The ability of plants to sense their environment gives them the capacity to respond to it plastically. Plastic responses, in turn, frequently alter the environment that plants experience. Plants can modify the environment they experience through many mechanisms—some approximate but others quite precise. The ability of plants to modify the environment they experience can strongly influence the evolution of characters expressed subsequently. A review of some theoretical models of habitat selection and of the coevolution of characters and their environments highlights the importance of habitat selection in plants. Novel evolutionary trajectories and outcomes result when organisms are capable of modifying the environment they experience. Specifically, characters can evolve even if they have no genetic variation, and plasticity in environment-determining characters may promote specialization in others. Divergence and reproductive isolation may even be augmented by habitat-selecting behavior in plants. An understanding of basic character evolution and the evolution of plasticity in plants requires an appreciation of the ability of plants to modify the environment they experience.

**Keywords:** correlated selection, evolving environments, germination, indirect genetic effects, review, seed dispersal, shade avoidance, specialization.

**Introduction**

Niche construction occurs when organisms alter the environment they experience (Odling-Smee et al. 1996). It can occur through habitat selection, direct habitat modification, or simply resource garnering or depletion. In sessile organisms such as plants, one of the most effective ways to alter their environment is through phenotypic plasticity. Phenotypic plasticity is the ability of a genotype to alter its phenotype in response to the environment. To do so requires the ability to perceive environmental cues. With this ability comes the potential for distinguishing environmental qualities most suitable for growth and reproduction. I give some examples of how phenotypic plasticity can be considered a form of niche construction or habitat selection by plants. By responding to environmental cues, plants can control to some degree the ecological environment that they experience. This has important consequences for character evolution, since the environment can influence both the phenotypic expression of subsequent characters and the agents of natural selection to which these characters are exposed.

Some evolutionary consequences of niche construction and habitat selection have been explored thoroughly in the literature on animal behavior and in theoretical treatments. Such literature emphasizes the importance of habitat selection for specialization and divergence. More recently, the evolutionary quantitative genetics of “indirect genetic effects” on phenotypic evolution have been explored, framed again within the context of the evolution of animal behavior. Indirect genetic effects refer to the genetic component of a social environment that influences the evolution of other phenotypes. The concept is innovative in giving the environment—in this case, the social context—the ability to evolve. I argue that if phenotypic plasticity has a genetic basis and can evolve, then plasticity can result in the evolution of the ecological environment experienced by plants. Similar to indirect genetic effects, this co-evolution of phenotypes and environments can have novel evolutionary trajectories and outcomes.

First I provide some examples in which plasticity can alter the environment that plants are exposed to. Then I discuss some of the evolutionary consequences of this ability to alter the environment. I do so by discussing literature, primarily from animal behavior, that explores the consequences of niche construction in general, habitat selection in particular, and the coevolution of environments and phenotypes through indirect genetic effects.

**Plasticity as Niche Construction and Habitat Selection: Some Empirical Examples**

Niche construction, or environmental modification, in plants can occur through various mechanisms. Resource depletion, litter accumulation, allelopathy, canopy formation, and even flammability are all examples of niche construction whereby plants alter their environment. When plants actually sense the environment and respond to it in ways that influence their experience of it, habitat selection results. Habitat selection for plants may be less familiar a concept than it is for animals, since plants are less mobile. However, by altering growth form and phenology in response to environmental stimuli, plants can nevertheless alter the environment that they experience and sometimes even the life stage that is exposed.
to different environments. The lack of mobility of plants, on the one hand, increases the importance of plasticity of sessile life stages in mediating the experienced environment and, on the other hand, increases the importance of responses to environments experienced during nonsessile stages.

Bazzaz (1991) has reviewed several mechanisms whereby plants alter their resource environments through modifications of their modular structure. Plants can express morphological changes that enable a plant to grow beyond areas with scarce resources and changes that enable plants to remain in and take advantage of areas with abundant resources. Foraging behavior by clonal plants has been investigated intensively as a mechanism whereby plants sample over wide spatial areas and harvest resources in areas of their abundance (review Bazzaz 1991; de Kroon and Hutchins 1995; Huber et al. 1999). Such sampling most frequently takes the form of plastic meristem development, whereby photosynthesizing structures develop in areas of higher light availability or roots develop in areas of higher nutrient or water availability (de Kroon and Hutchings 1995). Nonclonal plants have also displayed plasticity to resource availability in ways that can increase resource uptake through selective root development or leaf placement (review de Kroon and Hutchings 1995; Sultan 2000).

Not all responses to variable resource environments result in an improvement of the quality of the environment that a plant inhabits. Some responses, such as decreased biomass and developmental rates, may merely reflect the limitation of resources or the presence of stress (Sultan 1987, 1995; Schlichting and Pigliucci 1995). In fact, plasticity in a single character may simultaneously include passive responses to resource limitation and active plastic responses that ameliorate the adverse effect of resource limitation (Sultan and Bazzaz 1993a, 1993b, 1993c; Sultan 1995). One goal is to distinguish changes in morphology, physiology, and phenology that reflect resource limitation and stress from adaptive plastic responses that alleviate such adverse environmental challenges. The distinction between “passive” responses due to resource limitation and “active” responses that alter resource acquisition (Schlichting and Pigliucci 1995) is not always appropriate; however, “passive” responses to resources may actually increase total resource acquisition, and resources themselves may stimulate “active” adaptive responses (Forde 2002). Nevertheless, this distinction is appropriate when plants respond to environmental cues and, by doing so, increase the availability of resources. In such cases, responses to cues can be considered habitat selection. Distinguishing responses to cues versus resources is frequently difficult, but the distinction is necessary to identify traits most closely associated with habitat selection. The examples below illustrate how such distinctions can be made by using a well-characterized system of plastic responses to light.

Plastic Shade Avoidance Responses: Plasticity to Cues and Resources

Photomorphogenic shade avoidance responses illustrate how plasticity to cues of environmental quality can alter the resource quality experienced by subsequent characters and thereby alter their expression. This example serves to (a) demonstrate how to distinguish between responses to cues compared with responses to resources, and thereby to identify potential habitat-selecting characters, and (b) show that habitat selection through plasticity to cues can influence the phenotypic expression of other characters, including important life-history characters.

The shade avoidance response is a classic example of phenotypic plasticity in plants (Smith 1982; Casal and Smith 1989; Ballaré et al. 1990; Smith et al. 1990; Schmitt and Wulff 1993; Schmitt et al. 1995, 1999; Schmitt 1997). It refers to morphological and phenological responses to altered light quality caused by vegetation shade. In this well-studied system, much is known about both the molecular basis of the environmental sensing involved in the response and the ecological context of those environmental cues. This example, therefore, serves to illustrate the relationship between sensing environmental cues and altering the quality of the environment experienced by responding to those cues.

Distinguishing responses to cues compared with resources. Plants can sense the presence of neighbors through sensing variations in light wavelengths. Green leaves absorb red light and transmit or reflect far-red light. Beneath or beside a vegetation canopy, therefore, not only is the availability of photosynthetically active radiation (PAR) lower, but the red to far-red ratio (R : FR) of light is also lower. A family of photoreceptors, the phytochromes, senses the R : FR, and plants can respond to this cue even before they experience direct competition for the light resource (Smith 1982, 1995; Casal and Smith 1989; Smith and Whitelam 1990). Hence, the response to R : FR is termed the “shade avoidance response.” Plants grown at high density frequently exhibit pronounced stem elongation, reduced branching, and early flowering (Weiner 1985, 1990; Schmitt et al. 1986; Geber 1990; Weiner and Thomas 1992).

In Impatiens capensis, Donohue and Schmitt (1999) compared responses to vegetation shade caused by high density and responses just to the R : FR cue that predicts density. They used selective light filters to manipulate the R : FR cue independently from density and found that stem elongation and flowering rate responded directly to the R : FR cue, with low R : FR causing longer internodes and faster flowering. Branch production did not respond to R : FR, but it nevertheless responded to high density, with plants at high density suppressing branch production. Therefore, some traits responded to the environmental cue of R : FR, while other traits responded to other aspects of the density environment, such as light availability.

Shade avoidance responses have also been studied extensively in Arabidopsis thaliana (Levy and Dean 1998; Pigliucci and Schmitt 1999; Botto and Smith 2002), which accelerates flowering in response to low R : FR characteristic of vegetation shade. By manipulating light quality independently of density using selective light filters, Dorn et al. (2000) dissected responses to density into responses to the R : FR and responses to light availability. They observed delayed reproduction at low density when the light resource alone (PAR) was reduced, and this plasticity to low PAR was maladaptive. However, plants responded to low R : FR by accelerating flowering and by flowering at a smaller size, and this plasticity to low R : FR was adaptive. This adaptive plasticity counteracted the adverse effects of slower growth rates under low PAR and
vegetation shade. The combined responses led to very little plasticity to density itself. In this example, a single character responded to both cues and resources, with the plastic response to cues being the adaptive response.

As the physiological mechanisms of plastic responses become characterized in other systems, such independent manipulations of cues and resources will be possible. These manipulations can identify characters that respond to resource cues as opposed to resources themselves. These characters may be more likely to exhibit adaptive plasticity than characters that respond to resource availability itself (Sultan 1987, 1995; Sultan and Bazzaz 1993a; Schlichting and Pigliucci 1995), since characters that respond to cues can respond before resource limitation actually occurs. Therefore, characters that respond to cues might be particularly good candidates for “habitat-selecting” traits that can influence the environment experienced at later life stages.

Shade avoidance influences environmental quality. By elongating internodes in response to low R : FR, plants can overtop their neighbors, avoid direct shading, and increase the light available to them. The effectiveness of this response is visually striking in the field, since one views small, suppressed individuals pining beneath a heavy canopy of taller, flourishing neighbors. The improved quality of the environment accompanying stem elongation has been demonstrated in several studies of natural selection on shade avoidance responses. For example, Weinig (2000a, 2000b) found evidence in Abutilon theophrasti that stem elongation was advantageous only when it resulted in increased light availability. Elongation throughout life increases light availability when the plants are grown in weedy fields, and elongation was found to be adaptive in these sites. In soy fields, however, light is limiting only later in life after the soy becomes established, and elongation only late in life was shown to be adaptive. In cornfields, where plants cannot overtop corn, elongation later in life does not increase light availability, and it was found to be maladaptive because of carbon costs of elongation. Shade avoidance responses have also been found to be more pronounced in populations that evolved under open-canopy conditions than under closed-canopy conditions where elongation is not effective at overtopping tree canopies (Morgan and Smith 1979; Dudley and Schmitt 1995; Donohue et al. 2000b), suggesting adaptive variation in shade avoidance. In these examples, the adaptive nature of plasticity depends directly on the ability of plasticity to alter the resource environment.

Flowering time also responded directly to the R : FR cue. This phenological response can alter the resource availability experienced by critical life stages, such as developing fruits. By flowering early, plants may mature fruits before canopy closure when light resources are still available. Flowering time can determine the environmental quality during seed maturation in a more general manner when environmental quality deteriorates or the probability of mortality increases predictably over time (Schemske 1984; Lacey 1986; Fox 1990; Bennington and McGraw 1995; Bierre 1995). In the Impatiens system (Donohue et al. 2000b), plants died earlier at high density, and plants that flowered earlier set more fruits before they died. In this example, the cue of low R : FR was not only a cue of high density but also a cue of conditions that led to early mortality. By flowering earlier, plants were able to mature fruits before they experienced conditions of stress and imminent senescence. In this manner, plasticity in this phenological trait determined the environmental quality experienced during fruit maturation.

These two examples of shade avoidance responses through elongation and accelerated flowering demonstrate how effective plasticity to cues can be in determining the quality of the environment that plants experience. Both morphological and phenological responses have the potential to alter the environmental quality experienced by plants.

Plasticity in shade avoidance characters influences phenotypic expression of other characters. Habitat selection can influence the expression of other characters whose phenotype depends on environmental quality. In particular, the plasticity of characters that respond to cues, such as stem elongation, can in turn alter the expression of characters that respond to resources, such as branch production. In the Impatiens system (Donohue et al. 2000a), this dynamic is evident from the relationship between elongation and meristem allocation at high density. Poorly elongated plants—those lower in the canopy of the high-density stands—allocated most meristems directly to flowers and thereby flowered earlier. Plants that elongated the most at high density, in contrast, tended to keep meristems inactive or allocated them to branches. Therefore, the elongation response at high density apparently altered the environment experienced by the plants and thereby altered their pattern of meristem allocation. Thus, plasticity as habitat selection can influence the phenotypic expression of characters associated with general life history such as size and timing of reproduction.

Double plasticity. In summary, the above are examples of plasticity to environmental cues and environmental quality. Plasticity in characters that respond to cues can determine the environmental quality experienced by the plant and can thereby influence further phenotypic expression and fitness (Fig. 1).

---

**Fig. 1** Double plasticity. Plasticity to cues can be considered habitat selection, which changes the quality of the environment experienced subsequently. Passive or active responses to environmental quality itself can also alter the environmental quality experienced subsequently. Other characters, in turn, respond plastically to the altered environment.
1). This plasticity can result in habitat selection in space, as in the example of stem elongation, or habitat selection in time, as in the examples of flowering time. A second episode of plasticity is the plasticity of subsequent characters in response to the environment created by the first. Such plasticity can be distinguished experimentally from plasticity to cues of resource availability.

Future physiological studies can identify particular ecological cues that elicit plastic responses and can determine which resources or environmental stresses the cues predict. With this knowledge, experimental manipulations that independently alter cues and resources can identify key plastic characters that respond to cues directly. We can then determine how plasticity in such characters alters the environmental quality experienced by subsequent characters through genetic studies such as those described. Studies that investigate how suites of plastic characters respond to environmental variation should take into account the fact that the relationship among plastic characters may depend not only on the shared genetic basis of these characters but also on the manner in which some characters modify the environment that determines the expression of other characters.

To explore further how variation in some characters can influence the expression of other characters, I focus now on examples in which the temporal priority of character expression is explicit. I will give two examples of how plasticity in characters of early life stages influences the environment experienced at later life stages.

Seed Dispersal: Voting with Their Seed

A seed is the most mobile stage in a plant’s life history, and for some plants it is the only mobile stage. Seed dispersal, therefore, offers plants the rare opportunity to change location if the maternal site is unsuitable. Dispersal directly to high-quality sites can occur when animals disperse seeds to friable anthills, nutrient-rich animal droppings, or light gaps, for example (review Howe and Smallwood 1982; Bazzaz 1991). Passive dispersal can enhance site quality by decreasing sibling competition. Variation in the timing of dispersal can also influence environmental conditions experienced by offspring by determining the availability of dispersing agents (Willson and Traveset 2000) and the seasonal environment experienced by seeds (Lacey and Pace 1983; Baskin and Baskin 1984). Frequently, however, the choice offered by dispersal is simply whether to stay in the maternal home site.

It is nevertheless precisely this choice that structures all models of the evolution of dispersal (review Ronce et al. 2001). The premise behind these theoretical treatments is that this choice of whether or not to disperse influences the quality of the environment experienced by progeny. Plasticity in the dispersal of one’s progeny therefore has the potential to determine both the environmental quality and the variation in the environment experienced across generations. It has been shown theoretically (McPeek and Holt 1992) that plasticity of dispersal can significantly alter its evolution, favoring habitat-specific dispersal even in temporally stable environments.

Any habitat selection through dispersal would occur through plasticity of the maternal parent, since seed dispersal is determined by the maternal parent, not by the seeds themselves (Roach and Wulff 1987; Theide and Augspurger 1996; Donohue 1999). Plasticity in seed dispersal is probably common but has seldom been documented. Plasticity in maternal phenology can cause variation in the timing of dispersal (Lacey and Pace 1983; Lacey 1986), and plasticity in maternal architecture and inflorescence structure can cause plasticity in the seed shadows themselves (review Donohue and Schmitt 1998). In particular, many characters of plant size and productivity that strongly influence postdispersal seed shadows are also highly plastic to environmental quality. Dispersal itself, therefore, is likely to exhibit plasticity in response to environmental quality.

Such plasticity raises the possibility that maternal parents alter the dispersal of their progeny when conditions at the home site are poor. A few studies have demonstrated that maternal plants growing in poorer conditions tend to disperse their seeds more effectively (Donohue 1999; Imbert and Ronce 2001), but many other species decrease the proportion of readily dispersing seeds under stressful conditions (Venables 2001 and references therein). Although efficient dispersal can influence the quality of the environment experienced by seeds, it is not at all clear that plasticity in dispersal is, in the strict sense, habit selection, even in examples in which plasticity did result in dispersal away from poor conditions. In Cakile edentula, for example (Donohue 1998), plasticity in dispersal resulted primarily from variation in the number of branches and in the overall size of plants; plants growing in favorable sites were larger and had more branches that trapped the more numerous fruits, thereby impeding dispersal. That is, the observed plasticity in dispersal appears to be the result of responses of the maternal plant directly to resources rather than to cues of resource availability.

In this sense, the plasticity is a “passive” response (Sultan 1987; Schlichting and Pigliucci 1995) rather than active habitat selection. It is possible that other plastic responses less closely related to the condition of the maternal parent may influence progeny dispersal. For example, qualities of fruit morphology, pericarp structure, and abscission properties may influence dispersal more independently of plant condition and may therefore be characters that evolve more through their consequences for dispersal rather than through their association with maternal fitness. Imbert and Ronce (2001) argued that pure developmental constraints of inflorescence morphology in Crepis sancta would result in fewer dispersing seeds under stressful conditions, on the basis of observations in other Asteraceae, yet they observed an increase in dispersing seeds under stressful conditions. Their result indicates that the plasticity in dispersal they observed was not simply due to developmental constraints associated with maternal vigor. Very few empirical studies have sought to distinguish these possibilities, but such distinctions are likely to enhance our currently meager understanding of the evolutionary potential of dispersal.

It remains, however, that resources during fruit maturation and dispersal very likely do predict resources available for progeny at that site. In this manner, responding to a resource is the same as responding to a cue, since the resource in one generation is a cue for resource availability in the next generation. The distinction between cues and resources, therefore, may be less informative for maternally determined characters,
such as seed dispersal, than for nonmaternal characters, such as shade avoidance.

Whether plasticity in dispersal is an example of habitat selection or, more probably, merely a correlated response of plasticity (adaptive or not) of maternal characters to habitat quality is to some degree irrelevant. Either way, plasticity in dispersal will very likely influence the environment experienced by progeny. It is, therefore, an example of niche construction even if not of habitat selection. Whether such plasticity results in predictably higher- or lower-quality environments for progeny or results in increased or decreased variation in environmental quality across generations depends on the nature of the plastic responses of maternal characters and how specific maternal characters determine dispersal.

The postdispersal environment is clearly crucial for determining phenotypic expression by dispersed progeny (Murren et al. 2001). Site quality, intensity of competition, and seasonal conditions all can vary with dispersal and all strongly influence morphological, phenological, physiological, and life-history expression. Habitat selection through dispersal, or simply plasticity in dispersal that results in niche construction, will influence the expression of many crucial postdispersal characters.

Germination: The Importance of Timing

When to germinate is a very important decision for a seed, since, by germinating, the seed essentially commits the seedling to grow in whatever conditions elicited germination. This initial decision can influence the plant for the rest of its life, since it determines the environment that postgermination stages must contend with. This environment can influence not only phenotypic expression of postgermination life stages but also the environment of natural selection experienced by these stages. Therefore, plastic germination responses can influence life-history evolution in a very general manner by influencing life-history expression and natural selection on life-history characters.

Germination cueing as habitat selection. Examples of germination cueing are abundant in the literature (Baskin and Baskin 1998). Temperature is a cue of seasonal conditions to which many seeds respond precisely in their germination behavior. Seeds usually require very particular temperature regimes in order to germinate; certain temperatures are often required to break dormancy, and other temperatures are required to allow germination after dormancy is broken. Such temperature requirements for germination accurately determine the season of germination. Other germination requirements also predict seasonal conditions (Gutterman 1994). Desert plants often have very thick seed coats that require scariﬁcation in order to germinate. Scarification most frequently occurs during dispersal by seasonal flood waters; the requirement for scarification thereby ensures adequate water for growth. Other desert plants require prolonged periods of water to germinate if the temperature is high. In some species, this requirement is mediated by the concentration of salt that accumulates in soils, such that low soil salinity indicates that adequate rains have arrived. Other odd germination requirements include extreme heat, which increases the probability of establishment in high nutrient, noncompetitive conditions after fire, and acid treatment, which can prevent germination before a seed has been dispersed by an animal (Baskin and Baskin 1998).

In addition to responding to cues experienced by seeds after dispersal, germination can respond to environmental cues experienced during seed maturation on the maternal plant (review Baskin and Baskin 1998; Gutterman 2000). Like dispersal, germination is controlled in part by the maternal parent, since the pericarp and seed coat are maternal tissue and can act as mechanical constraints or environmental filters for the embryo (Roach and Wulff 1987). Cues experienced in the maternal generation can interact with postdispersal cues to determine the conditions for germination. For example, in Arabidopsis thaliana, a short photoperiod during seed maturation was shown to increase the ability of postdispersal cold to break dormancy, thereby providing a mechanism whereby seeds that were matured under short days can germinate in the spring as opposed to waiting until autumn (Munir et al. 2001). Also in A. thaliana, a low R : FR environment experienced by the maternal plant during seed maturation, indicative of a vegetation canopy, induced a light requirement for germination in its seeds (McCullough and Shropshire 1970; Hayes and Klein 1974), thereby decreasing the probability that seeds will germinate into competitive conditions beneath a vegetation canopy. These numerous examples demonstrate that germination requirements, or plastic germination behavior, can act as extremely precise mechanisms of habitat selection.

Germination timing influences life-history expression. This initial act of habitat selection can have profound influences on the rest of the life of the plant. Much fundamental life-history variation depends on variation in the timing of germination. Examples abound in which variation among taxa in germination responses and life history indicate that these traits have evolved into adaptive syndromes (review Baskin and Baskin 1998). For example, serotiny—the requirement for fire in order for seeds to be released from cones and to germinate—and traits related to performance in postfire environments are associated in pines (Schwikl and Ackerly 2001). Within species, variation in germination has also been shown to influence life-history expression. In Campanula americana, seeds germinate either in the autumn or in the spring (Baskin and Baskin 1984; Kalisz and Wardle 1994). Those that germinate in the autumn exhibit an annual life history, whereas those that germinate in the spring are biennials because of a requirement for cold vernalization for reproduction. Therefore, environmental conditions that influence the season of germination also influence life-history expression (Galloway 2001a, 2001b). Similarly, germination timing in A. thaliana determines whether a plant will be a summer annual or a winter annual and may even determine whether two generations can be completed within a single year (Thompson 1994; Munir et al. 2001). Therefore, plastic germination responses can influence fundamental life-history expression.

Germination influences natural selection on postgermination characters. By determining the environment to which later life stages are exposed, plastic germination behavior can influence not only the expression of life-history characters but also natural selection on those characters. In A. thaliana, the timing of germination in the autumn was shown to influence not only the size and timing of reproduction in the spring but also the strength and mode of natural selection on these life-
history characters (Donohue 2002). In this example, the change in natural selection was not because the plants experienced different environments when they germinated at different times. Rather, the plants were exposed to similar agents of natural selection but at different life stages, and the quality of natural selection depended on the life stage that experienced a particular selective environment. One could easily imagine, however, that germination timing could determine exposure to completely different selective agents, such as winter temperatures, which would contribute to differences in natural selection on life histories. Weinig (2000a) found evidence that selection on stem elongation depended on germination timing, since germination timing influenced the competitive environment experienced by newly emerged seedlings. Germination responses are therefore likely to strongly influence natural selection on life histories and morphology by influencing which selective environments plants are exposed to and which developmental stage is exposed to selection.

These examples illustrate how plastic germination responses can be precise mechanisms of habitat selection and how they can influence the environment experienced by later life stages. Plastic germination responses to environmental cues can determine not only the phenotypic expression of later life stages but also the environment of natural selection experienced by the plant at all stages.

**Evolutionary Consequences of Plasticity as Habitat Selection**

*Character Coevolution: A Different Sort of Genotype-Environment Interaction*

The above examples illustrate how plasticity in one character can influence the environment experienced by other characters. In the examples of foraging and shade avoidance, the light environment of the plant was determined by its plastic responses. In the case of dispersal, the density or general quality of the environment varied with variation in dispersal, and in the case of germination, the seasonal environment experienced by later life stages depended on the initial germination response of the seed. Plastic responses of such characters, therefore, can influence the evolution of other characters through two sources: first, they can influence the opportunity for selection by influencing phenotypic expression, and second, they can influence what the agent of natural selection on those characters may be.

The opportunity for selection depends on the phenotypic variation in the character under selection and how far from the optimum the mean of the character distribution is. In the above example of germination in Arabidopsis thaliana, plants that had germinated later in autumn were smaller, farther from the optimum, and therefore exposed to stronger selection (Donohue 2002). Likewise, they flowered later, shifting the distribution closer to the fatal end-of-season drought period, and thereby experienced stabilizing selection rather than simply directional selection for delayed flowering at a larger size, as was observed in earlier germinating plants. Thus, variation in phenotypic expression alone can alter the strength and mode of natural selection. When the agent of selection changes as well, character evolution can be fundamentally altered.

The combined ability of habitat-selecting plasticity to influence the opportunity for selection and the agent of selection on other characters implies that many characters coevolve with plastic characters. Evans and Cabin (1995) proposed that character coevolution could be strongly influenced by the ability of germination responses to determine the ecological environment experienced by postgermination stages. On the basis of their system of Lesquerella fendleri, a desert mustard, they maintained that moisture requirements for germination are expected to coevolve with postgermination physiological properties, such as water use efficiency. By determining the degree of water stress to which seedlings are exposed, germination responses essentially mediate the intensity of selection to which postgermination stress-response characters are exposed. If the postgermination characters have responded to such mediated selection, they argue, then one expects genetic associations between germination responses and postgermination physiology.

Such an argument has great generality beyond the system of germination and physiology. Any character that alters the environment experienced by subsequent characters is subject to the same dynamic. For instance, plants that have great resistance to herbivory may have altered selection on tolerance to herbivory (Tiffen and Rausher 1999) and may evolve to be less tolerant to herbivory (Fineblum and Rausher 1995). Water-conservation strategies may evolve less when the plant is able to alter the moisture environment by foraging. Adaptations to shade environments may be less developed in plants that are able to elongate above a canopy or place ramets in high-light locations. Cold tolerance or desiccation resistance of seedlings may not evolve in plants that require warm conditions or abundant water for germination. In fact, many physiological capacities may evolve in concert with phenotypic responses that ameliorate environmental challenges. The evolution of physiological limits and phenological patterns of life histories may strongly depend on the degree of plasticity in other characters and the efficacy of plasticity to alter selective environments.

Environments that organisms experience can evolve through the evolution of plastic habitat-selecting characters. The evolutionary significance of this is that character coevolution depends not only on the genetic basis of the phenotypic expression of characters but also on how some characters alter the environment experienced by other characters. In typical formulations of phenotypic plasticity, a genotype-environment interaction refers to how a particular genotype responds to the environment. In this formulation, how the environment that an organism experiences depends on a particular genotype is equally crucial.

The ability of plants to modify the environment they experience has important consequences for the evolution of other traits. I explore these consequences by reviewing briefly the literature on habitat selection and that on the coevolution of environments and characters.

**Evolutionary Consequences of Niche Construction and Habitat Selection**

When organisms alter the environment they experience through any mechanism of niche construction, the altered environment can impose different modes of natural selection than
would otherwise be experienced. The different mode of selection can cause different phenotypes to be favored. Theoretical models have shown that niche construction can cause the fixation of alleles that would otherwise be deleterious, eliminate alleles that would otherwise be favored, and alter states of stable polymorphism (Laland et al. 1996, 1999; Odling-Smee et al. 1996). For example, when niche-constructing behavior improves the environment, the allele that performs best in the improved environment would be favored instead of the allele that would have been favored had the environment remained poor.

Habitat selection is a form of niche construction whereby organisms inhabit a particular environment more frequently than would be expected on the basis of its frequency in the landscape. It frequently includes some sort of perception of environmental conditions and a choice or response to those conditions. The most robust theoretical consequence of habitat selection is that specialization to the chosen habitat becomes more likely. As a consequence, adaptive polymorphisms become more stable (fig. 2).

The role of habitat selection in promoting specialization was recognized very early (Levins 1968). As organisms experience more variable environments, generalist strategies evolve more easily. Habitat preference reduces the exposure of organisms to one environment and thereby enables the divergence of the population into genotypes that are adapted to the habitat of choice (Levins 1968; Holt 1987; Rosenzweig 1987; Brown 1990). As adaptation to one environment is maximized, extreme morphology and physiology can be manifest (Rosenzweig 1987; Brown and Pavlovic 1992), which in turn can contribute to reproductive isolation (Maynard-Smith 1966; Rausher 1984; Rice 1987; de Meeus et al. 1993). Such divergent specialization can facilitate the maintenance of diversity, though sometimes subtly (Hoekstra et al. 1985; Jaenike and Holt 1991). Habitat selection is especially effective at maintaining diversity under soft selection (that is, when fitness is locally rather than globally regulated such that groups with different genetic composition contribute equally to the next generation; Maynard-Smith 1966; de Meeus et al. 1993) and when habitat preference is correlated to performance in the preferred habitat (Templeton and Rothman 1981; Rausher 1984; García-Dorado 1986).

Even without the conflicting requirements of adaptation to different environments, habitat selection can increase rates of evolutionary response to selection (Whitlock 1996). This effect is primarily due to the more homogeneous selective environment experienced by individuals with narrow niches; this homogeneity is more effective at fixing favorable and purging deleterious alleles. Holt (1987) also proposed that habitat selection can reduce gene flow, increase population growth rates and population size, and consequently increase adaptation through indirect mechanisms such as reduced drift and gene flow. Therefore, habitat preference can increase the mean fitness of populations and result in more specialized adaptation, even without trade-offs in performance across environments.

These consequences of habitat selection depend on the mechanism of habitat preference. Hypothesized mechanisms include preference for natal sites (Maynard-Smith 1966; Hoekstra et al. 1985), preference for a site type independent of performance in that site, and preference for a site in which performance is maximized (Jaenike and Holt 1991; de Meeus et al. 1993). The last sort of habitat preference is most effective at promoting specialization and maintaining diversity (Jaenike and Holt 1991; de Meeus et al. 1993). How common these different mechanisms are in natural plant systems is not known.

In order for habitat selection to promote divergence and maintain polymorphism, it must be variable within populations (Rausher 1984; Jaenike and Holt 1991; de Meeus et al. 1993). One mechanism that can maintain variation in habitat preference is frequency-dependent selection on habitat preference such that preference for alternative habitats is favored when the optimal habitat becomes too crowded (Templeton and Rothman 1981; Rausher 1984; Rausher and Englander 1987; Jaenike and Holt 1991). Another mechanism, more recently identified, is the temporal stochasticity in the reception of cues of environmental quality (Storch and Frynta 1999). If habitat choice is predicated on discriminating “better” from “worse” environments, the preference necessarily depends on the environments experienced previously by a population. If environments are experienced in a random temporal sequence, then different habitat preferences can evolve. A third mechanism to maintain variation in habitat preference depends on polymorphism in loci that influence adaptation to different habitats. If such variation exists, then a new variant of habitat choice can be favored in individuals that are adapted to the alternative habitat (Jaenike and Holt 1991). This mechanism, however, requires a correlation between preference for a habitat and performance in a habitat.

Many models that include habitat preference postulate such a correlation; namely, that organisms prefer the habitat in which they perform best. Such correlations between preference for a habitat and performance in a habitat can evolve when both habitat preference and habitat-specific performance are genetically variable (Taylor 1976; García-Dorado 1986; Jaenike and Holt 1991). The correlations can occur through either pleiotropy or physical linkage or when habitat choice itself is based on performance (Jaenike and Holt 1991). Correlations caused by selective linkage disequilibrium alone are more dif-

---

**Fig. 2** Evolutionary consequences of habitat selection. Habitat selection reduces the degree of environmental variation experienced subsequently, promoting specialization and divergence.
Nevertheless, the role of habitat selection in plants remains unknown. Theories and models of habitat selection in plants have focused on the relative importance of soft selection in plant populations. For example, the effect of one phenotype, $z$, on the environment experienced by another phenotype, $c$, may contribute to population divergence and even reproductive isolation necessitates explicit studies of habitat selection in plants.

Coevolving Environments and Phenotypes: Indirect Genetic Effects

The above discussion of habitat selection reviewed population genetic models of the coevolution of phenotypes and the probability of experiencing a particular environment. The following discussion reviews quantitative genetic models of the coevolution of phenotypes and environments when those phenotypes exhibit plasticity to the environment. Recent theoretical investigations of “indirect genetic effects” concern the coevolution of traits and their environments. These models were originally developed to explain the evolutionary dynamics of social interactions, including parental care. With a slightly modified orientation, they can also be applied to the coevolution of habitat-selecting traits and other traits whose expression depends on the selected habitat.

These quantitative genetic models are uniquely appropriate for investigating these dynamics because they postulate that the environment that an individual inhabits—the social environment—is in part genetically determined and therefore can evolve. It is the evolution of the environment itself that contributes the special evolutionary dynamics. The environment is termed the “social environment” because it is determined by other individuals that possess evolving genotypes. These individuals can be unrelated to a focal individual expressing a trait of interest, they can be related as kin, or they can be parents. Who determines the environment of the focal individual is flexible in these models. In the empirical examples of habitat determination in plants above, it was usually either the individual itself or its maternal parent that determined the environment.

Griffing (1981a, 1981b, 1981c, 1981d, 1989) introduced the concept of “indirect genetic effects” to model how the “social environment” of plants, or the genetic composition of competitors, influences evolutionary outcomes. Moore et al. (1997, 1998) further developed the quantitative genetic evolutionary dynamics of this phenomenon as an investigation of traits that exhibit plasticity in response to the environment created by individuals with whom an individual interacts (fig. 3). The first important component of phenotypic expression in their model is therefore (a) plasticity, in this case, to the social environment. This is measured by the interaction coefficient and is given the notation $\Psi_i$. The second important component is (b) the genetic basis of traits in the interacting conspecifics that influence the expression of interacting phenotypes, that is, the genetic basis of that social environment, or $d_i$. This genetic component is termed the “indirect genetic effect.”

In a slightly later formulation (Wolf et al. 1998; fig. 3), separate paths are explicitly indicated in their figures for the effect of one phenotype, $z_i$, on the environment experienced by another phenotype, $c_j$ (this path coefficient also being designated $\Psi_j$), and for the effect of that environment, $c_j$, on the expression of another phenotype, $z_i$. The first path corresponds to the effectiveness of habitat selection in the empirical examples above (how a character influences the environment), and the second corresponds to the plasticity of other characters.
and on selection acting on that environment-determining character. This is described by the following equation:

$$\Delta \xi_i = (G_{zi} + \Psi_{ij} \beta \xi j + (G_{zi} + \Psi_{ij} \beta) \xi j,$$

(1)

where $G_{zi}$ is the genetic variance of the focal character, $\xi j$ is the genetic covariance of the character, $\xi j$, that influences the expression of $\xi j$; $\Psi_{ij}$ is the interaction coefficient (which measures the effect of $\xi j$ on $\xi j$); $G_{zi}$ is the genetic covariance between $\xi j$ and $\xi j$; $\beta$ is the magnitude of selection acting directly on $\xi j$ and $\beta$ is the magnitude of selection acting directly on $\xi j$.

Lande (1979) originally described the coevolution of correlated characters as (eqn. 1a, 1b) of Lande [1979], with notation adapted to be comparable to that of Moore et al. [1997]

$$\Delta \xi_i = G_{zi} \beta + G_{zi} \beta,$$

(2)

The only difference between Moore et al.‘s formulation and that of Lande is the interaction coefficient, $\Psi_{ij}$, that describes the response of one phenotype to the environment created by the other. The interaction has two modes of influence. First, it modifies the response to selection acting directly on a character, $\beta$, by adding a contribution acting through the genetic covariance between the two characters $G_{zi}$. Second, it introduces an additional component to the response to selection; selection on the environment-determining character $\beta$ is mediated by the additive genetic variance for that character, $G_{zi}$, in addition to the genetic covariance, $G_{zi}$. This means that even if the two characters are not genetically correlated, i.e., $G_{zi} = 0$, selection on the environment-determining character can still contribute to evolutionary change in the character that is influenced by the environment.

The main novelties of the dynamics arise because of this interaction, namely, because the focal character changes its phenotypic value as a result of an evolutionary change in the social environment. This simple outcome leads to two important conclusions: (1) the rate of the evolution of the focal character can be slower or faster than it would be without the influence of the social environment, depending on the direction of the evolution of the social environment and the nature of the plastic response to the social environment, and (2) the focal character can evolve even when it, itself, has no genetic variance; if the social environment evolves, phenotypic expression of the focal character will change according to its plastic response to that evolving environment. This can be seen from equation (1) by setting $G_{zi}$ and $\Psi_{ij}$ to zero. The character can still evolve as long as $G_{zi}$ and $\Psi_{ij}$ are greater than zero.

Most empirical evidence supporting the outcomes of these models comes from investigations of parental care in insect or mammalian systems. Estimates of the evolutionary potential of offspring characters such as body size have been shown to be considerably larger when indirect genetic effects due to parental care were considered in addition to the additive genetic variance of body size alone. This was found for red squirrels (McAdam et al. 2002) and for dung beetles (Hunt and Simmons 2002). Elegant studies on burying beetles, who supply their offspring regurgitated carrion for provisions, have demonstrated significant indirect genetic effects on body size and
growth rates (Rauter and Moore 2002a). Studies on this system have also included experimental manipulations of parental care, and thereby the indirect component of genetic variation, to experimentally test the importance of indirect genetic effects on the evolution of size (Rauter and Moore 2002b). Similar creative quantitative genetic studies of indirect genetic effects could be expanded beyond animals with nasty habits to include the more civilized behavior of plants. Such studies would complement the well-developed literature on maternal effects in plants. These studies can proceed by investigating the genetic basis of habitat-selecting characters, such as those discussed above, and the plasticity of subsequently expressed characters that respond to the environment created by habitat selection.

Further Theoretical Work Is Needed

The above quantitative genetic models are not fully adequate to describe the evolution of plastic characters as we know them. Although plasticity is incorporated in the models in the form of a response of one phenotype to the environment created by another, this plastic response is a fixed parameter and does not evolve. The models describe character evolution, given plasticity. To fully understand how plastic characters coevolve, we need to allow for the evolution of their plasticity. Standard models of the evolution of plasticity allow for the empirical fact that the genetic and phenotypic variance-covariance relationships among characters vary with the environment (Falconer 1952; Via and Lande 1985; Schlichting 1986; de Jong 1990a, 1990b). Many standard models of the evolution of plasticity solve this difficulty by defining a plastic character as two or more characters; one character expressed in each of multiple environments (Via and Lande 1985; Van Tienderen 1991) or even in an infinite number of environments (Gomulkiewicz and Kirkpatrick 1992). Other models of the evolution of plasticity include the phenotype as a continuous function of the environment (Scheiner and Lyman 1989; de Jong 1990a, 1990b; Gavrilets and Scheiner 1993). The differences in genetic variance expressed in the different environments is incorporated in the genetic variance of the parameters that describe the plasticity function. These latter models may be more easily adapted to describe the coevolution of traits and environments, since the environment is already included as a variable in the function (albeit a nonevolving variable).

Another staple of models of the evolution of plasticity is environment-dependent selection in which the adaptive value of a character depends on the environment. Standard models of plasticity, by defining separate traits in each environment, can also define selection separately in each environment. A model in which the environment itself is a character needs to include correlational selection (Lande and Arnold 1983) between the environment-determining character and the character that responds to the environment. Such correlational selection would describe how selection on a character depends on the environment created by another character.

Finally, the frequency of the selective environments experienced by a genotype is key in models of the evolution of plasticity and determines whether plasticity or specialization will evolve. Evolutionary change in the variance of the environment through habitat selection or niche construction (Lewontin 1983) would alter the adaptive value of plasticity of phenotypes in response to the environment created by other phenotypes, or $\Psi_e$. This is the parameter that is responsible for the unique evolutionary dynamics of the coevolution of phenotypes with their environment. By altering the adaptive value of the interactions, these interactions themselves could evolve. Additional theoretical work is necessary to determine the dynamics when the interaction, $\Psi_e$, can evolve in response to the changing environment.

Habitat Selection and Character Evolution in Plants

Interpreting the Theory

The results from the models of indirect genetic effects have important implications for character and life-history evolution in plants. Plants have mechanisms that alter the environment they experience, as the empirical examples above illustrate. If these mechanisms have a genetic basis—and they do in many systems—then the environment that plants experience can evolve, just as the “social environment” in the above model evolves. Likewise, the empirical examples above illustrate several cases in which the physiological or life-history characters expressed by plants depend on the environment that they experience. In the model of indirect genetic effects, phenotypes depend on the environment created by other phenotypes. The similarity between these examples and the theoretical model implies that similar conclusions pertain. Specifically, (a) the evolutionary rates and trajectories of physiological and life-history characters can strongly depend on the evolution of habitat-selecting characters and on the plastic responses of life-history characters to the selected environment and (b) physiological and life-history characters can evolve even if they have no genetic variation, as long as the environment that influences their expression continues to evolve.

For example, branching in Impatiens, which responds to light availability, can evolve as long as the shade avoidance response evolves, even without genetic variation in branch production itself under a constant environment. This is because an evolutionary response in shade avoidance will cause an evolutionary change in the light environment experienced by developing meristems, which in turn determines branching. Similarly, evolutionary changes in plant morphology, physiology, and life history can occur through the evolution of dispersal, even without genetic variation for these characters. Dispersal can determine competitive environments, resource availability, and density-dependent selective agents. If morphology, physiology, or life history responds to these environmental factors, evolutionary changes in these characters will accompany evolutionary changes in dispersal. Perhaps the most spectacular possibility is the evolutionary potential for life-history evolution through the evolution of germination cueing. An evolutionary conversion from a summer annual to a winter annual life history or a change from an annual to a biennial life history can result from an evolutionary change in the season of germination, even without genetic variation for the expression of these alternate strategies. The possibility that fundamental life-history strategies can evolve without genetic variation for life histories is indeed a startling thought, but it is a highly probable occurrence in natural plant populations.

In the empirical examples cited above, the environment is
determined either by the maternal parent or by the individual itself. In the latter case, the statement that evolution of life histories can proceed without genetic variation might be more accurately stated as follows: a genetic basis to environmental determination can create pleiotropic genetic variation for life-history traits that otherwise would not exist. That is, as long as different environment-determining genotypes are permitted to inhabit their different environments, these genotypes will also differ in life history; genetic variation for life history would be expressed even if none were expressed if all were constrained to inhabit the same environment. Thus, environmental determination can actually create genetic variation in life-history characters that can contribute to evolutionary responses.

The theoretical treatments of habitat selection emphasize a different consequence of the coevolution of characters and their environment. With habitat selection, or reduced variation in environmental conditions experienced by organisms, organisms more easily evolve specialized adaptations to the selected environment. Adaptive evolution proceeds more quickly, and organisms more closely approach the selective optimum for the chosen environment. With habitat selection, organisms therefore have higher fitness both because they inhabit a more suitable environment and because they are more highly adapted to that environment.

A corollary to the evolution of increased adaptation to a particular environment is the possibility of corresponding decreased generalist adaptation to a heterogeneous environment. In particular, the evolution of phenotypic plasticity is less likely when organisms experience a less variable environment, as would be the case with habitat selection. Therefore, plasticity in habitat-selecting characters is likely to influence the evolution of plasticity and the degree of specialization in other characters.

**Can Plasticity Promote Specialization?**

A major theoretical limitation to the evolution of plasticity in a variable environment is the trade-off between the ability to be plastic and the ability to perform optimally in a given environment. Plastic individuals are predicted not to be able to express the optimal phenotype in any given environment because of genetic correlations between the trait expressed in the different environments (Via and Lande 1985; Van Tienderen 1991; Gomulkiewicz and Kirkpatrick 1992). Nonzero genetic correlations across environments have been observed often in plants (Platenkamp and Shaw 1992; Schmitt 1993; Thomas and Bazzaz 1993; Donohue et al. 2000a). With these constraints on plasticity, specialists are predicted to have higher fitness in their native environment than do plastic generalists, and this too has been observed (Donohue et al. 2000b). Thus, plasticity can compromise plant performance in any given habitat.

With habitat selection, the degree of environmental variation experienced by a genotype is reduced. With reduced environmental variation, specialization can more easily evolve. Therefore, with plasticity in a habitat-selecting character, subsequent characters may experience less environmental variation and can evolve a higher degree of specialization. Such increased specialization can enable a higher level of adaptation to one version of a variable environment. Ironically, plasticity may increase the overall adaptation of organisms to variable environments by enabling plants to better specialize.

The ability of plasticity to alter the environment experienced by plants needs to be recognized and quantified in order to make accurate predictions about which characters should exhibit plasticity and which should exhibit specialization in a variable environment. Plasticity in some characters may actually promote specialization in others and a corresponding ability to express a more optimal phenotype. Thus, investigations of genetic constraints on the expression of optimal phenotypes should consider the role of plasticity in ameliorating environmental variation that might constrain the evolution of specialization. One previously unrecognized evolutionary advantage of plasticity may be its role in enabling ecological specialization.

**Conclusions**

Plants clearly have sophisticated methods of determining the environment they experience. This ability has important consequences for the evolution of morphology, physiology, and life history. First, the evolution of environment-selecting characters can cause correlated selection in all other characters whose expression is influenced by the chosen environment. This alleviates the most fundamental requirement for character evolution: genetic variation for the evolving character. Morphology, physiology, or life-history traits can evolve even if they harbor no genetic variation in a given environment. As long as the environment-determining character evolves, these characters can evolve due to their plasticity to the selected environment. In the less extreme case, the evolution of the environment-determining character will alter evolutionary rates of the characters whose expression depends on the environment.

Second, habitat selection by plants can alter the degree of environmental variation experienced by later life stages. As such, it can influence the evolution of plasticity of later characters, since the adaptive value of plasticity depends on the degree of environmental variation experienced by a genotype. With decreased environmental variation because of habitat selection, greater specialization can evolve in other characters, leading to a higher overall level of adaptation in morphological, physiological, or life-history characters.

To understand fully the evolution of plastic characters and their contribution to adaptation requires recognizing the numerous ways plants modify the environment they experience. Ecological and physiological work can identify which environmental cues elicit plasticity in certain characters and how responses by specific characters to such cues alter the environment experienced subsequently. The plasticity of later characters to the environment determined by earlier ones needs to be characterized in order to determine the evolutionary potential of these characters through indirect mechanisms. The genetic basis of both the subsequent characters and the environment-determining characters needs to be determined in order to predict the evolution of any character that displays plasticity to the modified environment. Finally, both theoretical and empirical work needs to address the evolution of plasticity within the context of evolving environments.
Acknowledgments

I am grateful to David Ackerly, Lisa Dorn, Lauren Griffen, Jason Wolf, and an anonymous reviewer for many helpful comments on earlier drafts of the manuscript. This was written with support from National Science Foundation grant DEB0079489, USDA grant CREEES-2001-35311-09845, and a Bullard Fellowship from the Harvard Forest.

Literature Cited


 Hoeckstra RF, R Bijlsma, AJ Dolman 1985 Polymorphism from environmental heterogeneity: models are only robust if the heterozygote is close in fitness to the favoured homozygote in each environment. Genet Res 45:299–314.


