NPR1, all things considered
Xinnian Dong

Recent work has shown that the Arabidopsis NPR1 protein not
only plays an essential role in salicylic acid (SA)-mediated
systemic acquired resistance and rhizobacterium-triggered
induced systemic resistance, but also is involved in
crosstalk inhibition of jasmonic acid (JA)-mediated defense
responses. Molecular characterization has revealed that
activation of NPR1 and certain TGA transcription factors
occurs under the reducing conditions that follow an initial
oxidative burst after the induction of defense responses.

In addition to NPR1 and TGA, the single-stranded
DNA-binding transcription factor AtWhy1 and the

WRKY70 transcription factor were recently found to

be involved in SA-mediated defense and SA-JA

crosstalk, respectively.
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Abbreviations

AtWhy1 Arabidopsis thaliana Whirly1
BTH benzothiadiazole S-methyl ester
INA 2 6-dichloroisonicotinic acid
ISR induced systemic resistance
JA jasmonic acid

npr1 nonexpressor of PR genes1
PR PATHOGENESIS-RELATED
SA salicylic acid

SAR systemic acquired resistance
Introduction

Systemic acquired resistance (SAR) is a plant immune
response that is often induced after a local infection.
Unlike the immune response in animals, which is specific
to the inducing pathogen, SAR protects the plant against
bacterial, fungal and viral infections [1,2]. The onset
of SAR requires the accumulation of salicylic acid (SA)
and the coordinated expression of PATHOGENESIS-
RELATED (PR) genes, which encode small secreted or
vacuole-targeted proteins that have antimicrobial activ-
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ities [3-7]. In fact, exogenous application of SA, or of one
of its functional analogs (2,6-dichloroisonicotinic acid
[INA] or benzothiadiazole S-methyl ester [BTH]), can
activate PR gene expression and resistance in plants
without pathogen inoculation [1,8,9].

It has been ten vears since the Arabidopsis nonexpressor of
PR genes] (nprl) mutant was isolated in a genetic screen
for plants that failed to express PR genes after SAR
induction [10]. Additional #pri alleles (also known as
niml) were found in multiple screens for components
of the SAR signaling pathway [10-13]. These #pr/ alleles
are insensitive to all inducers of SAR, including SA, INA,
BTH and avirulent pathogens. They are compromised
not only in SAR but also in basal resistance, showing
enhanced disease symptoms when infected with virulent
pathogens. Originally, the #pr/ mutant was thought to be
deficient only in SA-mediated defense. It soon became
clear, however, that NPR/ plays a role in other defense-
signaling pathways. In the #pr/ murtant, the triggering of
induced systemic resistance (ISR) by non-pathogenic
rhizobacteria is blocked. Interestingly, this resistance
response is independent of SA bur requires regulators
of ethylene and jasmonic acid (JA) signaling, ETR1 and
JAR1, respectively [14].

NPRI was cloned in 1997 [15,16] and a significant amount
of work has gone into understanding its molecular
function. The observation that NPR/ is constitutively
expressed, and levels of its transcripts are increased only
two-fold following SA treatment, suggested that it is
regulated at the protein level [17]. Indeed, treating plants
with SA induces the nuclear localization of NPR1, which
is essential for the induction of PR genes [18]. Although
lacking a canonical DNA-binding domain, NPR1 is
known to regulate PR gene expression through interac-
tion with "T'GA transcription factors [19-22]. Analysis of
the PR/ promoter indicates that it is regulated by both
positive and negative ¢s-clements [23]. One negative
regulator of SAR is §N//, which was identified in a genetic
screen for suppressors of #prl [24]. SA-induced PR gene
expression is restored in the #pri snil double mutant. The
interactions berween NPR1, SNI1, TGAs and other
transcription factors remain to be determined. Another
gap in our understanding of the SAR signaling pathway is
the mechanism by which SA activates the NPR1 protein.
Over the past year, several significant findings have been
made that begin to answer these questions. In this review,
the focus will be on three areas: the mechanism by which
SA activates NPR1, the mechanism by which NPRI
induces PR gene expression, and the role of NPR1 in
the overall defense network,
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Activation of NPR1 by SA

"Two major approaches have been used to elucidate the
mechanism by which SA activates SAR. Genetic screens
have yielded multiple alleles of #pr/ but no mutations at
other loci [10-13]. This implies either that SA regulates
NPR1 directly or that other regulatory components in the
SA signaling pathway are either essential for plant viabi-
lity or functionally redundant. A biochemical approach
used radioactively labeled SA to look for SA-binding
proteins. This led to the identification of several SA-
binding proteins: a catalase, an ascorbate peroxidase, a
carbonic anhydrase and a lipase [25-27,28°°]. The lipase,
SABP2, has a much higher affinity for SA (Dgq = 90 nM)
than do the other SA-binding proteins (Dy = 3.7-14 pM),
and its enzymatic activity is increased by the presence of
SA. Upon silencing of SABP2, SAR is abolished [28°°],
suggesting that SABP2 is probably the long-sought-after
SA receptor required for this defense response. The
lower-affinity SA-binding proteins are antioxidants and
SA inhibits their activities, contributing to an accumula-
tion of reactive oxygen species. The link between this
oxidative burst and the activation of NPR1 was uncov-
ered recently.

In an attempt to purify NPR1-containing protein com-
plexes biochemically, Mou and co-workers [29°°] found
that, under non-denaturing and non-reducing conditions,
NPR1 protein could only be detected in SAR-induced
samples. This suggested that, in the uninduced state,
constitutively synthesized NPR1 protein was present in a
complex that was too large to enter the size-filtration
column. This large complex was shown to be an oligomer
of NPR1, formed through intermolecular disulfide bonds.
Following SAR induction with INA there is a rapid
oxidative burst. The cellular redox state then recovers
and rebounds to a reduced environment. The NPR1
monomer appeared under these reducing conditions,
and the appearance of this monomer was followed by
activation of PR gene expression. Blocking the establish-
ment of the reducing state with an inhibitor of the
pentose phosphate pathway, the major source of cellular
reducing power, decreased the formation of the NPR1
monomer and PR gene expression. On the other hand,
mutations in the cysteine residues that cause monomer
accumulation resulted in constitutive nuclear localization
of the mutant proteins and constitutive PR gene expres-
sion. These results demonstrated that the NPR1 mono-
mer is the biologically active form, and that the oligomer-
to-monomer switch controls NPR1 nuclear transport.

The involvement of cellular redox in controlling SAR was
demonstrated independently in a study of T'GA transcrip-
tion factors. Després and colleagues [30°°] found that
although TGA1 and TGA4 do not interact with NPR1
in yeast two-hybrid assays, both interact with NPR1
in planta following SA treatment. By comparison with
other T'GA factors, which interact with NPR1 constitu-

tively both in yeast and iz planta, TGA1 and TGA4
contain two unique cysteine residues (Cys-260 and
Cys-266). Using a clever differential labeling method,
Després’ group found that, in the uninduced state, these
two cysteines are oxidized, forming an intramolecular
disulfide bond. Upon SA induction, the disulfide bond
is broken, allowing the proteins to interact with NPR1 to
activate gene expression. [f TGA1 and TGA4 are involved
in SAR, which is yet to be proven experimentally, the
work of this group is in complete agreement with that of
Mou and colleagues [29°°], suggesting that SA-mediated
gene expression occurs under reducing conditions.

One question still remains to be answered is how the
initial oxidative burst triggered by SA accumulation leads
to the subsequent establishment of a reducing state.
Ozone-induced reducing redox state is diminished in
transgenic #ahG plants, which do not accumulate SA
[31]. Therefore, it is possible that during SAR, SA not
only triggers the initial oxidative burst but is also required
for the establishment of reducing conditions, perhaps by
activation of genes that encode antioxidants. SA is known
to induce two waves of gene expression. Before NPR1-
dependent PR gene expression, which occurs 12-16 h
after induction, there is a wave of gene expression that
peaks about 2-3 h after SA treatment [32]. The early
inducible genes that are expressed in this wave encode
detoxifying enzymes, such as glutathione-S$-transferase
and glucosyltransferase, that help to protect plant cells
against oxidative stress [33°]. The major source of reduc-
ing power in plants and animals is the pentose phosphate
pathway. The gene that encodes the rate-limiting en-
zyme in this pathway glucose-6-phosphate 1-dehydrogen-
ase (G6PDH; At5g40760) is induced by pathogen
infection (N Weaver, X Dong, unpublished). Further-
more, inhibition of G6PDH enzymatic activity using
6-amino nicotinamide blocked the establishment of the
reducing state, NPR1 monomer formation and PR gene
expression following SAR induction [29°°]. It will be in-
teresting to determine whether the induction of the
G6PDH gene 1s SA-dependent but NPR1-independent.
It will also be worth examining the phenotype of knock-
out mutants of this gene and other genes in the pathway.
Another question that should be answered is whether
specific redox mediators are involved in controlling
NPR1, TGA1 and TGA4 oxidation/reduction exchange.
Identification of such mediators may require both bio-
chemical and genetic approaches.

NPR1 activation of PR gene expression

The interaction of NPR1 with TGA transcription factors,
discovered in multiple yeast two-hybrid screens, suggests
that TGA factors may be responsible for NPR1-mediated
PR gene expression [19-22]. Chromatin immunoprecipi-
tation experiments, conducted by Johnson and co-work-
ers [34°], showed that TGA factors are recruited to the
PRI promoter iz vivo in an SA- and NPR1-dependent
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manner. Direct genetic evidence that supports a role for
"T'GA factors in PR gene expression has been difficult to
obtain, however, because there are ten 7GA genes in
Arabidopsis, some of which have high sequence similarity
and functional redundancy. For example, TGA2, TGAS5
and 'T'GAG6 all interact with NPR1 in the yeast two-hybrid
analysis and belong to a subgroup that have high seq-
uence similarity. To add to the problem, the 7GAZ2 and
TGA5 genes are adjacent on Chromosome V, making it
virtually impossible to generate the 7ga2 tga5 double
mutant through genetic recombination. This problem
was solved when a deletion that spans both genes was
identified by Zhang er a/. [35°]. They found that SA-
induced PR gene expression was significantly blocked
only in the #ga2 tga5 1ga6 triple knockout mutant. This
triple mutant also showed reduced tolerance of high
levels of exogenous SA, a phenotype that is also observed
in the zprI mutant. Interestingly, unlike #pr/, the triple
mutant does not show significantly enhanced susceptibil-
ity to virulent pathogens, indicating that other NPR1-
interacting T'GA factors (including the redox-sensitive
TGA1 and TGA4) may be responsible for the expression
of genes that are involved in basal resistance.

Besides TGAs, WRKY transcription factors have been
suggested to play a role in controlling PR gene expression.
The ¢s-element that is recognized by WRKY factors, the
W-box, is over-represented in the PR regulon [36], and
mutations in a W-box led to depression of the PR/
promoter [23]. It is thus hypothesized that WRKY factors
are negative regulators of PR genes. The WRKY family
consists of many more genes than the 7GA family [37];
therefore, it will be difficult to identify a specific WRKY
factor that is involved in PR gene expression. One WRKY
factor that has been shown to affect PR gene expression is
WRKY70 [38°]. Overexpression of WRKY70 leads to
constitutive PR gene expression, indicating that this
transcription factor is a positive regulator of PR genes.

Restoration of inducible SAR in the #prl snil double
mutant indicates that an NPRI1-independent but SA-
dependent transcription factor might be involved in
controlling PR gene expression [24]. A recent study by
Desveaux and colleagues [39°°] suggests that the tran-
scription factor Whirly1 is a likely candidate. A knockout
mutation in the Arabidopsis thaliana Whirlyl (AtWhyl)
gene is lethal, which explains why this transcription factor
was not identified in previous mutant screens. Fortu-
nately, two lines that carry point mutations in this gene,
arwhyl.l and arwhyl.2, are viable. Studies have shown that
these mutants are compromised in SA-induced PR gene
expression and resistance to Peronospora parasitica. 'The
unusual feature of the Whirlyl transcription factor is its
single-stranded DNA-binding activity. Its binding ele-
ments GTCAAAA/T are enriched in some of the PR gene
promoters. The SA-induced AtWhyl DNA-binding activ-
ity is NPR1-independent. It will be interesting to exam-

NPR1 in signaling resistance Dong 549

ine the phenotype of the #pri snil atwhyl triple mutant. If
AtWhyl is indeed an NPR1-independent, SA-dependent
transcription factor that regulates PR genes, the triple
mutant is expected to have a PR gene expression pattern
that resembles that of arwhyl.

The role of NPR1 in the overall defense
network

Stepping back from examining the specific role of NPR1
in regulating PR gene expression, several recent studies
have provided new insights into the position of NPR1 in
the overall defense network. NPR1 is thought to be a
signal component whose activity is found downstream of
R-gene-mediated defense. The constitutive resistance
observed in snel and ssi4, which are R-gene mutants that
were isolated as suppressors of npri, is clearly NPR1-
independent [40°,41]. However, silencing of the NPR/
gene in tomato enabled Pseudomonas syringae pv. tomato
(PssDC3000), carrying the avirulence gene aovrPro, to
develop disease symptoms in the RG-ProR background,
which normally shows Pr-mediated resistance to this
bacterium [42°]. This suggests that NPR1, together with
several other downstream proteins (such as TGAla and
TGAZ2.2) that were also tested in the study, plays a role in
Pro-mediated resistance. It is possible, however, that the
enhanced disease symptoms observed in the NPRI-
silenced plants were due to a loss of basal resistance to
PsrDC3000 carrying avrPro.

With regards to induced defense pathways, the SAR and
ISR pathways are independent but have an overlapping
requirement for NPR1 [43]. Recently, the role of NPR1
in ISR was reaffirmed using the Pseudomonas fluorescens
CHAO strain as the inducer and Peronospora parasitica
Noco as the challenging pathogen [44°]. ISR is initiated in
roots, whereas SAR is initiated in leaves, suggesting that
these two responses may not be in competition for NPR1.
SAR- and JA-mediated resistance are not independent,
however, and may compete for NPR1 in leaves. When SA
and JA are applied together to leaves, the presence of
SA inhibits JA synthesis and signaling. This inhibition is
alleviated in the #pr/ mutant, indicating that NPR/ is part
of the crosstalk control between signaling pathways
[45°°]. Interestingly, nuclear localization of NPRI is
not essential for this inhibition to occur. Mutation of
the nuclear localization sequence of NPR/ produces a
protein that is defective in PR-gene induction [18] but is
still able to inhibit the JA signaling pathway (SH Spoel,
X Dong, unpublished). In the cytoplasm, SA-activated
NPR1 may bind a positive regulator of the JA signaling
pathway and prevent it from being transported to the
nucleus. It is equally possible that NPR1 is required for
the activity of a negative regulator of JA signaling.

The biological significance of this crosstalk control was
elegantly demonstrated in studies of Pseudomonas syringae
pv. fomato DC3000 (PsrDC3000) infection. SA-mediated
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defense responses are more effective against Psz7DC3000
infection than JA-mediated responses. In wildtype
Arabidopsis, infection with PszZDC3000 leads to SA accu-
mulation and signaling. In 744G or npri-1 plants, however,
these responses are blocked and JA synthesis and signal-
ing are significantly upregulated [45°°]. This indicates that
Ps/DC3000 infection has the capability to induce the JA
signaling pathway but, in the presence of SA and NPR1,
this pathway is repressed. In tomato, PszZDC3000 uses the
type-III secretion system and the phytotoxin coronatine to
activate the JA signaling pathway and to repress PR gene
expression to promote disease [46°]. These studies sup-
port the idea that crosstalk between the SA and JA
pathways plays an important role in fine-tuning the plant
defense response to Pseudomonas infection.

Microarray analysis is another method that is used to
examine the role of NPR1 in the overall defense network.
Using hierarchical clustering of microarray data, Glazeb-
rook ez al. [47°°] found that the expression of SA-mediated
genes and of a much larger group of genes, whose expres-
sion requires JA and ethylene signaling, was affected in
the npri-1 mutant (which is likely to be a null). Inter-
estingly, in the #pr/-3 mutant, which lacks the carboxy-
terminal 194 amino acids that contain the nuclear-locali-
zation signal (NLS), only SA-mediated gene expression
was compromised. This is consistent with the observation
that nprl-3 is cytoplasmically localized and is still partially
active in crosstalk (SH Spoel, X Dong, unpublished).

In a study of SA- and JA-mediated gene expression, Li
and co-workers [38°] demonstrated that the WRKY70
transcription factor plays a role in crosstalk control. Over-
expression of WRKY70 resulted in constitutive, SA- and
NPR1-independent expression of PR genes. Conversely,
JA-induced expression of PDFI[.2 was inhibited in
WRKY70-overexpressing plants. Interestingly, the repres-
sion activity of WRKY70 was NPR1-dependent. Consis-
tent with these data, WRKY70 antisense lines showed
reduced PR gene expression but constitutively activated
expression of the JA-inducible genes A7CORI and AzVSP.
Future work should address the question of whether
WRKY70 and NPR1 work together or independently
in SA-JA crosstalk.

Conclusions

NPRI1 is a key regulatory component that is positioned at
the crossroads of multiple defense pathways. Future
challenges include the determination of how a single
protein plays multiple roles in these defense responses.
NPR1 may interact with different partners in different
tissues, with the redox-regulated oligomer-to-monomer
exchange controlling its subcellular localization in the
cytoplasm or the nucleus. It is crucial that the NPR1
protein complexes are isolated and characterized soon
as this will validate the genetic data and identify new
NPR1-interacting proteins.
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