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Genetic dissection of systemic acquired resistance

Xinnian Dong

Significant progress has been made in the past year in
understanding the mechanism of systemic acquired resistance.
Mitogen-activated protein kinase cascades have been implicated
as negative regulators of salicyclic acid accumulation and the
induction of resistance. The salicylic acid signal is transduced
through NPR1, a nuclear-localized protein that interacts with
transcription factors that are involved in regulating salicylic-
acid-mediated gene expression. Both promoter analyses and
genetic studies have shown that gene expression in systemic
acquired resistance requires not only the activation of a
transcriptional activator(s) but also inhibition of a transcriptional
repressor(s). Microarray experiments have been performed to
search for those genes whose expression is transcriptionally
regulated during systemic acquired resistance and to identify
common promoter elements that control these genes.
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Abbreviations

avr avirulence

DEX dexamethasone

HBD hormone-binding domain

HR hypersensitive response

ICS1 ISOCHORISMATE SYNTHASE1
INA 2,6-dichloroisonicotinic acid

ISR induced systemic resistance

JA jasmonic acid

bacterial salicylate hydroxylase gene

PR pathogen-related

R resistance

SA salicylic acid

SAR systemic acquired resistance

Introduction

Plants use different mechanisms to fend off pathogen
infections. A significant number of genes in each plant
genome encode leucine-rich-repeat-containing resistance
(R) proteins that allow the organism to recognize the
avirulence (avr) signals in pathogens [1,2,3°°]. This
‘gene-for-gene’ interaction triggers a series of physiological
changes at the site of infection, including programmed cell
death (known as the hypersensitive response [HR]),
production of reactive oxygen species, synthesis of
antimicrobial phytoalexins, and accumulation of salicylic
acid (SA) [4]. As a result of these events, the growth of the

pathogen is restricted. Besides this gene-for-gene
resistance, plants also employ inducible resistance mecha-
nisms, such as systemic acquired resistance (SAR), to
defend against a broad spectrum of pathogens [5]. SAR is
induced after a local HR as a result of SA accumulation in
both local and systemic tissues [6-8]. Removal of SA from
transgenic plants expressing the bacterial salicylate
hydroxylase gene (#a/4G) prevents the induction of SAR
[9]. Exogenous application of SA or its analogs, such as
2,6-dichloroisonicotinic acid (INA) and benzo (1,2,3) thia-
diazole-7-carbothioic acid S-methyl ester (B'TH), results in
the induction of SAR [10-12]. A grafting experiment
showed, however, that SA is not the systemic signal for
SAR but rather a local signal that is required in systemic
tissues [13]. Hence, the search is still on for a SAR sys-
temic signal. The Arabidopsis NPR1 (NON-EXPRESSER
OF PR GENES I; also known as NIM1 [NONINDUCIBLE
IMMUNITY I]) gene has been shown to play a key role in
SA signaling [14-17]. In #pr! mutants, the SA-induced
expression of pathogen-related (PR) genes and systemic
resistance are completely blocked.

This review focuses on the signaling pathway that leads
from a local HR to the accumulation of SA, followed by the
activation of VPRI and the expression of PR genes. The
emphasis is on genetic analyses, and unless otherwise spec-
ified, all of the mutants described are Arabidopsis mutants.

Mutants affecting SA synthesis

The mechanism by which SA accumulates after a gene-for-
gene interaction has yet to be revealed. Many mutants that
form spontancous HR-like lesions have elevated SA levels
and enhanced disease resistance [18-21]. Cell death is,
however, unlikely to be required for SA accumulation. The
andl (defense, no death 1) mutant has increased SA concen-
trations and wild-type resistance to avirulent strains of
Pseudomonas syringae but shows a reduced HR [22], which
suggests that the HR can be uncoupled from SA synthesis
and gene-for-gene resistance. In addition, the @»d7 mutant
shows enhanced resistance to virulent pathogens, probably
because of its increased levels of SA. The DND/ gene has
been cloned and shown to encode a cyclic-nucleotide-
gated ion channel [23°]. It remains to be determined how
a loss-of-function mutation in this ion channel negatively
affects the development of the HR and, at the same time,
positively influences SA synthesis.

Another recently reported mutant, mp£4, also shows ele-
vated SA concentrations in the absence of spontancous
lesions [24°°]. This recessive mutation in the MITOGEN-
ACTIVATED PROTEIN KINASE4 (MAPK4) gene results
in the constitutive accumulation of SA, SAR-related
gene expression, and resistance. Thus, the wild-type
MAPKH4 is speculated to be a negative regulator of SAR.



310 Biotic interactions

The phenotype of edrl (enhanced disease resistance 1), a
mutant that has a defective MAPKK kinase and that
shows enhanced SA- and NPR1-dependent resistance to
P syringae and Erysiphe cichoracearum, is consistent with
this hypothesis [25°°]. There are also many reports sug-
gesting that MAPK cascades positively regulate defense
responses. Expression of a constitutively active MAPK
kinase (NtMEKZ2) in tobacco results in the activation of
two MAPKSs, salicylic-acid-induced protein kinase
(SIPK) and wound-induced protein kinase (WIPK);
expression of the PAL gene, which encodes phenyl-
alanine ammonia lyase, the first enzyme in the
phenylpropanoid pathway; and cell death [26°°]. For a
more in-depth discussion on studies of MAPK cascades
in plant defense, see the excellent commentary by
Bent [27°°].

We must use caution before concluding that mutants
with elevated SA levels, especially those forming spon-
taneous necrotic lesions, are affected in genes that are
directly involved in defense responses. L.esion formation
could be an indication of a stress that indirectly results in
SA accumulation.

There are also several mutations that negatively affect SA
accumulation. The edsl (enhanced disease susceptibilityl)
mutation abolishes resistance conferred by certain R genes, a
phenotype that can be rescued by exogenous application of
INA [28]. The discovery that £DS7 encodes a protein that
shares homology to eukaryotic lipases suggests that lipid
metabolites are involved in regulating SA accumulation [29].
'This hypothesis is consistent with the phenotype of pad4
(phytoalexin deficienr4), a mutant of another lipase homolog,
which displays reduced SA accumulation after virulent
pathogen infection [30,31]. Measurements of SA levels were
used directly to identify the sidl (salicylic acid induction-defi-
cient]) and sid2 mutants [32]. After infection with the avirulent
strain P syringae pv. tomato DC3000/aviRpm1, SA levels in
sidl and sid2 were 10-20-fold lower than those in wild-type
plants. Genetic complementation tests showed that si7/ and
sid2 are allelic to the previously characterized eds5 and eds16,
respectively [33-35]. The EDS16 (SIDZ2) gene encodes ISO-
CHORISMATE SYNTHASE1 (ICS1) (MC Wildermuth,
] Dewdney, FM Ausubel, G Wu, personal communication),
indicating that SA might be synthesized not only by the pre-
viously proposed phenyl-propanoid pathway but also from
chorismate by way of isochorismate, a pathway used by cer-
tain bacteria [36]. Indeed co-expression in tobacco of the
E. coli entC gene (encoding an isochorismate synthase) and
the Pseudomonas fluorescens pmsB gene (encoding an isochoris-
mate pyruvate lyase) resulted in a 500-1000-fold increase in
SA and SA glucoside levels and in enhanced resistance to
tobacco mosaic virus and Oidium lycopersicon [37°).

SA signaling through NPR1-dependent and
NPR1-independent pathways

The SA-insensitive #pr! mutants, the SA-deficient mutant
eds5 (sidl), and the SA-degrading transgenic 7#ahG plants

have been crossed with many mutants that have enhanced
disease resistance to determine whether SA is required for
the expression of their defense genes and for resistance.
Interestingly, in many of the resulting double mutants, eds5
and 7ahG seem to have a more dramatic effect on resistance
responses than does zprl [19,20,38°]. For example, in con-
stitutive expresser of PR genes 6 (cpro) ; eds5 and ¢pr6 ; nahG
plants, ¢pr6-mediated resistance against both P syringae and
Peronospora parasitica is blocked, whereas in ¢pr6 ; npril
plants only resistance to P, syringae is diminished [38°,39].
Hence, it is proposed that in mutants such as ¢pr6, an SA-
dependent but NPR1-independent resistance response is
activated. If such a response exists, application of SA to the
nprl mutant should rescue the mutant phenotype and
restore pathogen resistance. However, SAR induced by
treatment with either SA or avirulent pathogen infection is
blocked in #pri. 'To reconcile these observations, it is sug-
gested that a second signal in addition to SA is required to
activate this NPR1-independent pathway. So, what resis-
tance response requires SA and an unknown signal but not
NPR1? Likely not SAR, because SA alone has been shown
to be sufficient to induce SAR. It is possible that mutants
such as ¢pr6 activate a response that is similar to gene-for-
gene resistance. The fact that many mutants that have
enhanced resistance form HR-like lesions is consistent with
this speculation. Besides SA, which accumulates to high
concentrations during a gene-for-gene response, many
potential signal molecules, including reactive oxygen
species, cell-wall fragments, and nitric oxide, are known to
be produced at the site of pathogen infection. All of these
molecules could potentially act as the second signal
required for NPR1-independent resistance.

Other mutants affecting SAR signaling
Mutations that can restore resistance in the #pr/ back-
ground are likely those that activate SA-dependent but
NPRI1-independent pathways. Mutants such as ¢pr6, sup-
pressor of SA insensitivity (ssil), and acd6 all have elevated
levels of SA and should not be considered as true suppres-
sors of npri [19,20,38°]. One mutant that may be a true #pr/
suppressor is s#il (suppressor of npri, inducible 1) [40]. In the
snil mutant, SA levels are no greater than in wild-type
plants, and in the s#i/ ; #pr! double mutant, systemic induc-
tion of PR gene expression and resistance are restored. The
phenotype of this recessive mutant suggests that wild-type
SNII is a negative regulator of SAR and that VPRI is
required to alleviate SNI/ repression. The SNI7 gene
encodes a novel protein sharing limited homology with the
mammalian tumor suppressor RB (the retinoblastoma gene
product). RB negatively regulates gene expression by
sequestering transcriptional activators such as E2F and by
recruiting histone deacetylase, which is involved in chro-
matin remodeling [41-43]. 'The mechanism by which SN//
negatively regulates SAR and the relationship between
NPRI and SNI1 have yet to be elucidated.

Another mutation that affects SAR signaling is @49 (detach-
ment 9) [44°°]. As in the #pr] mutants, the induction of SAR



by local avirulent pathogen infection is blocked in @79
mutants. SA concentrations in 79 are slightly elevated com-
pared to those in wild-type plants and application of SA
does not restore disease resistance. The ##9 mutant differs
from the #pri mutant, however, in that its PR gene expres-
sion is unaffected. Furthermore, the #4749 mutant has been
shown to be insensitive to exogenous auxin treatment. On
the basis of the phenotype of 479, it is tempting to specu-
late that wild-type DTHY functions downstream of SA. It is
more difficult to envision a function for D'TH9 in a parallel
SAR-inducing pathway because the presence of such a
redundant pathway would have prevented the detection of
both &9 and nprl mutant phenotypes. It will be interest-
ing to characterize the nprl ; dth9 and snil ; dih9 double
mutants to determine their hierarchical relationships.

Functional analysis of

Functional analysis of VPR/ has shed light on the induc-
tion mechanism of SAR. Using an NPR1:green
fluorescent protein (GFP) fusion and nuclear fractionation,
NPR1 was shown to be localized to the nucleus [45°°,46°°].
Nuclear localization of NPR1 was demonstrated to be
essential for SA-induced PR gene expression using a
fusion between NPR1 and the hormone-binding domain
(HBD) of the rat glucocorticoid receptor [46°*]. In the
absence of the steroid hormone dexamethasone (DEX),
the NPR1:HBD protein is retained in the cytoplasm
because of its association with the heat shock protein
hsp90. Consequently, it is inactive in inducing PR gene
expression even in the presence of INA. NPR1:HBD
becomes biologically active when both INA and DEX are
present. Interestingly, treatment with DEX alone, which is
likely to cause the nuclear localization of NPR1::HBD, is
insufficient for PR gene expression. This is consistent with
the fact that NPR1 is detectable in the nucleus before SAR
induction but PR gene expression is only observed after
INA treatment [45°°].

In the nucleus, NPR1 regulates PR gene expression
through physical interactions with transcription factors.
NPR1 itself contains no bona fide DNA-binding domains
but rather protein—protein interaction domains. Using
yeast two-hybrid screens, NPR1 was found to bind to the
TGA transcription factor family [45°°,47,48]. TGA tran-
scription factors have been implicated in SA-induced gene
expression in previous transcriptional studies [49-51]. A
TGA-binding promoter element, as-/, has been shown to
be required for SA-induced PR-1 expression, suggesting
that the T'GAs may be transcriptional activators [50].
Consistent with this hypothesis, NPR1 has been found to
enhance T'GA-factor binding to the as-/ element in a gel-
mobility shift assay using iz vitro synthesized proteins
[45°°]. When nuclear extracts were used in this binding
assay, however, a more complex pattern appeared. SA-
dependent binding of a protein to as-/ was detected when
wild-type nuclear extracts were used in the gel mobility
shift assay. Interestingly, when nuclear extracts were pre-
pared from an zpr/ mutant, as-1 protein-binding was
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detected in samples both with and without SA treatment.
This result indicates that NPR1 is probably not required
for TGA binding to the as-/ promoter element, and that
TGA binding alone is insufficient to cause the induction of
PR genes.

SAR-related gene expression

In addition to T'GA transcription factors, other transcription
factors may also play a role in SAR-related gene expression.
In the PR-1 gene, a negative promoter element has been
identified; mutants in which this element is defective show
heightened basal and induced gene expression [50]. This
negative regulatory element contains a W-box, which is a
binding site for the plant-specific WRKY transcription fac-
tors [52°]. Excitingly, multiple W-boxes (an average of 4.3)
have been found in the upstream regions of many genes
that are regulated in the same fashion as PR-7 [53°°]. This
finding strongly suggests the involvement of WRKY tran-
scription factors in SAR-related gene expression. It is still
premature to assume that these W-boxes are all negative
elements, as in PR-/, because there are approximately
75 WRKY transcription factors in Arabidopsis, some may be
activators of SAR whereas others may be repressors [52°].
Evidence is accumulating, however, that argues for the pres-
ence of a negative regulatory mechanism in the control of
SAR. The genetic identification of SNI/, a negative regula-
tor of SAR, and the observation that TGA transcription
factors can bind to the as-7 element in the #pr/ mutant but
fail to induce gene expression are indications that the
induction of SAR involves both the activation of positive
regulators and the inhibition of negative regulators.

The application of microarray technology has allowed
genome-wide searches for downstream genes that are likely
to be involved in conferring SAR [53°°,54,55°]. After sur-
veying 25-30% of all Arabidopsis genes, 31 genes were found
that have expression patterns similar to that of PR-7 [53°°].
Besides those genes that are upregulated under various
SAR-inducing conditions, genes whose expression is poten-
tiated for induction during secondary pathogen challenge
should not be ignored because they may also be involved in
conferring resistance [56]. It is still possible that some resis-
tance-determining genes are downregulated during SAR or
not regulated transcriptionally at all. Establishing a causative
relationship between the expression of a gene and SAR may
be difficult because SAR is likely a result of the concerted
expression of multiple downstream effector genes.
Additional microarray analyses of mutants with diverse
resistance profiles will allow us to identify the most likely
candidate genes for functional analysis.

SA-mediated resistance versus jasmonic-acid
or ethylene-mediated resistance

In addition to SA, jasmonic acid (JA) and ethylene are also
involved in various resistance responses [57]. Mutants that
are insensitive to JA and ethylene have been found to be
compromised in induced systemic resistance (ISR) elicited
by root-colonizing bacteria [58]. Simultaneous induction of
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ISR and SAR resulted in an additive level of resistance
to P syringae pv. tomato DC3000 [59°], indicating that
JA/ethylene-mediated ISR functions in parallel with
SA-mediated SAR. On the other hand, SA has been found
to inhibit the JA-regulated wound response [60].
Antagonistic interaction between the SA- and JA-mediated
responses is also displayed in the mp#4 mutant in which
SA-mediated SAR is constitutively activated whereas JA-
mediated defensin PDF1.2 expression is blocked [24°°].
Intriguingly, this blockage of PDF1.2 induction is not
removed in the #a4G background in which SA accumu-
lation is inhibited and mpk4-mediated SAR is diminished.
To date, we have found no consensus to describe the rela-
tionship between the SA and JA/ethylene pathways. It
appears to vary among different resistance responses.

Even though SA has long been known to play a role in con-
ferring gene-for-gene resistance, the effects of JA and
ethylene in resistance against avirulent pathogens were first
observed only recently. The SA- and ethylene-insensitive
nprl ; ein2 double mutant has been shown to be more
severely compromised in gene-for-gene resistance to
P syringae maculicolalavrRpr2 than either of the single
mutants [37°]. Both JA-insensitive coil (coronatine-insensi-
tive 1) and ein2 (ethylene insensitiveZ) mutants were found to
be susceptible to strains of Botrytis cinerea and Alternaria
brassicicola, which are avirulent on wild-type Arabidopsis
[61,62]. A number of pathogens have also been tested on an
ethylene-insensitive soybean mutant. Although this mutant
responded normally to the avirulent P syringaelavrRpi2, it
was compromised in gene-for-gene resistance against
certain avirulent races of Phyrophthora sojae [63]. JA and eth-
ylene may affect gene-for-gene resistance by regulating
programmed cell death. In Arabidopsis protoplasts, cell
death induced by the fungal toxin fumonisin B1 was found
to require both the SA- and the JA/ethylene-signaling
pathways [64°].

Besides the SA- and JA/ethylene-signaling pathways,
novel defense pathways await discovery. For example,
RPP7-mediated resistance against P parasitica has been
shown to be independent of SA and JA/ethylene signaling
[65°]. SA- and JA/ethylene-independent resistance to
P. parasitica can also be induced by treating plants with
B-aminobutryic acid, a nonprotein amino acid [66°].

Conclusions

It has become impossible to draw a linear pathway that
describes the signaling events leading to a specific resis-
tance response. More information must be collected to
outline the plant defense network, which is also influenced
by plant growth and development. The picture that has
emerged from recent research shows redundancy and over-
lap between different disease and herbivore resistance
responses. Signal molecules can be produced through dif-
ferent pathways, and resistance to the same pathogen can be
achieved through different defense mechanisms. More stan-
dardized assays must be developed and utilized to better

define each resistance response. A combination of genetic
and genomic approaches will significantly broaden our view
of plant disease resistance.
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