As if a Nobel Prize weren’t enough, another Duke scientist recently earned a prestigious award for groundbreaking research. Warren Grill was recognized Nov. 2 at the MDB Trent Semans Center for his research and development of deep brain stimulation (DBS) treatments for Parkinson’s disease.

He won the Javits Neuroscience Investigator Award, which was was created by the U.S. Congress in honor of Senator Jacob Javits, a U.S. politician who succumbed to ALS. The award is worth $4 million, and is used to fund four years of research devoted to curing neurological diseases.


Warren Grill of biomedical engineering was honored with the Javits Award for his work in biomedical neuroscience

Grill is a professor of biomedical engineering, neurobiology, and electrical and computer engineering at Duke whose research has earned him numerous previous awards; including the Scholar/Teacher of the Year award in 2014.

In a talk recognizing his Javits award, Grill stressed the importance of developing non-pharmaceutical treatments for neurological conditions as society faces the increasing prevalence of cognitive diseases in coming decades. “Pills will not save us,” he said.

He also pointed out that pharmaceutical companies seem to avoid developing medicines for mental illness, due to their calculation that the financial cost isn’t worth the low chance of success in curing brain diseases. However, he argues, treatments such as DBS are proving them wrong.

Deep brain stimulation is the placement of a “brain pacemaker” into what is roughly the geographic center of the head, in areas such as the VIM thalamus, globus pallidus, and subthalamic nucleus. For twenty-four hours a day, every day of the year, the brain receives constant stimulation by these electrodes, causing symptoms in Parkinson’s such as tremors, rigidity, and difficulty walking to subside or even disappear. While Grill conceded that scientists do not yet understand how and why these electrodes work, he showed video evidence of patients’ improvement after receiving the treatment. For example, a patient who had a debilitating case of Parkinson’s that left him in a wheelchair was soon able to walk, make sandwiches, and even shovel snow after the implantation of the device.

Schematic of a typical deep brain stimulation device. (National Institutes of Health)

Schematic of a typical deep brain stimulation device. (National Institutes of Health)

Grill and his team have worked on improving the efficiency of the DBS device, giving it a longer lifespan and reducing the amount of surgical procedures that patients have to undergo (and the cost of  treatments). Whereas before, the devices would produce high-frequency stimulation to the brain to alleviate symptoms, Grill researched and developed a pattern of DBS with a lower frequency, using computational evolution, that would allow the device to work just as effectively while being up to 75% more efficient. His improvements on the device have allowed them to work up to seven years longer than before, reducing patient surgeries, and thus the risk of infection and misprogramming.

The next steps Grill expects to work on include the development of patient-specific patterns that work more effectively with individual patient’s brains. In addition, he hopes to allow patients to be able to adjust the frequency of their brain stimulation, thus allowing them the choice between efficacy and efficiency of the device throughout their daily lives. Studies are also being conducted into the use of DBS to treat other diseases such as Alzheimer’s, depression, Tourette’s, and epilepsy.

Watch a video of the lecture:

Devin_Nieusma_100Post by Devin Nieusma, Duke 2019