Duke Research Blog

Following the people and events that make up the research community at Duke.

Author: Karl Bates (Page 1 of 27)

Duke Scientists Visit Raleigh to Share Their Work

This post by graduate student Dan Keeley originally appeared on Regeneration NEXT. It is a followup to one of our earlier posts.

As a scientist, it is easy to get caught up in the day-to-day workflow of research and lose sight of the bigger picture. We are often so focused on generating and reporting solid, exciting data that we neglect another major aspect of our job; sharing our work and its impacts with the broader community. On Tuesday May 23rd, a group of graduate students from Duke went to the North Carolina legislative building to do just that.

L-R: Andrew George, Representative Marcia Morey (Durham County), Senator Terry Van Duyn (Buncombe County), Sharlini Sankaran, Dan Keeley, and Will Barclay at the NC legislative building.

Dr. Sharlini Sankaran, Executive Director of Duke’s Regeneration Next Initiative, organized a group of graduate students to attend the North Carolina Hospital Associations (NCHA) “Partnering for a Healthier Tomorrow!” advocacy day at the state legislature in Raleigh. The event gave representatives from various hospital systems an opportunity to interact with state legislators about the work they do and issues affecting healthcare in the state. Andrew George, a graduate student in the McClay Lab, Will Barclay, a graduate student in the Shinohara Lab, and I joined Dr. Sankaran to share some of the great tissue regeneration-related research going on at Duke.

Our morning was busy as elected officials, legislative staff, executive branch agency officials, and staff from other hospital systems stopped by our booth to hear what Regeneration Next is all about. We talked about the focus on harnessing Duke’s strengths in fundamental research on molecular mechanisms underlying regeneration and development, then pairing that with the expertise of our engineers and clinicians. We discussed topics including spine and heart regeneration mechanisms from the Poss Lab, advances in engineering skeletal muscle from the Bursac Lab, and clinical trials of bioengineered blood vessels for patients undergoing dialysis from Duke faculty Dr. Jeffrey Lawson.

It was remarkable to hear how engaged everyone was, we got great questions like ‘what is a zebrafish and why do you use them?’ and ‘why would a bioengineered ligament be better than one from an animal model or cadaver?’.  Every person who stopped by was supportive and many had a personal story to share about a health issue experienced by friends, family, or even themselves. As a graduate student who does basic research, it really underscored how important these personal connections are to our work, even though it may be far removed from the clinic.

Communicating our research to legislators and others at NCHA advocacy day was a great and encouraging experience. Health issues affect all of us. Our visit to the legislature on Tuesday was a reminder that there is support for the work that we do in hopes it will help lead to a healthier tomorrow.

Guest post by Dan Keeley, graduate student in BiologyDan Keeley

If the Cancer Doesn’t Kill You, the Drug Prices Might

The medical community is growing alarmed about a creeping malady that can diminish the quality of life for patients in treatment and even shorten their lives.

It’s found everywhere in the United States, but not to the same degree in other developed countries. They’re calling it “Financial Toxicity.”

Yousuf Zafar is an oncologist and health policy researcher.

A cancer diagnosis more than doubles an American’s chance of declaring bankruptcy, Duke medical oncologist  Yousuf Zafar, MD, MHS,  told an audience of nursing faculty and students at a May 10 luncheon lecture sponsored by the Duke Center for Community and Population Health Improvement. And that bankruptcy, in turn, has been shown to decrease survival rates.

In addition to treating cancer patients, Zafar studies access to care and the cost of care at the Duke Cancer Institute, the Sanford School of Public Policy, and the Margolis Center for Health Policy.

Zafar told personal stories of two patients who waved off treatments because of the financial hardship they feared.

Gleevec (Imatinib) is an oral chemotherapy made by Novartis.

One of them had a job with health insurance, but no prescription drug coverage, which put him on the hook for $4,000 in medications to treat his rectal cancer for just a few weeks. Had either the patient or Dr. Zafar brought the topic up, the costs might have been avoided, but they never talked about money, he said.

The other patient passed up another round of treatment for his pancreatic cancer, for fear of the bills his family would be saddled with when he died.

Chemotherapy for cancer would typically cost $100/month in the 1970s, Zafar said. But today that figure can be “ten, or tens, of thousands per month.” (Inflation would make that 1970 dollar about $6, not $600.)

“Pricing in the European Union and the rest of the world is a completely different picture,” he said.  In the US, pricing “simply reflects what the market will bear.”

Another source of the steep climb is the advent of biologic drugs, which are expensive to develop, use and store, but offer more targeted therapy for individual patients. One of the most successful of these is Gleevec (Imatinib) an oral chemotherapy that became 158 percent more expensive from 2007 to 2014, Zafar said.

If you do a Google search for Gleevec, the first thing you find is a Novartis page with the headline “Understand Your Out-Of-Pocket Costs For Gleevec” that includes a link to financial assistance resources.

In the face of outrageous costs and questionable benefits, a treatment team in many cases can help patients find other means of support or alternative treatments to achieve the same end with less financial damage. But they have to have the conversation, Zafar said. He’d like to see Duke’s Cancer Center become the first in the country to be totally transparent about costs, but he acknowledged that it may be a difficult quest.

To help enable those conversations, Zafar developed a mobile app called Pathlight to help patients make more informed decisions and plan better for the financial burden of treatment. For some of the technology used in the project, Zafar has partnered with a software company called Vivor, which has found innovative ways to help patients navigate to financial assistance programs. That part of the project is supported by the NIH’s National Cancer Institute.

Even for people not in treatment, drugs have become more costly. Healthcare premiums rose 182 percent from 1999 to 2013, with workers paying an increasing share of the cost of their own employee health plans.

Is this any way to run a health system?

“I don’t have all the answers – I don’t think anybody does,” Zafar said. “But I think we need to move toward a single-payer system.”

Post by Karl Leif Bates

 

Durham Students Give Themselves a Hand Up

Picture this: a group of young middle schoolers are gathered trying to get a “hand” they’ve built out of drinking straws, thread and clay to grasp a small container. What could such a scene possibly have to do with encouraging kids to stay in school and pursue science? It turns out, quite a lot!

brothers keeper

Angelo Moreno (right), a graduate student in molecular genetics and microbiology, helps students with their soda straw hand.

This scene was part of an event designed just for boys from Durham schools that took place one March evening at the Durham Marriot and Convention Center. It was hosted by Made in Durham, a local non-profit focused on helping Durham’s young people graduate from high school, go to college, and ultimately be prepared for their careers, and My Brother’s Keeper Durham, the local branch of former President Obama’s mentoring initiative for young men of color.

The first evening of a convention centered on building equity in education and was geared toward career exploration. Each of the boys got to choose from a series of workshops that highlighted careers in science, technology, engineering, art, and mathematics — also known as STEAM. The workshops ranged from architectural design to building body parts, which was where they learned to build the artificial hands.

Sharlini Sankaran, the executive director of Duke’s Regeneration Next Initiative, who heard about my outreach activities from earlier this year, contacted me, and together we drummed up a group of scientists for the event.

With the help of Victor Ruthig in Cell Biology, Angelo Moreno in Molecular Genetics and Microbiology, Ashley Williams in Biomedical Engineering, and Devon Lewis, an undergraduate in the Biology program, we dove into the world of prosthetics and tissue engineering with the young men who came to our workshop.

Biology undergrad Devon Lewis (top) worked with several of the students.

After some discussion on what it takes to build an artificial body part, we let the boys try their hand at building their own. We asked them what the different parts of the hand were that allowed us to bend them and move them in certain ways, and from there, they developed ideas for how to turn our household materials into fully functioning hands. We used string as tendons and straws as finger bones, cutting notches where we wanted to create joints.

There was a lot of laughter in the room, but also a lot of collaboration between the different groups of kids. When one team figured out how to make a multi-jointed finger, they would share that knowledge with other groups. Similar knowledge sharing happened when one group figured out how to use the clay to assemble all their fingers into a hand. Seeing these young men work together, problem solve, and be creative was amazing to watch and be a part of!

According to feedback from event organizers, “ours was the most popular session!” Sharlini said. When we reached the end of our session, the kids didn’t want to leave, and instead wanted to keep tinkering with their hands to see what they could accomplish.

The boys had a lot of fun, asked a lot of good questions, and got to pick our brains for advice on staying in school and using it to propel them towards career success. I have distilled some of the best pieces of advice from that night, since they’re good for everyone to hear:

  • Don’t be afraid to ask a lot of questions.
  • Don’t be discouraged when someone tells you no. Go for it anyways.
  • Don’t be afraid of failure.
  • And don’t think you have to fit a particular mold to succeed at something.

“I left feeling really inspired about our future generation of scientists and engineers,” Sharlini said. ”It’s good to know there are so many Duke students with the genuine and selfless desire to help others.”

It was a joy to participate in this event. We all had fun, and left having learned a lot — even the parents who came with their sons!

Outreach like this is incredibly important. Being mentors for young people with a budding interest in science can make the difference between them pursuing it further or dropping it altogether. Engaging with them to show them the passion we have for our work and that we were kids just like they are allows them to see that they can do it too.

Guest Post by Ariana Eily

Venturing Out of the Lab to Defend Science

It’s 6 p.m. on a Wednesday and the grad students aren’t at their lab benches. IM softball doesn’t start till next week, what gives?

We’ve snuck out of our labs a bit early to take in a dose of U.S. policy for the evening.

Politics fall far outside our normal areas of expertise. I’m a biology Ph.D. student studying plants — even with my liberal arts education, politics isn’t my bread and butter.

Buz Waitzkin of Science & Society (blue shirt) gave grad students a highly accelerated intro to matters of science policy.

But the current political climate in the U.S. has many scientists taking a more careful look into politics. Being scholars who have a sense of the world around us has become more important than ever.

“Agency regulation, funding, it’s all decided by our branches of government,” says Ceri Weber, a 3rd year Ph.D. candidate in Cell Biology.

Weber, a budding “sci-pol” enthusiast and the general programming chair for the student group INSPIRE, feels passionately about getting scientists informed about policy.

So she organized this event for graduate scientists to talk with the deputy director of Duke Science & Society, Buz Waitzkin, who previously served as special counsel to President Bill Clinton, and now teaches science policy classes cross-listed between Duke’s Biomedical Science programs and the Law School.

Seated with food and drinks—the way to any grad student’s heart—we found ourselves settling in for an open discussion about the current administration and the impact its policies could have on science.

We covered a lot of ground in our 2-hour discussion, though there was plenty more we would love to continue learning.

We discussed: lobbying, executive orders, the balances of power, historical context, tradition, and civil actions, to name a few.

There were a lot of questions, and a lot of things we didn’t know.

Even things as simple as “what exactly is a regulation?” needed to be cleared up. We’ve got our own definition in a biological context, but regulation takes on a whole new meaning in a political one. It was neat having the chance to approach this topic from the place of a beginner.

We were floored by some of the things we learned, and puzzled by others. Importantly, we found some interesting places of kinship between science and policy.

When we discussed the Congressional Review Act, which impacts regulations—the main way science policy is implemented—we learned there is ambiguity in law just like there is in science.

One area on all of our minds was how we fit into the picture. Where can our efforts and knowledge as scientists and students can make a difference?

I was shocked to learn of the lack of scientists in government: only five ever in Congress, and three in the Cabinet.

But luckily, there is space for us as science advisors in different affiliations with the government. There are even Duke graduate students working on a grant to develop science policy fellowships in the NC state legislature.

At the end of the night, we were all eager to learn more and encouraged to participate in politics in the ways that we can. We want to be well-versed in policy and take on an active role to bring about change in our communities and beyond.

Hopefully, as the years go on, we’ll have more opportunities to deepen our knowledge outside of science in the world around us. Hopefully, we’ll have more scientists who dare to step out of the lab.

Guest Post by Graduate Student Ariana Eily

Cells Need Their Personal Space

One of the body’s first lines of defense against harmful pathogens is the skin. The constant maintenance of this epithelial cell layer which serves as a barrier to infection  is essential to fighting off disease.

Jody Rosenblatt, an Associate Professor in the Department of Oncological Sciences at the University of Utah School of Medicine, has made it her lab’s mission to study the function of epithelia as a barrier, how this barrier is maintained, and what happens when it goes awry.

Jody Rosenblatt, PhD is an investigator for the Huntsman Cancer Institute at the University of Utah School of Medicine and a Howard Hughes Medical Institute Faculty Scholar

Rosenblatt recently spoke at Duke’s Developmental & Stem Cell Biology Colloquium where she presented some extraordinary findings about how epithelia can squeeze out  both healthy and dying cells  to preserve the protective barrier.

Some c cells commit suicide via programed cell death and are forced out of the cell layer because they are no longer functional. But in the case of forcing out living cells, “cell extrusion is more like a homicide” said Rosenblatt. The fact that perfectly functional living cells are pushed out of a cell layer perplexed her group until they discovered it was happening as a response to cell overcrowding.

Rosenblatt explained that like people, cells tend to like their personal space, so when this is compromised, live cells are actively pushed out of the cell layer, restoring balanced cell numbers.

Rosenblatt’s lab took this discovery a step farther and pinpointed the pathway that likely induces the extrusion of live cells.

Piezo1, a stretch-activated calcium ion channel present in epithelial cells, senses crowding and activates sphingosine-1-phosphate (S1P), the driver of epithelial cell extrusion. When Piezo1 channels are inhibited and don’t sense stretching, cells cannot extrude.

Using zebrafish, Rosenblatt showed that when extrusion was blocked by compromising the S1P2 pathway, epidermal cells form masses that are resistant to chemotherapy drugs and signals for programmed cell death.

Rosenblatt explains the importance of regulating cell extrusion in the epithelium to maintain the tissue’s function as a protective barrier for our organs. Misregulation of this function can result in diseases such as metastatic cancers.

This finding lead them to examine samples of human pancreatic, lung, colon, and breast tumors. They found that in all of these cancers, S1P2 is significantly reduced. But if they restored S1P2 activity in cell lines of these cancers, the extrusion pathway was rescued and tumor size and metastases were greatly decreased!

Rosenblatt and her colleagues have shown that the importance of cell extrusion cannot be overstated. If extrusion is compromised, cells can begin to pile up and move beneath the cell layer, which can lead to invasion of the tissues beneath the epithelium and metastasis to other sites in the body.

Now that we are uncovering more of the pathways involved in tumor formation and metastasis, we can develop new drugs that may be the key to fighting these devastating diseases.

Guest Post by Amanda Cox, PhD candidate in biology

 

Young Scientists, Making the Rounds

“Can you make a photosynthetic human?!” an 8th grader enthusiastically asks me while staring at a tiny fern in a jar.

He’s not the only one who asked me that either — another student asked if Superman was a plant, since he gets his power from the sun.

These aren’t the normal questions I get about my research as a Biology PhD candidate studying how plants get nutrients, but they were perfect for the day’s activity –A science round robin with Durham eighth-graders.

Biology grad student Leslie Slota showing Durham 8th graders some fun science.

After seeing a post under #scicomm on Twitter describing a public engagement activity for scientists, I put together a group of Duke graduate scientists to visit local middle schools and share our science with kids. We had students from biomedical engineering, physics, developmental biology, statistics, and many others — a pretty diverse range of sciences.

With help from David Stein at the Duke-Durham Neighborhood Partnership, we made connections with science teachers at the Durham School of the Arts and Lakewood Montessori school, and the event was in motion!

The outreach activity we developed works like speed dating, where people pair up, talk for 3-5 mins, and then rotate. We started out calling it “Science Speed Dating,” but for a middle school audience, we thought “Science Round-Robin” was more appropriate. Typically, a round-robin is a tournament where every team plays each of the other teams. So, every middle schooler got to meet each of us graduate students and talk to us about what we do.

The topics ranged from growing back limbs and mapping the brain, to using math to choose medicines and manipulating the different states of matter.

The kids were really excited for our visit, and kept asking their teachers for the inside scoop on what we did.

After much anticipation, and a little training and practice with Jory Weintraub from the Science & Society Initiative, two groups of 7-12 graduate students armed themselves with photos, animals, plants, and activities related to our work and went to visit these science classes full of eager students.

First-year MGM grad student Tulika Singh (top right) brought cardboard props to show students how antibodies match up with cell receptors.

“The kids really enjoyed it!” said Alex LeMay, middle- and high-school science teacher at the Durham School of the Arts. “They also mentioned that the grad students were really good at explaining ideas in a simple way, while still not talking down to them.”

That’s the ultimate trick with science communication: simplifying what we do, but not talking to people like they’re stupid.

I’m sure you’ve heard the old saying, “dumb it down.” But it really doesn’t work that way. These kids were bright, and often we found them asking questions we’re actively researching in our work. We don’t need to talk down to them, we just need to talk to them without all of the exclusive trappings of science. That was one thing the grad students picked up on too.

“It’s really useful to take a step back from the minutia of our projects and look at the big picture,” said Shannon McNulty, a PhD candidate in Molecular Genetics and Microbiology.

The kids also loved the enthusiasm we showed for our work! That made a big difference in whether they were interested in learning more and asking questions. Take note, fellow scientists: share your enthusiasm for what you do, it’s contagious!

Another thing that worked really well was connecting with the students in a personal way. According to Ms. LeMay, “if the person seemed to like them, they wanted to learn more.” Several of the grad students would ask each student their names and what they were passionate about, or even talk about their own passions outside of their research, and these simple questions allowed the students to connect as people.

There was one girl who shared with me that she didn’t know what she wanted to do when she grew up, and I told her that’s exactly where I was when I was in 8th grade too. We then bonded over our mutual love of baking, and through that interaction she saw herself reflected in me a little bit; making a career in science seem like a possibility, which is especially important for a young girl with a growing interest in science.

Making the rounds in these science classrooms, we learned just as much from the students we spoke to as they did from us. Our lesson being: science outreach is a really rewarding way to spend our time, and who knows, maybe we’ll even spark someone who loves Superman to figure out how to make the first photosynthesizing super-person!

Guest post by Ariana Eily , PhD Candidate in Biology, shown sharing her floating ferns at left.

 

Page 1 of 27

Powered by WordPress & Theme by Anders Norén