Duke Research Blog

Following the people and events that make up the research community at Duke.

Author: Guest (Page 1 of 7)

Immerse Yourself in Virtual Reality on the Quad

Open since September 2016, the Virtual Reality Room on the first floor lounge of Edens 1C allows students to experience virtual reality using the HTC Vive headset and controllers.

DURHAM, N.C. — The virtual reality headset looked like something out of a science fiction film. It was tethered by a long cable to a glass-encased PC, which in turn was connected to thick hoses filled with glowing blue coolant.

I slipped the mask over my head and was literally transported to another world.

In real life, I was in the lower level of Edens residence hall testing out the recently opened BoltVR gaming room during an event hosted by the Duke Digital Initiative (DDI). Virtual reality is one of the technologies that DDI is exploring for its potential in teaching and learning.

Rebekkah Huss shoots invaders with a virtual bow and arrow in Duke's newest virtual reality space.

Rebekkah Huss shoots invaders with a virtual bow and arrow in Duke’s newest virtual reality space. Open to students 4 p.m. to 10 p.m. on weekdays, noon to midnight on weekends.

BoltVR is a virtual reality space outfitted with the immersive room-scale technology of the HTC Vive, an $800 gaming system consisting of the headset, hand-held controllers and motion sensors in the room. The VR experience is a new addition to the Bolt gaming suite that opened in 2015 for Duke students.

Once I had the headset on, suddenly the bare walls and carpet were replaced by the yellow lined grid of the Holodeck from Star Trek. It was like nothing I’d ever seen. This is like the home screen for the gaming system, explained  Mark-Everett McGill the designer of the BoltVR game room, as he scrolled through the more than 70 downloaded VR experiences on the BoltVR online account at Steam.

McGill chose a story experience so that I could adjust to being able to move around physical objects in a virtual space.

It was like the floor melted away. On a tiny asteroid in front of me The Little Prince and his rose played out their drama from the cover of the classic children’s book. The stars surrounded me and I tilted my head back to watch a giant planet fly over.

I could walk around the prince’s tiny asteroid and inspect the little world from all angles, but I found it disorienting to walk with normal stability while my eyes told me that I was floating in space. The HTC Vive has a built-in  guidance system called the Chaperone that used a map of the room to keep me from crashing into the walls, I still somehow managed to bump a spectator.

“A lot of people get motion sickness when they use VR because your eyes are sensing the movement but your ears are telling you, you aren’t doing anything.” said, McGill.

Lucky for me, I have a strong stomach and suffered no ill effects while wearing the headset. The HTC Vive also helps counteract motion sickness because is room scale design allows for normal walking and movement.

There was however, one part of the experience that felt very odd, and that was the handheld controllers. The controllers  are tracked by wall-mounted sensors so they show up really well in the VR headset. The problem was that in the titles I played my hands and body were invisible to me.

The headset and controller themselves are incredibly sensitive and accurate. I think most people would intuitively understand how to use them, especially if they have a gaming background, but I missed having the comfort of my own arms. So while the VR worlds are visually believable and the technology powering them is absolutely fascinating, there is still lots of room for new innovations.

Once I started playing games though, I no longer cared about the limitations of the tech because I was having so much fun!

The most popular student choice in the BoltVR is a subgame of The Lab by Valve, it’s a simple tower defense game where the player uses a bow and arrow to shoot little 2D stickmen and stop their attack.

Everything about using the bow felt pretty realistic like loading arrows, and using angles to control the trajectory of a shot. There was even a torch that I used to light my arrow on fire before launching it at an attacker. With unlimited ammunition, I happily guarded my tower from waves of baddies until I finally had to let someone else have a turn.

To learn more about VR experiences for teaching and learning at Duke, join the listserv at https://lists.duke.edu/sympa/subscribe/vr2learn.

Post by Rebekkah Huss

Post by Rebekkah Huss

Lemur Research Gets a Gut Check

Baby Coquerel’s sifaka

Clinging to her mom, this baby Coquerel’s sifaka represents the only lemur species at the Duke Lemur Center known to fall prey to cryptosporidium, a microscopic parasite that causes diarrhea that can last for a week or more. The illness wipes out much of the animals’ gut microbiome, researchers report, but fecal transplants can help them recover. Photo by David Haring, Duke Lemur Center.

DURHAM, N.C. — “Stool sample collector” is not a glamorous way to introduce oneself at a party. But in the course of their research, gut microbiologists Erin McKenney and Lydia Greene have spent a lot of time waiting for animals to relieve themselves.

They estimate they have hundreds of vials of the stuff, from a dozen primate species including lemurs, baboons and gorillas, sitting in freezers on the Duke University campus.

The researchers aren’t interested in the poop per se, but in the trillions of bacteria inhabiting the gastrointestinal tract, where the bugs help break down food, produce vitamins and prevent infection.

A few years ago, McKenney and Greene started collecting stool samples at the Duke Lemur Center to see how the microbial makeup of lemurs’ guts varies from birth to weaning, and as their diets change over the seasons. And what happens when they get sick?

Illustration of Cryptosporidium, a widespread intestinal parasite that causes diarrhea in people, pets, livestock and wildlife worldwide. Courtesy of the U.S. Centers for Disease Control.

Illustration of Cryptosporidium, a widespread intestinal parasite that causes diarrhea in people, pets, livestock and wildlife worldwide. Courtesy of the U.S. Centers for Disease Control.

Between 2013 and 2016, ten of the lemurs they were studying contracted cryptosporidium, or “crypto” for short, a waterborne parasite that causes diarrhea in people, pets, livestock and wildlife worldwide.

All of the infected animals were Coquerel’s sifakas — the only lemur species out of roughly 20 at the Duke Lemur Center known to fall prey to the parasite — and most of them were under five years old when they fell ill.

Animals that tested positive were moved into separate holding areas away from other animals and visitors. Keepers wore protective suits, gloves, face masks and booties while working in the animals’ enclosures to prevent infection.

All of the animals eventually recovered. Along the way, six of the affected animals were treated with antibiotics, and three were also fed a slurry of saline and feces from a healthy relative.

McKenney and Greene collected stool samples before, during and after infection for up to two months. They used a technique called 16S ribosomal RNA sequencing to identify the types of bacteria in the samples based on their genes, and compared the results with those of 35 unaffected individuals.

In a healthy gut microbiome, “good” bacteria in the gut compete with “bad” microbes for space and nutrients, and secrete substances that inhibit their growth.

The guts of sick and recovering sifakas are host to a very different assortment of microbes than those of unaffected animals, the researchers found.

Not surprisingly, both crypto infection, and antibiotic treatment, wiped out much of the animals’ gut flora — particularly the bacterial groups Bifidobacterium, Akkermansia, Succinivibrio and Lachnospiraceae.

Even after the infections cleared, most animals took another several weeks to stabilize and return to normal levels of gut biodiversity, with younger animals taking longer to recover.

The only animals that made a full comeback within the study period were those that received a fecal transplant, suggesting that the treatment can help restore gut bacterial diversity and speed recovery.

The patterns of gut recolonization following crypto infection mirrored those seen from birth to weaning, said McKenney, now a postdoctoral researcher at North Carolina State University.

The researchers hope their findings will help control and prevent crypto outbreaks in captive primates. Because lemurs are more closely related to humans than lab mice are, the research could also help scientists understand how the gut microbiome protects humans from similar infections and facilitates recovery.

“Thanks to bioinformatics and advances in sequencing, the microbiome gives us a window into the health of these animals that we’ve never had before,” said Greene, a graduate student in ecology at Duke.

They published their findings June 15, 2017, in the journal Microbial Ecology in Health and Disease.

Duke evolutionary anthropology professors Christine Drea and Anne Yoder were senior authors on this study. This research was supported by the National Science Foundation (1455848) and the Duke Lemur Center Directors Fund.

CITATION:  “Down for the Count: Cryptosporidium Infection Depletes Gut Microbiota in Coquerel’s Sifakas,” Erin McKenney, Lydia Greene, Christine Drea and Anne Yoder. Microbial Ecology in Health and Disease, June 15, 2017. http://dx.doi.org/10.1080/16512235.2017.1335165

Post by Robin Smith, science writer, Office of News & Communications

Scientists Engineer Disease-Resistant Rice Without Sacrificing Yield

Researchers have developed a way to make rice more resistant to bacterial blight and other diseases without reducing yield. Photo by Max Pixel.

Researchers have successfully developed a novel method that allows for increased disease resistance in rice without decreasing yield. A team at Duke University, working in collaboration with scientists at Huazhong Agricultural University in China, describe the findings in a paper published May 17, 2017 in the journal Nature.

Rice is one of the most important staple crops, responsible for providing over one-fifth of the calories consumed by humans worldwide. Diseases caused by bacterial or fungal pathogens present a significant problem, and can result in the loss of 80 percent or more of a rice crop.

Decades of research into the plant immune response have identified components that can be used to engineer disease-resistant plants. However, their practical application to crops is limited due to the decreased yield associated with a constantly active defense response.

“Immunity is a double-edged sword, ” said study co-author Xinnian Dong, professor of biology at Duke and lead investigator of the study. “There is often a tradeoff between growth and defense because defense proteins are not only toxic to pathogens but also harmful to self when overexpressed,” Dong said. “This is a major challenge in engineering disease resistance for agricultural use because the ultimate goal is to protect the yield.”

Previous studies have focused on altering the coding sequence or upstream DNA sequence elements of a gene. These upstream DNA elements are known as promoters, and they act as switches that turn on or off a gene’s expression. This is the first step of a gene’s synthesis into its protein product, known as transcription.

By attaching a promoter that gives an “on” signal to a defense gene, a plant can be engineered to be highly resistant to pathogens, though at a cost to growth and yield. These costs can be partially alleviated by attaching the defense gene to a “pathogen specific” promoter that turns on in the presence of pathogen attack.

To further alleviate the negative effects of active defense, the Dong group sought to add an additional layer of control. They turned newly discovered sequence elements, called upstream open reading frames (uORFs), to help address this problem. These sequence elements act on the intermediate of a gene, or messenger (RNA, a molecule similar to DNA) to govern its “translation” into the final protein product. A recent study by the Dong lab in an accompanying paper in Nature has identified many of these elements that respond in a pathogen-inducible manner.

The Dong group hypothesized that adding this pathogen-inducible translational regulation would result in a tighter control of defense protein expression and minimize the lost yield associated with enhanced disease resistance.

To test this hypothesis, the researchers started with Arabidopsis, a flowering plant commonly used in laboratory research. They created a DNA sequence that contains both the transcriptional and translational elements (uORFs) and fused them upstream of the potent “immune activator” gene called snc1. This hybrid sequence was called a “transcriptional/translational cassette” and was inserted into Arabidopsis plants.

When plants have snc1 constitutively active, they are highly resistant to pathogens, but have severely stunted growth. Strikingly, plants with the transcriptional/translational cassette not only have increased resistance, but they also lacked growth defects and resembled healthy wild-type plants. These results show the benefits of adding translational control in engineering plants that have increased resistance without significant costs.

The Dong group then sought to apply these findings to engineer disease-resistant rice, as it is one of the world’s most important crops. They created transgenic rice lines containing the transcriptional/translational cassette driving expression of another potent “immune activator” gene called AtNPR1. This gene was chosen as it has been found to confer broad spectrum pathogen resistance in a wide variety of crop species, including rice, citrus, apple and wheat.

The dry yellowish leaves on these rice plants are a classic symptom of bacterial blight, a devastating disease that affects rice fields worldwide. Photo by Meng Yuan.

The transgenic rice lines containing the transcriptional/translational cassette were infected with bacterial/fungal pathogens that cause three major rice diseases — rice  blight, leaf streak, and fungal blast. These showed high resistance to all three pathogens, indicating broad spectrum resistance could be achieved. Importantly, when grown in the field, their yield — both in terms of grain quantity and quality per plant — was almost unaffected. These results indicate a great potential for agricultural applications.

This strategy is the first known use of adding translational control for the engineering of disease-resistant crops with minimal yield costs. It has many advantages, as it is broadly applicable to a variety of crop species against many pathogens. Since this strategy involves activating the plants’ endogenous defenses, it may also reduce the use of pesticides on crops and hence protect the environment.

Additionally, these findings may be broadly applicable to other systems as well. These upstream elements (uORFs) are widely present in organisms from yeast to humans, with nearly half of all human transcripts containing them. “The great potential in using these elements in controlling protein translation during specific biological processes has yet to be realized,” Dong said.

Corresponding author Xinnian Dong can be reached at xdong@duke.edu or (919) 613-8176.

CITATION:  “uORF-Mediated Translation Allows Engineered Plant Disease Resistance Without Fitness Costs,” Guoyong Xu, Meng Yuan,   Chaoren Ai, Lijing Liu, Edward Zhuang, Sargis Karapetyan, Shiping Wang and Xinnian Dong. Nature, May 17, 2017. DOI: 10.1038/nature22372

 

Guest post by Jonathan Motley

Where Some Ski, Others Do Science

For most people, Lost Trail is a ski spot located at 7,000 feet in the Rocky Mountains on the border of Idaho and Montana. Skiers and snowboarders descend down steep slopes, past forests and alpine meadows that get more than 25 feet of snow each year. But for a team of researchers led by Duke biology professor Thomas Mitchell-Olds, buried beneath the snow is a hidden population of native plants on the cusp of dividing into two new species.

Molly Rivera-Olds shovels snow at Lost Trail Pass.

Studying a spindly North American wildflower called Boechera stricta, Mitchell-Olds and colleagues suspected that a process called chromosomal inversion — in which part of a chromosome breaks off and reattaches itself upside down — plays a central role in speciation. To test the idea, they planted Boechera stricta seedlings in a mountaintop meadow near the Lost Trail resort.

To reach the meadow, the researchers carried thousands of seedlings up the mountain in specially constructed backpacks. They also lugged up nine empty garbage cans and filled them with snow to water the plants throughout the summer.

Once the seedlings matured, the researchers measured flowering time, seed production, and survival. They found that plants with the chromosomal inversion had a leg up on the steep slopes of the Rocky Mountains. Eventually, the researchers say, this can lead to plants with the inverted DNA splitting off and forming a new species.

The findings were published April 3, 2017 in the journal Nature Ecology & Evolution.

# # #

CITATION:  “Young Inversion with Multiple Linked QTLs Under Selection in a Hybrid Zone,” Cheng-Ruei Lee, Baosheng Wang et al. Nature Ecology & Evolution, April 3, 2017. DOI:10.1038/s41559-017-0119.

Guest post by Molly Rivera-Olds

 

 

 

 

 

Data Geeks Go Head to Head

For North Carolina college students, “big data” is becoming a big deal. The proof: signups for DataFest, a 48-hour number-crunching competition held at Duke last weekend, set a record for the third time in a row this year.

DataFest 2017

More than 350 data geeks swarmed Bostock Library this weekend for a 48-hour number-crunching competition called DataFest. Photo by Loreanne Oh, Duke University.

Expected turnout was so high that event organizer and Duke statistics professor Mine Cetinkaya-Rundel was even required by state fire code to sign up for “crowd manager” safety training — her certificate of completion is still proudly displayed on her Twitter feed.

Nearly 350 students from 10 schools across North Carolina, California and elsewhere flocked to Duke’s West Campus from Friday, March 31 to Sunday, April 2 to compete in the annual event.

Teams of two to five students worked around the clock over the weekend to make sense of a single real-world data set. “It’s an incredible opportunity to apply the modeling and computing skills we learn in class to actual business problems,” said Duke junior Angie Shen, who participated in DataFest for the second time this year.

The surprise dataset was revealed Friday night. Just taming it into a form that could be analyzed was a challenge. Containing millions of data points from an online booking site, it was too large to open in Excel. “It was bigger than anything I’ve worked with before,” said NC State statistics major Michael Burton.

DataFest 2017

The mystery data set was revealed Friday night in Gross Hall. Photo by Loreanne Oh.

Because of its size, even simple procedures took a long time to run. “The dataset was so large that we actually spent the first half of the competition fixing our crushed software and did not arrive at any concrete finding until late afternoon on Saturday,” said Duke junior Tianlin Duan.

The organizers of DataFest don’t specify research questions in advance. Participants are given free rein to analyze the data however they choose.

“We were overwhelmed with the possibilities. There was so much data and so little time,” said NCSU psychology major Chandani Kumar.

“While for the most part data analysis was decided by our teachers before now, this time we had to make all of the decisions ourselves,” said Kumar’s teammate Aleksey Fayuk, a statistics major at NCSU.

As a result, these budding data scientists don’t just write code. They form theories, find patterns, test hunches. Before the weekend is over they also visualize their findings, make recommendations and communicate them to stakeholders.

This year’s participants came from more than 10 schools, including Duke, UNC, NC State and North Carolina A&T. Students from UC Davis and UC Berkeley also made the trek. Photo by Loreanne Oh.

“The most memorable moment was when we finally got our model to start generating predictions,” said Duke neuroscience and computer science double major Luke Farrell. “It was really exciting to see all of our work come together a few hours before the presentations were due.”

Consultants are available throughout the weekend to help with any questions participants might have. Recruiters from both start-ups and well-established companies were also on site for participants looking to network or share their resumes.

“Even as late as 11 p.m. on Saturday we were still able to find a professor from the Duke statistics department at the Edge to help us,” said Duke junior Yuqi Yun, whose team presented their results in a winning interactive visualization. “The organizers treat the event not merely as a contest but more of a learning experience for everyone.”

Caffeine was critical. “By 3 a.m. on Sunday morning, we ended initial analysis with what we had, hoped for the best, and went for a five-hour sleep in the library,” said NCSU’s Fayuk, whose team DataWolves went on to win best use of outside data.

By Sunday afternoon, every surface of The Edge in Bostock Library was littered with coffee cups, laptops, nacho crumbs, pizza boxes and candy wrappers. White boards were covered in scribbles from late-night brainstorming sessions.

“My team encouraged everyone to contribute ideas. I loved how everyone was treated as a valuable team member,” said Duke computer science and political science major Pim Chuaylua. She decided to sign up when a friend asked if she wanted to join their team. “I was hesitant at first because I’m the only non-stats major in the team, but I encouraged myself to get out of my comfort zone,” Chuaylua said.

“I learned so much from everyone since we all have different expertise and skills that we contributed to the discussion,” said Shen, whose teammates were majors in statistics, computer science and engineering. Students majoring in math, economics and biology were also well represented.

At the end, each team was allowed four minutes and at most three slides to present their findings to a panel of judges. Prizes were awarded in several categories, including “best insight,” “best visualization” and “best use of outside data.”

Duke is among more than 30 schools hosting similar events this year, coordinated by the American Statistical Association (ASA). The winning presentations and mystery data source will be posted on the DataFest website in May after all events are over.

The registration deadline for the next Duke DataFest will be March 2018.

DataFest 2017

Bleary-eyed contestants pose for a group photo at Duke DataFest 2017. Photo by Loreanne Oh.

s200_robin.smith

Post by Robin Smith

Closing the Funding Gap for Minority Scientists

DURHAM, N.C. — The barriers to minority students in science, technology, engineering and math (STEM) don’t go away once they’ve finished school and landed a job, studies show. But one nationwide initiative aims to level the playing field once they get there.

With support from a 3-year, $500,0000 grant from the National Science Foundation, assistant professors and postdoctoral fellows who come from underrepresented minorities are encouraged to apply by May 5 for a free grant writing workshop to be held June 22-24 in Washington, D.C..

It’s no secret that STEM has a diversity problem. In 2015, African-Americans and Latinos made up 29 percent of the U.S. workforce, but only 11 percent of scientists and engineers.

A study published in the journal Science in 2011 revealed that minority scientists also were less likely to win grants from the National Institutes of Health, the largest source of research funding to universities.

Based on an analysis of 83,000 grant applications from 2000 to 2006, the study authors found that applications from black researchers were 13 percent less likely to succeed than applications from their white peers. Applications from Asian and Hispanic scientists were 5 and 3 percent less likely to be awarded, respectively.

Even when the study authors made sure they were comparing applicants with similar educational backgrounds, training, employers and publication records, the funding gap persisted — particularly for African-Americans.

Competition for federal research dollars is already tough. But white scientists won 29 percent of the time, and black scientists succeeded only 16 percent of the time.

Pennsylvania State University chemistry professor Squire Booker is co-principal investigator of a $500,000 initiative funded by the National Science Foundation to help underrepresented minority scientists write winning research grants.

“That report sent a shock wave through the scientific community,” said Squire Booker, a Howard Hughes Medical Institute investigator and chemistry professor at Pennsylvania State University. Speaking last week in the Nanaline H. Duke building on Duke’s Research Drive, Booker outlined a mentoring initiative that aims to close the gap.

In 2013, Booker and colleagues on the Minority Affairs Committee of the American Society for Biochemistry and Molecular Biology decided to host a workshop to demystify the grant application process and help minority scientists write winning grants.

Grant success is key to making it in academia. Even at universities that don’t make funding a formal requirement for tenure and promotion, research is expensive. Outside funding is often required to keep a lab going, and research productivity — generating data and publishing results — is critical.

To insure underrepresented minorities have every chance to compete for increasingly tight federal research dollars, Booker and colleagues developed the Interactive Mentoring Activities for Grantsmanship Enhancement program, known as IMAGE. Program officers from NIH and NSF offer tips on navigating the funding process, crafting a successful proposal, decoding reviews and revising and resubmitting. The organizers also stage a mock review panel, and participants receive real-time, constructive feedback on potential research proposals.

Participants include researchers in biology, biophysics, biochemistry and molecular biology. More than half of the program’s 130 alumni have been awarded NSF or NIH grants since the workshop series started in 2013.

Booker anticipates this year’s program will include more postdoctoral fellows. “Now we’re trying to expand the program to intervene at an earlier stage,” Booker said.

To apply for the 2017 workshop visit http://www.asbmb.org/grantwriting/.  The application deadline is May 5.

s200_robin.smith

Post by Robin Smith

Page 1 of 7

Powered by WordPress & Theme by Anders Norén