of their comfort zones, and work on leadership development and teambuilding,” said Gerson, who also teamed up with co-instructors Emily Ury, Alice Carter and Emily Levy, all Ph.D. students in ecology or biology at Duke.

Marwa Hassan of Riverside High School in Durham studying stream ecology as part of a two-week summer science program in Pisgah National Forest. Photo by Savannah Midgette.

Marwa Hassan of Riverside High School in Durham studying stream ecology as part of a two-week summer science program in Pisgah National Forest. Photo by Savannah Midgette.

The students hauled 30- to 40-pound loads on their backs for up to five miles a day, through all types of weather. For the first week and a half they covered different themes each day: evolution, geology, soil formation, aquatic chemistry, contaminants. Then on the final leg they chose an independent project. Armed with hand lenses, water chemistry test strips, measuring tapes and other gear, each girl came up with a research question, and had two days to collect and analyze the data.

Briyete Garcia-Diaz of Kings Mountain High School surveyed rhododendrons and other trees at different distances from streambanks to see which species prefer wet soils.

Marwa Hassan of Riverside High School in Durham waded into creeks to net mayfly nymphs and caddisfly larvae to diagnose the health of the watershed.

Savannah Midgette of Manteo High School counted mosses and lichens on the sides of trees, but she also learned something about the secret of slug slime.

“If you lick a slug it makes your tongue go numb. It’s because of the protective coating they have,” Midgette said.

High schoolers head to the backcountry to learn the secret of slug slime and other discoveries of science and self in new girls camp

High schoolers head to the backcountry to learn the secret of slug slime and other discoveries of science and self in new girls camp

The hiking wasn’t always easy. On their second day they were still hours from camp when a thunderstorm rolled in. “We were still sore from the previous day. It started pouring. We were soaking wet and freezing. We did workouts to keep warm,” Midgette said.

At camp they took turns cooking. They stir fried chicken and vegetables and cooked pasta for dinner, and somebody even baked brownies for breakfast. Samantha Cardenas of Charlotte Country Day School discovered that meals that seem so-so at home taste heavenly in the backcountry.

“She would be like, ugh, chicken in a can? And then eat it and say: ‘That’s the most amazing thing I’ve ever had,’” said co-instructor Emily Ury.

Savannah Midgette and Briyete Garcia-Diaz drawing interactions within terrestrial systems as part of a new free summer science program called Girls on outdoor Adventure for Leadership and Science, or GALS. Learn more at https://sites.duke.edu/gals/.

Savannah Midgette and Briyete Garcia-Diaz drawing interactions within terrestrial systems as part of a new free summer science program called Girls on outdoor Adventure for Leadership and Science, or GALS. Learn more at https://sites.duke.edu/gals/.

The students were chosen from a pool of over 90 applicants, said co-instructor Emily Levy. There was no fee to participate in the program. Thanks to donations from Duke Outdoor Adventures, Project WILD and others, the girls were able to borrow all the necessary camping gear, including raincoats, rain pants, backpacks, tents, sleeping bags, sleeping pads and stoves.

The students presented their projects on Friday, June 23 in Environment Hall on Duke’s West Campus. Standing in front of her poster in a crisp summer dress, Destoni Carter said going up and down steep hills was hard on her knees. But she’s proud to have made it to the summit of Shining Rock Mountain to see the stunning vistas from the white quartz outcrop near the top.

“I even have a little bit of calf muscle now,” Carter said.

Funding and support for GALS was provided by Duke’s Nicholas School of the Environment, Duke ecologist Nicolette Cagle, the Duke Graduate School and private donors via GoFundMe.

2017 GALS participants (left to right): Emily Levy of Duke, Destoni Carter of Garner High School, Zyrehia Polk of East Mecklenburg High School, Rose DeConto of Durham School of the Arts, Briyete Garcia-Diaz of Kings Mountain High School, Marwa Hassan of Riverside High School, Jackie Gerson of Duke, Daiana Mendoza of Harnett Central High School, Savannah Midgette of Manteo High School, Samantha Cardenas of Charlotte Country Day School and Alice Carter of Duke.

2017 GALS participants (left to right): Emily Levy of Duke, Destoni Carter of Garner High School, Zyrehia Polk of East Mecklenburg High School, Rose DeConto of Durham School of the Arts, Briyete Garcia-Diaz of Kings Mountain High School, Marwa Hassan of Riverside High School, Jackie Gerson of Duke, Daiana Mendoza of Harnett Central High School, Savannah Midgette of Manteo High School, Samantha Cardenas of Charlotte Country Day School and Alice Carter of Duke.

 

Marine Parasites — Little Guys That Make a Big Difference

If you’re anything like me, the first images that come to mind when you hear the words “marine biology” are singing whales, dolphins racing each other, sharks flying out of the water, maybe a swordfish brawl or two — all the big, flashy stuff.

Of all the things “marine biology” invokes, parasites are probably at the very bottom of my list.

Not so for Joe Morton, a PhD student at the Nicholas School of the Environment and self-taught expert on the parasites that inhabit marine organisms. In fact, Morton posits that parasites play one of the most important roles in all of ecology, by modifying the behavior of ecologically influential host species. And he’s got the research to back it up.

Once back at the lab, Morton takes his place behind the microscope to study his research subjects: marine parasites. Courtesy: Joe Morton.

Morton’s academic quest into the world of marine parasites began about six years ago when he was a master’s student at UNC’s Institute of Marine Sciences — just down the road from Duke’s own Marine Lab, where he’s now stationed. Having just read Carl Zimmer’s pop-science book Parasite Rex, Morton wondered whether the marsh periwinkle snails (Littoraria irrorata) he was studying could be infected.

“In my spare time, I would go into the lab at night with a hammer and crack open a bunch of snails to see what I would find,” Morton said. “I didn’t find anything in the literature at the time about Littoraria harboring parasites, which I thought was really unusual because they’re really well-known, important marsh gastropod.”

Morton began to systematically collect Littoraria from local salt marshes, determine their infection status, then examine how the parasites affected the behavior of infected individuals and, in turn, how these behavioral changes affected the ecological health of the salt marsh. This way, Morton figured out that Littoraria infected with digenean trematodes (a class of parasite) climbed and grazed on marsh grass less often than uninfected Littoraria. He also noticed that infected Littoraria congregated at salt marsh “die-off borders,” the edges where marsh grasses stop growing sparsely and start growing in healthy amounts.

A microsopic view of digenean trematodes, the parasites that infect marsh periwinkle snails. Courtesy: Joe Morton.

Based on these observations, Morton designed an experiment to test whether the prevalence of infection among Littoraria correlated with marsh grass health.

“I found that, even under drought stress conditions, parasites could effectively slow the rate at which the marsh died off and help maintain marsh ecosystem structure,” Morton said. “More structure means more nursery habitat for fish. It means more nursery habitat for fiddler crabs. Increased filtration rate of water into the sediment because of crab burrows. The point is, parasites help to increase ecosystem resistance to drought stress.”

Joe Morton traipses through the salt marsh on a windy day. Courtesy: Joe Morton.

Morton was the first to demonstrate this relationship between parasites and marsh health in a behavioral experiment. It’s been a major focus of his research ever since.

“Parasites constitute more than half the life on the planet, but until very recently, parasites were somewhat ignored by ecologists,” Morton said.

Indeed, Morton’s former advisor once told him “never study anything smaller than your thumb.” According to Morton, this was a very widely-held view in ecology up until the last few decades.

“That was very much the idea at the time: these are small things; they probably mean a lot to individual organisms, but they’re may not be important to ecosystems. And now we know that’s just not the case,” Morton said. “Almost everywhere we look, parasites are there; they’re ubiquitous. And they have an important role to play.”

Though parasites are a hot topic in ecology nowadays, Morton, a self-declared “lifelong contrarian,” has a very distinct memory of a childhood moment foreshadowing his current research focus.

“I remember sitting in a barber shop and reading Popular Science magazine, which has an annual list of the ten worst jobs in science. I remember right at the top of the list was ‘parasitic worm biologist.’ And something in my head was just like ‘yeah, I’ll do that,’” Morton said.

Post by Maya Iskandarani

Lemur Research Gets a Gut Check

Baby Coquerel’s sifaka

Clinging to her mom, this baby Coquerel’s sifaka represents the only lemur species at the Duke Lemur Center known to fall prey to cryptosporidium, a microscopic parasite that causes diarrhea that can last for a week or more. The illness wipes out much of the animals’ gut microbiome, researchers report, but fecal transplants can help them recover. Photo by David Haring, Duke Lemur Center.

DURHAM, N.C. — “Stool sample collector” is not a glamorous way to introduce oneself at a party. But in the course of their research, gut microbiologists Erin McKenney and Lydia Greene have spent a lot of time waiting for animals to relieve themselves.

They estimate they have hundreds of vials of the stuff, from a dozen primate species including lemurs, baboons and gorillas, sitting in freezers on the Duke University campus.

The researchers aren’t interested in the poop per se, but in the trillions of bacteria inhabiting the gastrointestinal tract, where the bugs help break down food, produce vitamins and prevent infection.

A few years ago, McKenney and Greene started collecting stool samples at the Duke Lemur Center to see how the microbial makeup of lemurs’ guts varies from birth to weaning, and as their diets change over the seasons. And what happens when they get sick?

Illustration of Cryptosporidium, a widespread intestinal parasite that causes diarrhea in people, pets, livestock and wildlife worldwide. Courtesy of the U.S. Centers for Disease Control.

Illustration of Cryptosporidium, a widespread intestinal parasite that causes diarrhea in people, pets, livestock and wildlife worldwide. Courtesy of the U.S. Centers for Disease Control.

Between 2013 and 2016, ten of the lemurs they were studying contracted cryptosporidium, or “crypto” for short, a waterborne parasite that causes diarrhea in people, pets, livestock and wildlife worldwide.

All of the infected animals were Coquerel’s sifakas — the only lemur species out of roughly 20 at the Duke Lemur Center known to fall prey to the parasite — and most of them were under five years old when they fell ill.

Animals that tested positive were moved into separate holding areas away from other animals and visitors. Keepers wore protective suits, gloves, face masks and booties while working in the animals’ enclosures to prevent infection.

All of the animals eventually recovered. Along the way, six of the affected animals were treated with antibiotics, and three were also fed a slurry of saline and feces from a healthy relative.

McKenney and Greene collected stool samples before, during and after infection for up to two months. They used a technique called 16S ribosomal RNA sequencing to identify the types of bacteria in the samples based on their genes, and compared the results with those of 35 unaffected individuals.

In a healthy gut microbiome, “good” bacteria in the gut compete with “bad” microbes for space and nutrients, and secrete substances that inhibit their growth.

The guts of sick and recovering sifakas are host to a very different assortment of microbes than those of unaffected animals, the researchers found.

Not surprisingly, both crypto infection, and antibiotic treatment, wiped out much of the animals’ gut flora — particularly the bacterial groups Bifidobacterium, Akkermansia, Succinivibrio and Lachnospiraceae.

Even after the infections cleared, most animals took another several weeks to stabilize and return to normal levels of gut biodiversity, with younger animals taking longer to recover.

The only animals that made a full comeback within the study period were those that received a fecal transplant, suggesting that the treatment can help restore gut bacterial diversity and speed recovery.

The patterns of gut recolonization following crypto infection mirrored those seen from birth to weaning, said McKenney, now a postdoctoral researcher at North Carolina State University.

The researchers hope their findings will help control and prevent crypto outbreaks in captive primates. Because lemurs are more closely related to humans than lab mice are, the research could also help scientists understand how the gut microbiome protects humans from similar infections and facilitates recovery.

“Thanks to bioinformatics and advances in sequencing, the microbiome gives us a window into the health of these animals that we’ve never had before,” said Greene, a graduate student in ecology at Duke.

They published their findings June 15, 2017, in the journal Microbial Ecology in Health and Disease.

Duke evolutionary anthropology professors Christine Drea and Anne Yoder were senior authors on this study. This research was supported by the National Science Foundation (1455848) and the Duke Lemur Center Directors Fund.

CITATION:  “Down for the Count: Cryptosporidium Infection Depletes Gut Microbiota in Coquerel’s Sifakas,” Erin McKenney, Lydia Greene, Christine Drea and Anne Yoder. Microbial Ecology in Health and Disease, June 15, 2017. http://dx.doi.org/10.1080/16512235.2017.1335165

Post by Robin Smith, science writer, Office of News & Communications

From Sunfish-Seeker to Planet-Saver: Dr. Tierney Thys

Marine biologist Tierney Thys believes that science make us superheroes. In her words, the tools of science are the superpowers that “allow us to explore worlds that are invisible to the naked eye.”

As a National Geographic Explorer, Research Associate at the California Academy of Sciences, and, in my humble opinion, one of the most effective, passionate science communicators out there, she may as well be a superhero already.

Dr. Tierney Thys snorkels with some aquatic research subjects. Photo credit: Tierney Thys.

Thys, an alumna of Duke’s Biology Department, presented at the Marine Science and Conservation Leaders’ (MSCL) inaugural Marine Science Symposium on Saturday, March 25. She was one of four featured speakers — all women in STEM— whose research interests range from marine biology to physical oceanography.

Though she discussed her own research and life story in depth, the main point Thys drove home was the importance of (and science behind) powerful science communication.

Like most marine biologists, Thys’ love for the ocean began when she was a child. She received her Ph.D. from Duke in 1998, an endeavor which, she said, “looked interminable while [she] was in the midst of grad school but, in retrospect, was just a blink of an eye.”

Among the many fun tidbits she has gleaned studying ocean science are the following:

  • As adults, humans retain a lot of characteristics from our fish-like time in the womb; e.g. “we can thank fish for washboard abs.”
  • Humans, for all our obsession with large brains, have nothing on the African elephantfish, which has a “higher brain weight to body weight ratio than any other vertebrate.”
  • Fish had the gender continuum “totally nailed” before it became trendy among humans, with fish of many species having the ability to change sex at will.

Thys, right, and her dissertation advisor, Dr. Stephen Wainwright, left. Photo credit: Tierney Thys.

Her most impactful lesson out of Duke, however, came from her dissertation advisor Stephen Wainwright, James B. Duke Professor emeritus of zoology. Wainwright is the founder of Duke’s Bio-Design Studio, an art studio within a scientific research laboratory employing a full-time sculptor “to create three-dimensional working models of biological systems for research,” as reported by Duke Magazine. Exposure to this unique melding of disciplines in the final stages of Thys’ education set her on what she said was “an eclectic career path” that would also seek to fuse the artistic and the scientific.

Thys’ research specialty out of graduate school is the Mola mola, more commonly known as the Ocean sunfish—the heaviest bony fish on the planet. According to Thys, sunfish can grow to “60 million times their starting weight,” the equivalent of a human child growing to the weight of six Titanic ships. The heaviest Mola ever caught weighed over 5000 lbs., though, surprisingly, jellies (what most folks would call jellyfish) comprise most of the adult sunfish’s diet.

Thys hailed pop-off satellite tags as the “superpower” of science that allows her to track sunfish through the world ocean, generating data that can improve environmental protection of the species.

A fun graphic Thys used in her presentation to explain the technology of pop-off tags for tracking Mola mola, pictured right. Photo credit: Mike Johnson.

“Studying the sunfish has eclipsed studying any other fish for me. [They’re ] a massive part of the bycatch in driftnet fisheries all over the world—[but] we need to keep our jelly-eaters intact. With data, we can figure out the [sunfish] hotspots, and work to protect those areas,” Thys said.

Thys has tackled this problem herself by adapting the discipline-blending approach of her advisor, Wainwright. She has primarily used filmmaking to bridge the gap between the arts and sciences, playing key roles in high-profile documentary projects meant to improve public understanding of marine science, technology, and conservation. These include the Strange Days on Planet Earth series with National Geographic, The Shape of Life series with PBS, and several short documentary films. She has also collaborated with dance companies to create conservation-oriented dance productions, K-6 schools for educational art projects, and prisons to improve inmates’ scientific literacy with nature imagery—all to widen the scope of her science-education efforts. Thys supports her creative ideas with science itself:

“One very large filter exists between our conscious mind and subconscious mind, she said. “Our conscious mind can only process a tiny amount of the information gathered by our subconscious mind.”

“A good story can cut through these filters and light up our brains in new ways,” Thys said “By using different forms of art to tell stories infused with scientific information, we can message in profound ways. We can reach people who might not otherwise be interested or receptive to science. The arts are not a luxury, but rather a powerful vehicle for helping message, teach and share our vital scientific findings,” Thys said.

A mural Thys made with students out of bottle caps at a California elementary school, one of Thys’ many efforts to spread public awareness of scientific issues. Photo credit: Tierney Thys.

As though she hadn’t already empowered everyone in the audience to save the world, Thys concluded with a compelling piece of advice: “Be a part of something much bigger than yourself.”

Post by Maya Iskandarani

Young Scientists, Making the Rounds

“Can you make a photosynthetic human?!” an 8th grader enthusiastically asks me while staring at a tiny fern in a jar.

He’s not the only one who asked me that either — another student asked if Superman was a plant, since he gets his power from the sun.

These aren’t the normal questions I get about my research as a Biology PhD candidate studying how plants get nutrients, but they were perfect for the day’s activity –A science round robin with Durham eighth-graders.

Biology grad student Leslie Slota showing Durham 8th graders some fun science.

After seeing a post under #scicomm on Twitter describing a public engagement activity for scientists, I put together a group of Duke graduate scientists to visit local middle schools and share our science with kids. We had students from biomedical engineering, physics, developmental biology, statistics, and many others — a pretty diverse range of sciences.

With help from David Stein at the Duke-Durham Neighborhood Partnership, we made connections with science teachers at the Durham School of the Arts and Lakewood Montessori school, and the event was in motion!

The outreach activity we developed works like speed dating, where people pair up, talk for 3-5 mins, and then rotate. We started out calling it “Science Speed Dating,” but for a middle school audience, we thought “Science Round-Robin” was more appropriate. Typically, a round-robin is a tournament where every team plays each of the other teams. So, every middle schooler got to meet each of us graduate students and talk to us about what we do.

The topics ranged from growing back limbs and mapping the brain, to using math to choose medicines and manipulating the different states of matter.

The kids were really excited for our visit, and kept asking their teachers for the inside scoop on what we did.

After much anticipation, and a little training and practice with Jory Weintraub from the Science & Society Initiative, two groups of 7-12 graduate students armed themselves with photos, animals, plants, and activities related to our work and went to visit these science classes full of eager students.

First-year MGM grad student Tulika Singh (top right) brought cardboard props to show students how antibodies match up with cell receptors.

“The kids really enjoyed it!” said Alex LeMay, middle- and high-school science teacher at the Durham School of the Arts. “They also mentioned that the grad students were really good at explaining ideas in a simple way, while still not talking down to them.”

That’s the ultimate trick with science communication: simplifying what we do, but not talking to people like they’re stupid.

I’m sure you’ve heard the old saying, “dumb it down.” But it really doesn’t work that way. These kids were bright, and often we found them asking questions we’re actively researching in our work. We don’t need to talk down to them, we just need to talk to them without all of the exclusive trappings of science. That was one thing the grad students picked up on too.

“It’s really useful to take a step back from the minutia of our projects and look at the big picture,” said Shannon McNulty, a PhD candidate in Molecular Genetics and Microbiology.

The kids also loved the enthusiasm we showed for our work! That made a big difference in whether they were interested in learning more and asking questions. Take note, fellow scientists: share your enthusiasm for what you do, it’s contagious!

Another thing that worked really well was connecting with the students in a personal way. According to Ms. LeMay, “if the person seemed to like them, they wanted to learn more.” Several of the grad students would ask each student their names and what they were passionate about, or even talk about their own passions outside of their research, and these simple questions allowed the students to connect as people.

There was one girl who shared with me that she didn’t know what she wanted to do when she grew up, and I told her that’s exactly where I was when I was in 8th grade too. We then bonded over our mutual love of baking, and through that interaction she saw herself reflected in me a little bit; making a career in science seem like a possibility, which is especially important for a young girl with a growing interest in science.

Making the rounds in these science classrooms, we learned just as much from the students we spoke to as they did from us. Our lesson being: science outreach is a really rewarding way to spend our time, and who knows, maybe we’ll even spark someone who loves Superman to figure out how to make the first photosynthesizing super-person!

Guest post by Ariana Eily , PhD Candidate in Biology, shown sharing her floating ferns at left.

 

Page 1 of 19

Powered by WordPress & Theme by Anders Norén