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Introduction to the Snowball Toolkit 

The Snowball Toolkit consists of four components:  (1) the Snowball Technology Platform 

that was built to support the study; (2) the Standard Operating Procedures for safe and 

effective sample collection for SARS-CoV-2; (3) the social contact models utilized by the 

study; and (4) the predictive model developed with biometric data.   

The Snowball Toolkit was designed to be sufficiently general to be applied across different 

settings. Although the details described are specific to 

community transmission of SARS-CoV-2, each individual 

piece can be modified for application to different 

infections. For instance, the Snowball Platform has a 

customizable survey to collect information relevant to the 

infection (or intervention) of interest. The sampling SOP 

can serve as a guide for developing protocols for 

sampling for infections with different modes of 

transmission or biosafety concerns. The social contact 

models can be tailored to the specific route(s) of 

transmission and population(s) at risk and the biometric 

monitoring algorithm can be modified based on the 

prodrome stage and incubation time of any infection.   

Each component can stand alone or be used in conjunction with any or all other Snowball 

Toolkit pieces as needed. The Snowball study provides a use case for the deployment of 

these tools, but they are designed to have utility for future applications in different 

research and public health settings and in response to a broad range of infectious 

diseases.  

For questions about these materials or interest in utilizing any of the Toolkit components, 

please feel free to contact Snowball Study Principal Investigator, Dr. Dana Pasquale, at 

dana.pasquale@duke.edu. 

mailto:dana.pasquale@duke.edu
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Snowball Technology Platform 

The Snowball technology platform served as the foundation of our study activities, 

including outreach and enrollment, study data management, and reporting. Over the first 

year of our project period, we developed two versions of the platform, which we describe 

below.  

Snowball Platform v1.0 

Snowball platform v1.0 was developed specifically for the Snowball study and launched 

during the first quarter of the project period. It was based on the Duke Clinical Research 

Model and designed to meet all 

of the requirements for safely 

conducting human subjects 

research at Duke. It was also built 

to integrate with the Duke Health 

electronic health record for seed 

case ascertainment and with the 

Research Electronic Data Capture 

(REDCap)1,2 application hosted at 

Duke for electronic consent and 

for the participant survey.   

Through the platform, we 

received a daily seed report, 

which included all eligible 

persons who had recently tested 

positive within the Duke 

University Health System (Duke 

Health). The study’s principal 

investigator (PI) reviewed all 

prospective seed cases and 

determined whether to include, 

exclude, or defer them from the 

study. Persons who were included were then sent a system-generated email inviting them 

to participate in the study and providing them with a unique 4-word coupon code that they 

1 PA Harris, R Taylor, R Thielke, J Payne, N Gonzalez, JG. Conde, Research electronic data capture (REDCap) – A 

metadata-driven methodology and workflow process for providing translational research informatics support , J 

Biomed Inform. 2009 Apr;42(2):377-81. 

2 PA Harris, R Taylor, BL Minor, V Elliott, M Fernandez, L O’Neal, L McLeod, G Delacqua, F Delacqua, J Kirby, SN 

Duda, REDCap Consortium, The REDCap consortium: Building an international community of software partners, 

J Biomed Inform. 2019 May 9 [doi: 10.1016/j.jbi.2019.103208] 

Figure 1. Screenshot from the Snowball platform v1.0 homepage 
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could use to enroll. Participants then visited the study website to learn more about the 

study and elect to enroll, at which point they were forwarded to REDCap to validate their 

coupon, review and sign the study’s electronic informed consent form, and complete the 

social network survey.  

Figure 2. Snowball Platform v1.0 Participant Enrollment Process. 

As participants moved through the enrollment process, the platform synchronized with 

REDCap to pull the latest study milestone for each participant. Once a seed participant 

completed their survey, they were added to a report in the platform so that the PI could 

review their survey results and release, via the platform, automated emails with 4-10 

coupons for the seed case to distribute to their peers to recruit them to the study. 

Prospective peer cases that receive a coupon would then go through the same enrollment 

process as the seed cases, complete the REDCap survey, and be contacted by the sampling 

team for COVID-19 testing.  

https://sites.duke.edu/snowball/
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Critically, the platform generates all of the unique 4-word codes shared for enrollment and 

uses them to track all 

links between seed and 

peer cases as the chains 

of enrollment develop. 

Study investigators use 

this data to conduct the 

social network analyses.  

Finally, the platform also 

included a number of 

reporting functions that 

generated tailored 

reports used to share 

information with the 

study’s investigators, 

sponsor, and institutional review board (IRB), as well as for analysis by the study team. 

General Release Version 

In addition to platform v1.0 deployed by the study team, a key deliverable of the Snowball 

project was to develop an open-source, General Release version of the platform that could 

be made publicly available. To achieve this objective, we used what we learned from the 

experience of developing and implementing v1.0 to inform the design of a more flexible 

version that could support respondent-driven sampling methods in response to COVID-19 

or other infectious disease outbreaks.  

While v1.0 runs on a virtual private cloud with Amazon Web Services as its cloud provider, 

the General Release version is designed to be “cloud-agnostic.” To demonstrate this 

feature, the demo version of the General Release accessible via the Duke Crucible website 

runs on a Microsoft Azure cloud subscription.  

The General Release version is also designed with the capability to integrate with an 

organization’s existing electronic health record similar to how v1.0 was deployed at Duke, 

but does not require integration for seed ascertainment. Instead, the General Release is 

designed with functions for uploading seed reports as CSV files or for directly adding 

individual new seed cases. The General Release version also enables but does not require 

integration with REDCap for consent and completion of the social network survey. Instead, 

the General Release version includes a feature to upload participant consent forms directly 

to the platform and also a fully customizable survey tool.  

Figure 3. Example email invitation to participate in Snowball with 4-word 
coupon code 
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Figure 4. Screenshot from the Snowball Platform page on the Duke Crucible website. 

With these features and design elements in place, we hope that the General Release 

version will be downloaded and deployed by a broad range of organizations including 

other research institutions, public health agencies, or health systems that are interested in 

using the tool as part of their contact tracing efforts in response to COVID-19 or other 

infectious diseases.  

We completed our development of the General Release by the end of the first year of the 

study period and made all source code and documentation publicly available via two 

GitHub repositories. Both repositories include README files with quick start instructions 

and information regarding the development and deployment (including the environment 

configuration) of the interfaces. They can be accessed via the following links:  

 The Snowball General Release user interface (UI) can be found here:

https://github.com/duke-crucible/Snowball-UI.

 The Snowball General Release application programming interface (API) can be found

here: https://github.com/duke-crucible/Snowball-API.

Links to the repositories, along with a publicly available demo instance of the platform, are 

available via the Duke Crucible website: https://crucible.duke.edu/products/snowball/.  

Back to top 

https://github.com/duke-crucible/Snowball-UI
https://github.com/duke-crucible/Snowball-API
https://crucible.duke.edu/products/snowball/
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Standard Operating Procedures 

SNOWBALL Toolkit Sampling Best Practices:  

Standard Operating Procedure (SOP) 

 Revision Date: 02-December-2022 SOP Reference # 0001 

Description: 

The process below provides the step-by-step process for sampling 

community members who may be positive for SARS-CoV-2 or another 

aerosol-spread respiratory infection 

Frequency: 
See details below to 

determine frequency  
Timing: 

See details below to 

determine timing 

Specimen 

Collection and 

Management: 

The minimal sample for study participation is 1 SST tube and an NP 

swab. If a potential subject refuses the nasopharyngeal swab but has 

already had a sample collected for routine care, the clinical research 

coordinator (CRC) may still enroll that subject ONLY if they are able to 

obtain the residual NP swab sample from the clinical lab (follow site 

procedures to obtain this sample) within 24 hours. The subject may 

NOT be enrolled without collecting an NP swab sample (clinical or study 

related) for study use.   

If the NP swab sample is obtained from the residual clinical sample, at least 

600µL must be available to be split into two aliquots of ~300µL.  

Specimen Collection: 

Blood Collection  

Supplies needed for Blood Specimen Collection 

Evacuated Tube Holders Alcohol Wipes 

Evacuated tubes:  PAXgene Blood 

RNA Vacutainer Tube 

Gauze Pads 

Serum Tubes Bandages or Tape 

4mL EDTA Tubes (for plasma, whole 

blood) 

Tourniquets (Check for Latex 

Allergies); No Latex products used 

in Pediatrics 

Needles Wet ice 

Butterflies Luer Adapters 

 Please refer to Appendix SOP-A, Procedure for Collection of Blood

Specimens by Venipuncture.

 To prevent contamination of tubes during blood draw, the serum SST

(Gold/Tiger top) should be collected first and the plasma with EDTA

(Lavender/purple top) last.
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o There may be special situations where blood collection must

be prioritized and this order may not be followed

(see *Note below).

 PAXgene Blood RNA tubes must be immediately inverted 10X and

stored according to instructions. See Appendix SOP-B: Procedure for

Storage of PAXgene Blood RNA Tubes.

 EDTA vacutainers should be placed on wet ice immediately after

collection. All cryovials for plasma collection should be kept on ice

during aliquoting and labeling until transferred to -80°C.

 SST vacutainers should be left at room temperature for 30 min prior

to centrifugation to allow clotting to occur.

 Both EDTA and SST vacutainers should be spun down no more than

4 hours after collection.

 Store samples on wet ice or in refrigerator if they are not being

processed immediately.

Nasopharyngeal (NP) Swab and Throat/Oropharyngeal (OP) Swab 

Collection 

Supplies needed for Nasopharyngeal (NP) Swab and Throat/Oropharyngeal 

(OP) Swab Collection 

Nasopharyngeal/Throat Swabs Specimen rack 

Wet ice and container Flocked Minitip Swab with 3 

mL Universal Transport Media 

Throat (polyester) Swab Tongue Depressor 

N95 respirator and gloves Goggles 

Gown Heavy duty scissors 

 Please refer to Appendix SOP-C: Procedure for Collection of

Nasopharyngeal Swab and Oropharyngeal Swab.

 If both NP and OP swabs are collected, place tip of the OP swab into

the same tube as the NP swab and cut off the applicator tip using

heavy duty scissors. NP/OP swabs will be processed into aliquots

together according to Appendix SOP-C: Procedure for Collection of

Nasopharyngeal Swab.

Rapid Antigen Tests  

Commercially available antigen-tests should be used, when available, to 

provide peers with preliminary information about the status of their COVID-

19 diagnosis. Follow the instructions of the commercially available test for 

instructions for use. Results from the test should be recorded on the visit’s 

data collection form.  
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Specimen 

Processing 

Supplies Needed for Specimen Processing: 

 Freezer boxes 9x9 – each holds 81 samples (for 2mL cryovials)

 Freezer boxes 7x7- each holds 49 samples (for 5mL cryovials and

tubes)

 1mL pipette and sterile, filtered tips or sterile pipette

 Sample acquisition forms (SAF) for biorepository (contains visit date,

subject identifier, selection of samples collected, date and time of each

collection, and aliquot identifiers)

 2mL cryovials

 5 mL cryovials

 Barcode labels with unique identifiers, in duplicate

 Wet ice

 Dry ice

To process blood samples: 

 Process the PAXgene Blood RNA tubes for storage according to

Appendix SOP-B: Procedure for Storage of PAXgene Blood RNA

Tubes. Make sure to label tubes.

 Process the serum according to Appendix SOP-D: Procedure to

Aliquot Serum from Whole Blood. Make four approximately 0.5mL

aliquots. Label the SAF and aliquots and freeze at -80°C in the 9x9

freezer box.

 Process the plasma according to Appendix SOP-E: Procedure to

Aliquot Plasma from Whole Blood. Make four approximately 0.5mL

aliquots. Label SAF and aliquots and freeze at -80°C in the 9x9

freezer box.

 Plasma and serum samples may be centrifuged together as they

have the same processing requirements (1300 RCF in a 4°C

centrifuge for 10 minutes). Label and freeze whole blood

(PAXgene and EDTA) at -80°C in the 7x7 freezer box.

To process nasopharyngeal swab/oropharyngeal (throat) swab:  

 If both a nasopharyngeal and throat swab are present, process

them together. On the SAF, there is an entry only for a

Nasopharyngeal Swab. If a Throat Swab is also taken, the

“NP/OP” box in the Nasopharyngeal Swab section must be

checked to specify that this specimen contains biological

information from both anatomical sites.

 Process the swab according to Appendix SOP-F: Procedure to

Process and Aliquot Nasopharyngeal Swab/Oropharyngeal Swab

Fluids. Make five approximately 0.5mL aliquots.  

 Label the SAF and aliquots and freeze at -80°C in the 9x9 freezer

box.

 Freeze the five aliquots in the 9x9 freezer box.
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Specimen 

Management and 

Shipping 

After the samples have been processed and/or aliquoted, transfer all 

samples to a deep freeze (80ºC) for storage until ready for shipping or 

transfer into the specimen biobank. All SAF’s (and photocopies) associated 

with the specimen collections should be kept in locked filing cabinets until 

ready for shipment/transfer for data entry to specimen biobank. The site 

study coordinator will make necessary arrangements with the specimen 

biobank coordinator to transfer samples to the specimen biobank.   

Shipping Instructions for Frozen Specimens: 

 Contact recipient prior to shipping to ensure your sample will not be

arriving on a day on which staff will not be present to receive

samples. If possible, sites should plan to ship early in the week (Mon-

Wed) in case of shipping delays. A sample manifest should be

provided for each shipment container of what is expected in the

shipment. The manifest must be submitted electronically by email to

the Biobank Coordinator and a hard copy included in each shipping

container.

 Samples will be shipped on dry ice and placed in adequate shipping

containers with all necessary labeling and packaging requirements as

defined by federal, industry, and U.S.P.S. authorities.

 All samples shipped for the purposes of this study should be

considered Infectious Substance, Category B. The following links

provide FedEx and IATA guidelines for shipping Category B samples:

http://www.fedex.com/us/services/pdf/How_To_Pack.pdf  (refer 

to page 32 of the linked PDF for UN3373 information) 

https://www.iata.org/whatwedo/cargo/dgr/Documents/packing-

instruction-650-DGR56-en.pdf  

Back to top 

http://www.fedex.com/us/services/pdf/How_To_Pack.pdf
https://www.iata.org/whatwedo/cargo/dgr/Documents/packing-instruction-650-DGR56-en.pdf
https://www.iata.org/whatwedo/cargo/dgr/Documents/packing-instruction-650-DGR56-en.pdf
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Appendix SOP-A: Procedure for Collection of Blood Specimens by 

Venipuncture  

Purpose 

The purpose of the standard operating procedure (SOP) is to provide a consistent 

procedure for the collection of blood by venipuncture following standard protocols. 

Samples should be considered biohazardous and handled appropriately.  

Background 

Failure to follow correct procedure results in errors in the collection process.   This may 

cause interference in the analysis of laboratory specimens and impact laboratory 

results.  Collection errors include incorrect patient identification, failure to mix specimens 

correctly, hemolyzed or clotted specimens, incorrect order of draw, and the use of an 

incorrect anticoagulant during specimen collection.  

Materials/Reagents 

 Needles

 Butterflies

 Luer Adapters

 Evacuated Tube Holders

 Evacuated tubes

 Alcohol Wipes

 Gauze Pads

 Bandages or Tape

 Tourniquets (Check for Latex Allergies) No Latex products used in Pediatrics

 Refrigerant or Hot Packs if indicated

Procedure 

1. Verify correct specimens for selected patient.

2. Wash hands and don clean pair of gloves.

3. Greet patient (and family), identify self and explain purpose of encounter.

4. Properly identify patient using two (2) patient identifiers (call patient name and

verify by study documents).

5. Assemble and properly position equipment.

6. Properly apply tourniquet 3-4 inches above the intended venipuncture

site.  Tourniquet should not remain on patient for more than one (1) minute.

7. If only available site is an arm with an IV, the IV must be turned off for two (2)

minutes.  Draw blood below the IV site (only nurse may do this).

8. If blood products are being administered, venipuncture should be performed in the

opposite arm.  If no site is available, then following the completion of blood product

administration, collect sample.

9. Select a vein for the venipuncture.  Palpate with your index finger to determine the

size, depth and direction of the vein.  A vein that is large and well anchored (does
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not move to side or roll easily) is usually the best choice.  Make sure that the 

equipment you have chosen is appropriate for the size of the vein selected.    

10. Clean site using appropriate cleansing agent using a circular motion from the center

to the periphery.  Do not touch the site after it has been cleaned.

11. Allow site to air dry.

12. Perform the venipuncture.  Line the needle up with the vein, with the bevel of the

needle facing upward.

13. Allow evacuated tubes to fill completely or at least to the minimum fill line of the

tube.

14. Collect specimens according to appropriate order of draw, mixing specimens gently

and thoroughly as required.  Correct order of draw will be study specific and is

designed to minimize carryover from tube additives. For RNA tubes

(PAXgene RNA):  it is essential to invert this tube 10 times immediately after

collection.  Do not shake!

15. Release tourniquet and remove needle from vein.

16. Apply pressure to venipuncture site.

17. Apply pressure to bandage.  For pediatrics, follow age specific guidelines for type of

bandage used.

18. All items are single use items and should be disposed of according to institutional

policy.

19. Apply labels to appropriate tubes (PAXgenes and whole blood EDTA) orienting

labels in the correct position in the presence of the patient.

20. Remove gloves and cleanse hands.

Note: If you are not able to obtain blood after two attempts, ask another 

Phlebotomist/nurse/tech to try.  After two people have unsuccessfully attempted to draw a 

subject’s blood, samples will not be taken.  

Back to top 
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Appendix SOP-B: Procedure for Storage of PAXgene RNA Tubes 

Purpose 

The purpose of the standard operating procedure (SOP) is to describe the procedure for 

handling and storage of whole blood sample collected in PAXgene RNA tube for the 

purpose of stabilizing total RNA from peripheral whole blood (WB).  

Background 

The PAXgene™ Blood RNA System is used to collect a human whole blood sample for 

isolation of RNA (ribonucleic acid). RNA is a molecule found in cells that translates genetic 

information from DNA to proteins produced by the cell. RNA can be used in lab tests to 

evaluate gene expression levels that may facilitate diagnosis of disease or disease 

condition.  

RNA is sensitive to multiple extreme temperature changes and is unstable in the presence 

of RNases that may be present in whole blood samples. To mitigate against RNA 

degradation during collection of whole blood, specific collection procedures must be 

maintained as described. In particular, it is critical to invert tubes immediately following 

whole blood collection to inactivate potential RNases present and to chill the sample on 

wet ice. Expected WB volume is 2.5 mL per tube.  

Materials/Reagents 

 Test tube rack

Procedure 

1. Immediately after blood has been collected in the PAXgene RNA tube, invert the

tube deliberately 10 times. Do not shake the tube.

2. Once the blood has been collected in the PAXgene RNA tube, label each tube with a

2-D barcode according to the procedure below, referred to as, “Procedure

for Labeling Samples for the Biobank with 2-Dimensional Barcodes.”

a. Do not place the bar code label over a paper label, as the paper label may

detach and fall off under extreme cold storage conditions.

b. Note that when filling out the Sample Acquisition Form, the “processing time”

should note when the PAX tubes were placed into the freezer.

3. Following collection and prior to freezing, PAXgene™ tubes must be set out for a

minimum of 2 hours at ambient temperature (18°C – 25°C). Holding at ambient for 8

hours to overnight may work best with workflow, but less than 24 hours is best

practice.

a. The PAXgene™ circular indicates tubes may be held at 18°C – 25°C for up to

72 hours before freezing, but less than 24 hours is preferred. In cases where

storage at room temperature must approach 72 hours, this is acceptable but

should not be regular practice.
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4. Controlled freezing is recommended by the product users manual to minimize

breakage.  It is best practice to the place the PAXgene™ tube upright in an open wire

rack or similar at -20°C overnight.  Do not use Styrofoam trays for freezing.

5. After ~12-24 hours at -20°C, transfer to long-term storage at -80°C. These storage

conditions are sufficient to maintain total RNA integrity for future analysis.

6. If a -20°C freezer is not available, samples may be placed directly in a -80°C.  The risk

of doing this is that the tubes may break - to reduce this risk, store the tubes upright

in a covered storage box prior to freezing.

Note: If one-step freezing is used, please check the tubes after freezing for cracks. 

Back to top 
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Appendix SOP-C: Procedure for Collection of Nasopharyngeal Swab and 

Oropharyngeal Swab  

Purpose 

To obtain a nasopharyngeal swab or oropharyngeal swab using an efficient, consistent 

method. 

Background  

A Nasopharyngeal (NP) Swab and associated Universal Transport Medium (UTM) can 

contain detectable levels of virus and/or virus particles. In addition, nasopharyngeal 

swab/UTM specimen can contain detectable levels of proteins and other biomarkers used 

in various diagnostic and molecular techniques; therefore, proper handling and storage is 

critical. Oropharyngeal (OP) swab performed at the same time and included in the UTM can 

enhance detection of bacterial and viral pathogens associated with ARI. Expected yield is 3 

mL. 

Materials/Reagents for NP Swab 

 Specimen rack

 Wet ice and container

 Flocked Minitip Swab with 3 mL Universal Transport Media. Cotton or calcium

alginate swabs are not acceptable. PCR assays may be inhibited by residues present in

these materials.

 N95 respirator and gloves

 Goggles

 Gown

Procedure for NP Swab 

Important considerations: 

 If exhaled breath condensate (EBC) is to be obtained at the same time as nasal

fluids, they should always be collected prior to the nasal fluid collection.

 Follow recommended infection control (IC) precautions including putting on N95

respirator, goggles, gown and gloves before proceeding.

1. Label one UTM tube with the subject study ID, date/time of collection, and by whom

the sample was collected.

2. If possible, have patient sit with head against a wall or the bed (as patients have a

tendency to pull away during this procedure).

3. Insert swab into one nostril straight back (not upwards) and continue along the floor

of the nasal passage for several centimeters until reaching the nasopharynx

(resistance will be met).

a. The distance from the nose to the ear gives an estimate of the distance the

swab should be inserted.
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b. Do not force swab, if obstruction is encountered before reaching the

nasopharynx, remove swab and try the other side.

4. Rotate the swab gently for 2-3 seconds to loosen the epithelial cells.

5. Remove swab and immediately inoculate universal transport media by inserting the

swab at least 1⁄2 inch below the surface of the media. Bend or clip the swab handle

to fit the transport medium tube and reattach the cap securely.

6. Immediately place the tube upright on wet ice until delivered to the laboratory.

7. As soon as possible, prepare the sample for longer-term storage according to the

SOG ‘Procedure to Aliquot and Process Nasopharyngeal Swab/Oropharyngeal

Swab Fluid”, which should be completed within 5 hours of collection while

maintaining the samples on wet ice.

Notes: Avoid repeated freeze-thaw cycles to preserve the integrity of the sample. Handling 

the specimens from collection to freezing should be done as quickly as possible, but delays 

of a few hours will probably not have an adverse effect on virus isolation rates so long as 

the specimens are kept cold in the interval; however, timing is potentially more critical for 

detection of biomarkers.  

Materials/Reagents for OP Swab 

 Specimen rack

 Wet ice and container

 Polyester swab. Cotton or calcium alginate swabs are not acceptable.  PCR assays may

be inhibited by residues present in these materials.

 Tongue Depressor

 N95 respirator and gloves

 Goggles

 Gown

Procedure for OP Swab 

1. Ask patient to tilt head back and say “aaahhh,” using tongue depressor to gently

hold first 1/3 of the tongue down.

2. Insert swab into the back of the throat, avoiding tongue, uvula, teeth, lips and

gums.

3. Swab the both tonsils and the back of the throat in all four quadrants gently. It is not

uncommon for patients to experience a gagging sensation. Use of the tongue

depressor and working efficiently during this portion will minimize this.

4. Remove swab and immediately inoculate universal transport media by inserting the

swab at least 1⁄2 inch below the surface of the media. Bend or clip the swab handle

to fit the transport medium tube and reattach the cap securely.

5. Immediately place the tube upright on wet ice until delivered to the laboratory.

6. As soon as possible, prepare the sample for longer-term storage according to the

SOP-F: Procedure to Aliquot and Process Nasopharyngeal Swab/Oropharyngeal
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Swab Fluid, which should be completed within 5 hours of collection while 

maintaining the samples on wet ice.  

Back to top 
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Appendix SOP-D: Procedure to Aliquot Serum from Whole Blood 

Purpose 

The purpose of the working guideline is to describe the appropriate procedure for 

collecting blood of sufficient quantity to obtain high quality serum for the purposes of 

proteomics analysis. 

Background 

Expected yield is dependent on the size of the collection tube (collection tubes come in a 

variety of sizes and yield will vary accordingly). 

Materials/Reagents 

 1.0 mL pipette and sterile, filtered tips or sterile pipette

 2.0 mL Cryovials

Procedure 

The blood should have had sufficient time to clot since collection before the aliquot 

procedure can proceed.  

Clotting 

1. Recommended times are based upon an intact clotting process. Patients with

abnormal clotting due to disease, or those receiving anticoagulant therapy require

more time for complete clot formation.

2. In addition, different types of tubes have different required lag times between

collection and processing.  Please follow the package insert for the tube that you

using to collect the serum. For SST (BD) tubes, minimum clotting time is 30 minutes

at room temperature.

3. Once the blood sample has clotted, place into refrigerator or onto wet ice until

processed.

Sample Processing and Centrifugation 

Note: Read precautions below before proceeding attempting centrifugation. 

1. Upon processing sample, proceed to centrifuge sample as indicated below.

2. Samples should be processed as quickly as possible, and within 5 hours of

collection. Please indicate the time of processing on the specimen acquisition

form (SAF).

3. Centrifuge the clotted samples in a refrigerated (4° C) centrifuge at 1300 RCF for 10

minutes.

4. Aliquot 0.5 mL of serum sample into each of the 2.0 mL cryovials until you exhaust

the sample. Partial aliquots are not acceptable.

5. Label 2.0 mL cryovials according to the procedure described in Appendix SOP-

B titled ‘Procedure for Labeling Samples for the Biobank with 2-Dimensional

Barcodes.’

6. Immediately transfer samples to a deep freeze (-80°C) for storage.
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Precautions 

 Do not centrifuge glass tubes at forces above 2,200 RCF in a horizontal head

(swinging bucket) centrifuge as breakage may occur. Glass tubes may break if

centrifuged above 1,300 RCF in fixed angle centrifuge heads.

 Balance tubes to minimize the chance of glass breakage. Match tubes to tubes of

the same fill level. Note: At this g force, Vacutainer tubes are less likely to break in a

swinging-bucket centrifuge than in a fixed-angle rotor.

 Ensure that tubes are properly seated in the centrifuge carrier. Incomplete seating

could result in separation of the BD Hemogard™ Closures from the tube or

extension of the tube above the carrier. Tubes extending above the carrier could

catch on centrifuge head, resulting in breakage.

 Always allow centrifuge to come to a complete stop before attempting to remove

tubes. When centrifuge head has stopped, open the lid and examine for possible

broken tubes. If breakage is indicated, use mechanical device such as forceps or

hemostat to remove tubes. Caution: Do not remove broken tubes by hand.

 See centrifuge instruction manual for disinfection instructions.

 Always use appropriate carriers or inserts.

 Use of tubes with cracks or chips or excessive centrifugation speed may cause tube

breakage, with release of sample, droplets, and an aerosol into the centrifuge

bowl.

 Release of these potentially hazardous materials can be avoided by using specially

designed sealed containers in which tubes are held during centrifugation.

 Centrifuge carriers and inserts should be of the size specific to the tubes used. Use

of carriers too large or too small for the tube may result in breakage.

 Storage of glass tubes containing blood at or below 0°C may result in tube

breakage.

 Do not remove conventional rubber stoppers by rolling with thumb. Remove

stoppers with a twist and pull motion.

 Do not use tubes or needles if foreign matter is present.

 CTAD tubes must be protected from artificial and natural light during storage.

Accumulated light exposure in excess of 12 hours can cause additive inactivation.

 BD Vacutainer® Plus Serum Tubes with clot activator are not to be used as a discard

tube for coagulation studies.

Back to top 
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Appendix SOP-E: Procedure to Aliquot Plasma from Whole Blood  

Purpose 

The purpose of the working guideline is to describe the appropriate procedure for 

collecting blood of sufficient quantity for the purposes of obtaining plasma for proteomics, 

metabolomics and other analyses. 

Background 

Plasma is prepared using EDTA tubes.  

Materials/Reagents 

 1.0 mL pipette and sterile, filtered tips

 2.0 mL Cryovials with internal threads and silicone O-ring or washer

Procedure 

Sample Processing and Centrifugation 

Note: Read precautions below before proceeding to centrifugation. 

1. Maintain the samples on wet ice at all times after collection until processing.

2. Sites should strive to process samples and freeze plasma aliquots as quickly as

possible, and within 5 hours of collection (Please indicate the time of processing on

the specimen acquisition form SAF).

3. Centrifuge the samples in a refrigerated (4°C) centrifuge at 1300 RCF (g) for

10 minutes.

a. After centrifugation, three layers - Plasma, Buffy Coat (nucleated cells) and Red

Blood Cells - should be clearly separated, top to bottom, respectively. Handle

carefully to avoid disturbing layers.

b. In some subjects, Lipids may cause the plasma to be cloudy or even form a

“butter” layer on top of the plasma.  Avoid any solids when pipetting.

c. Hemolysis of Red Blood Cells may cause the Plasma to take on a red color

(continue processing and note Hemolysis on SAF).

i. If a specimen has severe hemolysis, a repeat sample may be needed.  Notify

and consult with Clinical staff as necessary.

4. Aliquot 0.5 mL of sample into each 2.0 mL cryovial as needed.

a. Gently draw up the Plasma, taking care to avoid the buffy coat, or disturb the

red blood cells.

b. If the layers are compromised, repeat centrifugation step and continue

recovering plasma.

c. The number of aliquots will vary depending upon the specific protocol.

i. Note: if the final aliquot is less than 0.5mL, distribute the residual volume as

evenly as possible across the full aliquots.

5. Label 2.0 mL cryovials according to the protocol in Appendix SOP-B “Procedure

for Labeling Samples for the Biobank with 2-Dimensional Barcodes.”

6. Transfer samples to a deep freeze (-80°C) for storage as soon as possible. (Once

samples are in aliquots, maintain on wet ice until frozen)
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 Precautions 

 Do not centrifuge glass tubes at forces above 2,200 RCF in a horizontal head

(swinging bucket) centrifuge as breakage may occur. Glass tubes may break if

centrifuged above 1,300 RCF in fixed angle centrifuge heads.

 Balance tubes to minimize the chance of glass breakage. Match tubes to tubes of

the same fill level. Note: At this g force, Vacutainer tubes are less likely to break in a

swinging-bucket centrifuge than in a fixed-angle rotor.

 Ensure that tubes are properly seated in the centrifuge carrier. Incomplete seating

could result in separation of the BD Hemogard™ Closures from the tube or

extension of the tube above the carrier. Tubes extending above the carrier could

catch on centrifuge head, resulting in breakage.

 Always allow centrifuge to come to a complete stop before attempting to remove

tubes. When centrifuge head has stopped, open the lid and examine for possible

broken tubes. If breakage is indicated, use mechanical device such as forceps or

hemostat to remove tubes. Caution: Do not remove broken tubes by hand.

 See centrifuge instruction manual for disinfection instructions.

 Always use appropriate carriers or inserts.

 Use of tubes with cracks or chips or excessive centrifugation speed may cause tube

breakage, with release of sample, droplets, and an aerosol into the centrifuge

bowl.

 Release of these potentially hazardous materials can be avoided by using specially

designed sealed containers in which tubes are held during centrifugation.

 Centrifuge carriers and inserts should be of the size specific to the tubes used. Use

of carriers too large or too small for the tube may result in breakage.

 Storage of glass tubes containing blood at or below 0°C may result in tube

breakage.

 Do not remove conventional rubber stoppers by rolling with thumb. Remove

stoppers with a twist and pull motion.

 Do not use tubes or needles if foreign matter is present.

 BD Vacutainer® Plus Serum Tubes with clot activator are not to be used as a discard

tube for coagulation studies.

Back to top 
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Appendix SOP-F: Procedure to Process and Aliquot 

Nasopharyngeal Swab/ Oropharyngeal Swab Fluid 

Purpose 

Nasopharyngeal and oropharyngeal swabs are stored in the same tube and processed 

together when both are available. The swab contents collected herein might be used for 

the detection of the presence of viral infection using various commercially available test 

kits such as the BinaxNow® RSV and BinaxNow® Influenza test kits and/or biomarkers such 

as small proteins; therefore, proper handling and storage is critical. Samples should be 

considered biohazardous and handled appropriately.  

Background 

A Nasopharyngeal Swab and associated Universal Transport Medium (UTM) can contain 

detectable levels of virus and/or virus particles. In addition, nasal swab/UTM specimen can 

contain detectable levels of proteins and other biomarkers used in various diagnostic and 

molecular techniques; therefore, proper handling and storage is critical.  Expected yield is 

3 mL. 

Materials/Reagents 

 2.0 mL Cryovials

 1.0 mL pipette and sterile, filtered tips or sterile pipette

 Collection Swab (Flocked mini-tip swabs are required)

 Universal transport medium

Procedure 

1. Sample processing should take place within 5 hours of collection. Please record the

time of processing on the specimen acquisition form (SAF).

2. Pulse vortex the tube containing the swab submerged in transport medium to

dislodge material from the swab.

3. Aliquot 0.5 mL of nasal swab fluid into 2.0 mL cryovials (create 5 aliquots in 0.5 mL

increments).

a. Partial aliquots (< 0.5 ml) are not acceptable.

4. Label cryovials with 2-D barcodes according to the protocol in Appendix SOP-B

‘Procedure for Labeling Samples for the Biobank with 2 Dimensional

Barcodes’.

5. As soon as possible, transfer samples upright to a deep freezer at 80ºC.

6. Dispose of the nasopharyngeal swab and any excess from the sample according to

regulatory guidelines.

Note: Avoid repeated freeze-thaw cycles to preserve the integrity of the sample. No 

chemical additives are desired.  

Back to top 
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Social Contact Models 

Overview 

Social ties are not formed randomly.  The principle of forming ties with someone alike is 

“homophily” [1]. Social connections can exhibit homophily on both demographics and 

behaviors, and homophily tends to hold for both observed and unobserved traits. This is 

why the principle of clustering [2], in which social contacts of people with new STI diagnoses 

are offered testing and counseling, can be effective in some settings, as it captures people 

who are not necessarily first-degree transmission but instead are people who quite likely 

due to homophily share the same behavioral and social risks as the index case, and thus 

may have a similar likelihood of infection.   

The people with whom a person forms closer connections—close contacts such as family 

or close friends joined by strong ties—tend to share ties among the contacts as well, 

leading to a dense area of overlap among contacts; we also form a large number of weak 

ties who might be thought of as acquaintances [3,4].  It is along these social ties that 

diffusion of infections (or interventions) occurs [5]. In sociology and social network analysis, 

strong ties are traditionally those with frequent, regular, close contact—close family and 

friends, sometimes close workplace, community, or neighborhood contacts—and weak ties 

are those with less regular contact.   

Generally, human social networks tend to form as a set of denser (often homophilous) 

clusters, among people who share strong ties with each other, forming dense clusters or 

“communities,” as they are called in network analysis, with weak ties bridging the 

communities and bringing infection (or information or ideas) in and out [6]. This has 

several implications for epidemic potential.   

First, it can lead to bursty epidemics where small peaks are observed in case counts as a 

result of increasing cases moving from group to group [7]. Cases increase first within one 

network community as the infection spins up between the strong ties; the infection then 

spreads out along weak ties into a new community [8], which then has a peak. This was 

observed with the SARS-CoV-2 pandemic as early peaks formed within different ethnic and 

racial groups at different times.  

Second, it can result in a failure to notice an outbreak until it has established itself in the 

population, as with the HIV outbreak among injecting drug users in Indiana a few years 

ago.  Because the group was insular and traditionally does not access frequent care, the 

outbreak was out of control before it was noticed.   

For infectious transmission to occur, an infectious and a susceptible person must have an 

effective contact. The effective contact is a contact sufficient for transmission to occur, which 

encompasses both contact type (needle sharing, sexual, casual) and timing of contact. For 
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instance, repeated or prolonged close contact is usually needed to transmit M. tuberculosis, 

but transmission of surface-stable pathogens such as Norovirus may not require two 

people to be in the same space at the same time.  Respiratory infections pass from person 

to person with simple social contact as the effective contact to spread the infection. Thus, 

proximity + time proximate sets the risk, possibly increasing the importance of social 

clustering if more distal (weaker) social ties are at risk through direct transmission . For 

example: similar people are on the bus at the same time because they all work in the same 

place and go home to the same part of town on the same schedule: in the case of SARS-

CoV-2, even incidental contacts may pass infection. Weaker social ties may also be at risk if 

the risk and behavioral patterns of social contacts mirror those of the seed case through 

homophily. 

Assessment of community mixing patterns can provide insight into transmission or 

transmission risk in two ways. First, it provides clues as to what constitutes a network 

community in the local area and the properties of the weak tie bridges between 

communities. This understanding can be leveraged to get a sense of continued 

transmission vs peaks within each micro-population/community. Further, understanding 

the weak ties between communities provides a sense of how an infection might travel 

through a community for the purposes of intervening to slow transmission in the overall 

community and/or forecasting resources. Second, heterophilous (out-group) ties can 

increase risk in one group by virtue of being linked to a higher-prevalence group [9]. This 

phenomenon has been observed when having older partners who have had a longer time 

in which to acquire HIV leads to high risk among younger men who have sex with men in 

San Francisco [10] and young women in South Africa [11]. 

For an ongoing or longer-term epidemic, identifying the social network communities (the 

groups of people with dense sets of strong ties) is a key part of reducing onward 

transmission. First, incorrectly aggregating groups who appear to have similar traits or risk 

factors may obscure the actual overall risk to smaller network communities that have 

circulating uncontrolled infection and thus higher prevalence and incidence. For example, 

Latinos in North Carolina are frequently grouped together for HIV prevention efforts, 

although foreign-born Latinos with HIV tended to mix with other foreign-born Latinos and 

be part of heterosexual networks, whereas US-born Latinos with HIV tended to mix with 

other men who have sex with men and were less likely to be in a putative transmission 

cluster with another Latino [12]. Second, failing to identify which subgroups have the 

highest prevalence (and thus risk of new infection for group members) can mean that an 

intervention is applied in the wrong community, as with HIV pre-exposure prophylaxis 

where the people most at risk may not have access, or as with the earliest SARS-CoV-2 

testing sites, which were frequently set up near communities at lower risk due to the ability 

to work and learn from home.   
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Once each subpopulation is then identified, an examination of the percent positivity and 

secondary attack rate can provide information about infection spread within the 

community. Percent positivity within each group can be compared to overall testing rates, 

although there may be bias if there is a disincentive to test within certain communities due 

to lack of access, lack of support if diagnosed, or economic harm due to having to leave 

work or care for a family member upon receipt of a diagnosis. However, a comparison of 

percent positivity rates between strong and weak ties may provide clues as to whether 

transmission is happening among close contacts (if higher among strong ties who are 

possibly part of the same transmission chain) or higher among weaker or incidental 

contacts (possibly indicating high community prevalence). For the purposes of a protocol 

designed to interrupt transmission, following contacts with the highest percent positivity or 

most consistent positive results may lead to opportunities to interrupt transmission 

through isolation of cases or other management practices.   

A network analysis can be sociometric or egocentric. A sociometric (whole network) analysis 

is valuable for understanding the risk of transmission among the relationships along which 

an infection might diffuse. An egocentric (person-centered) analysis permits analysis of 

social mixing patterns, which may be of particular importance for a casually-transmitted 

infection that may pass not between identified contacts but instead among homophilous 

groups that happen to have something in common that puts them in the same place at the 

same time, increasing the importance of homophily as the driver of a latent network or 

increasing the importance of the weak ties between people for transmission. 

Respondent-Driven Sampling 

Respondent-driven sampling (RDS) is a link-tracing design that relies on cohort members to 

recruit their contacts to participate [13,14]. These chain referral/peer-recruitment methods 

can be especially effective in cases when the population at risk is not well  known because 

either the population or the outcome is hidden. RDS rests on the assumption that people 

know their own networks better than a researcher, clinician, or public health professional.  

Additional benefits include that it is passive with respect to the trac ing design; it allows 

community members to participate as much or as little as they choose; and especially 

among groups with a historical mistrust of public health or medicine, it leverages trust 

between people. This latter feature may enable a person recruited to the study to recruit a 

new study member more readily than a research or public health organization could. In 

some link tracing designs, the cohort can be weighted post recruitment to make inferences 

about the target population [14]. 

In link-tracing designs such as RDS, “seed” participants receive “coupons” to give to their 

contacts. The seed case can then recruit a number of contacts, from zero up to the number 

of coupons received, to participate. Anyone recruited by another study member is called a 

“peer” or “wave” participant. In a research setting , there are dual incentives for participation 
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and recruitment: one incentive is what is traditionally provided for sharing information with 

the researchers and participating in the study. The second is an additional incentive for the 

study participant to recruit other people into the study, which is often on the basis of each 

person successfully recruited. Peer participants who are successfully recruited also 

participate in the study and may receive coupons to distribute as well. This continues 

outward until the sample size is reached. No one participates more than once. 

In traditional RDS, researchers lack control of the sampling process, although in many 

cases there are restrictions on eligibility. In the Snowball Study, we exerted some control 

over the process because we increased the incentive in some situations for cohort 

members to recruit peers who were members of groups that were under-represented in 

our cohort compared with the target population (Durham County). 

Snowball sampling [15,16] is one type of link-tracing design in which a seed case is 

recruited, and that seed case collects their contacts for enrollment, who then collect their 

contacts for enrollment, moving outward the same way that you would roll up a snowball. 

This method not only mirrors how infections are transmitted from one person to another, 

but also is very similar to the process used by public health contact tracing. A separate set 

of eligibility criteria may be applied to the peer recruits, depending on the goal of the 

cohort. For instance, HIV contact tracing does not have a criterion for contacts about HIV 

status or location of residence (they can be tested locally or designated for tracing out -of-

jurisdiction), whereas the seeds are generally newly-diagnosed HIV+ index cases located in 

the jurisdiction of the contact tracer. 

As with contact tracing, participants in a link-tracing protocol can describe either strong vs 

weak ties. While contact tracers ultimately make the decision about which contacts will be 

investigated, in a link-tracing design, the participant decides whom to recruit. The definition 

of strong vs weak tie can be amended from its traditional definition based on what is being 

studied. 

Snowball Study Population and Findings 

We conducted an egocentric analysis of mixing patterns in the network among the 509 

Snowball Study respondents (384 seed cases; 125 peers). These 509 respondents described 

2,199 contacts (842 cohabitants; 1,357 other contacts).   

The Snowball Study restricted enrollment to people aged 18 years and older (though 

contacts described could be any age). Seed cases were required to be residents of Durham 

County who were newly diagnosed with SARS-CoV-2 via PCR test at a Duke University 

Health System site; who did not opt out of participating in research; and who had checked 

their SARS-CoV-2 test result in their electronic medical record. Peer participants needed to 

live close enough to Duke University that they could be sampled.   
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We focused on age, ethnicity/race, and primary language spoken at home when seeking to 

enroll cohort members. The potentially eligible seed cases available to us did not match the 

target population for gender and some ethnicity/race categories (Figure 1).   

Among Snowball Study respondents, the egocentric network analysis revealed strong in -

group mixing by ethnicity/race:  85% of contacts described by both White and Black 

respondents were the same race as the respondent.  Homogeneity by ethnicity/race was 

somewhat lower for Asian (57% in-group) and Hispanic/Latinx (48% in-group) respondents, 

however Durham County (the target population) is composed of 5% Asian and 14% 

Hispanic/Latinx residents, so there was still a strong preference for in -group ties (Figure 2). 

Figure 1.  Demographic Proportions of Target Population and Cohort.  The dark blue bar on the left shows the 
demographic proportion of the target population (Durham County) and the gray bar on the right shows the 
demographic proportion of the enrolled Snowball Study cohort (seed and peer cases).  The second blue bar 
(“Invited”) and the third teal bar (“Consented”) are the demographic proportions of the people available to the 
study who were invited to participate as seed cases and those who consented to join the study, respectively.  
Participation was restricted to 18+ years of age, so the age category proportions skew toward older ages for 
the study.  Overall, the final Snowball Study sample tracks the invited seeds (the eligible set), except on 
ethnicity/race where Snowball participants with completed surveys were too few among Black or African 
American and too many among White participants when compared to who was invited to participate.   
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Black or African American respondents reported contacts who were significantly more 

dissimilar in age, indicating high diversity by age when looking at each egocentric network 

component centered around a Black or African American respondent. Respondents aged 

20-29 years had the most similarity in ages among their egocentric components, whereas

dissimilarity increased up to respondents aged 50-59 years. This is unsurprising,

considering that people aged 50-59 years in the United States are frequently in the work

force and/or are caring for people in different generations (Figure 3).

Figure 2.  Contacts' Ethnicity/Race by Snowball Study Respondent's Ethnicity/Race.  Under the assumption of no 
assortativity by ethnicity/race, the same pattern of ethnicity/race proportions as in Durham County (the target 
population) should have been repeated across all proportions of contacts’ ethnicity/race (the y -axis) for each 
category of respondent’s ethnicity/race (the x-axis).  Instead, high “in-group” mixing is observed for all ethnic/racial 
categories of respondents.   
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Mixing patterns are valuable for determining both where infections might concentrate in a 

network—one of the communities that may have a burst—and for understanding how an 

infection might reach a vulnerable community from another.  For example, slowing 

transmission among Black or African American respondents might benefit not only that 

community as a whole, but slowing transmission among middle-aged community members 

might may also lead to protecting younger and older community members, as Black or 

African American respondents were more likely to report younger and older contacts.   

Additionally, these linkages between communities theoretically can be leveraged for 

enrollment. The Snowball Study did not enroll as many Hispanic/Latinx or Black or African 

American respondents as desired to match the target population (Figure 1). If we were to 

leverage the contacts described, enrolling people who reported two or more races might 

be a pathway to reach Hispanic/Latinx or Black or African American participants (as seen in 

Figure 2 as the relatively higher proportion of contacts of these ethnicities/races reported). 

Figure 3.  Box Plots of Euclidean Distance across Egocentric Network Components by Snowball Study 
Respondent's Traits.  Euclidean Distance, a measure of similarity for a continuous variable across an entire 
egocentric network component, is shown for age among Snowball Study respondents by selected traits.  A lower 
score indicates more similarity and a higher score is more dissimilarity; these ego-level scores are presented in box 
plots showing the age similarity scores for respondents in different demographic categories.  Note that the trai t 
selected for the respondent (ego) may not match the trait of the contact; this measure is for difference in age 
among an egocentric network component by the trait of the respondent only to assess whether some groups have 
a higher spread of ages in their egocentric networks.  This graph shows that non-binary respondents had less age 
spread across their egocentric networks than respondents who identified as female or male:  the 25 th percentile 
and median lines are close to 0, indicating that half of non-binary respondents had little variability in age across 
the ages of themselves and the contacts they described.  A higher rate of dissimilarity is observed among Black or 
African American people compared to other ethnicities and races; shown by the higher level of the levels of the 
median and 1st and 3rd quartiles. Age displays a u-shaped curve of age, with the exception of respondents younger 
than 20 years or aged 80 years or older who have more dissimilarity, both largely due to describing family or 
caregivers in other generations.   
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We used percent positivity as the metric for whether we were able to reach people who 

were positive but unaware of their diagnosis, combined with a comparison of the 

demographics of the seed cases and the peers. Seed cases implicitly had access to care and 

the means to get tested by virtue of having been tested in this academic medical center, 

and peers were given coupons for free testing. The Snowball Study percent positivity rates 

by month are presented below (Figures 4-6) and described in greater depth in the Eighth 

Quarter Progress Report.   

We compared the demographics of seed cases to those of peers to assess whether we 

were reaching community members who may not have been engaged in a healthcare 

setting. We compared the demographic proportions of our seed cases to the peer 

participants who were not in a congregate living setting (Table 1).  It seemed as if the RDS 

chains were functioning as intended, reaching further into the community: peers were less 

likely to be affiliated with Duke than seeds (approximately 1/3 vs approximately 1/2, 

respectively). Among peer participants, we increased the proportion of males, getting 

closer to the composition of the target population. Among peer participants, we increased 

the proportion of people aged 50-79 years (especially for those aged 70-79 years), 

indicating that there is a good pathway to enrolling this group via other cohort members.  

Figure 4.  Percent Positivity Among Snowball Study Peers.  In this graph, the Snowball Study percent positivity 
(green line) has a 95% confidence interval for each month of study recruitment.  The target population (Durham 
County) percent positivity is shown in purple.  A local academic medical center (Duke University) percent positivity 
is shown in dark blue.  Below the horizontal 0 l ine, locally predominant variants are shown.  Vertical red lines are 
policy and infrastructure changes which may affect testing availability and/or uptake. 
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We also created sender-receiver matrices (Tables 2 and 3) to look at recruitment patterns 

among the demographic traits of interest to assess the comfort level with recruitment 

among different groups.   

The matrices show the attribute of the referrer on the rows, with the attribute of the peer 

who was successfully recruited into the study and who completed the survey as the 

column. Study cohort members who recruited multiple people appear multiple times on 

their row, and the total matrix size is the number of peers successfully recruited into the 

study, consented, and with a complete survey. Numbers along the diagonal (bolded) reflect 

in-group mixing, where the referrer or coupon distributor successful ly recruited someone 

with the same attribute value. These patterns can be leveraged for recruitment.  

Table 1.  Comparison of Cohort Seeds and Cohort Peers.  Demographic proportions of seed cases and 
peer participants are compared to assess whether peer recruitment can result in a cohort that more 
closely matches the target population. 

Note:  Some (n=18) of the peers were recruited from a congregate living setting.  Some of the recruitment within 

that location was assisted by the directors, so these peers were excluded from some of the cohort analyses.   



Snowball Study Toolkit (Duke RDS2: Respondent-Driven Sampling for Respiratory Disease Surveillance) 

Page | 35 

In-group recruitment was common by ethnicity/race (Table 2). Asian, Black or African 

American, and White peers tended to be successfully recruited by someone of the same 

race. However, Hispanic/Latinx participants stand out: none of the coupons distributed by 

Hispanic participants went to another Hispanic participant, or none of the Hispanic peers 

were recruited by a prior Hispanic participant. This finding is of interest because we did not 

enroll as many Hispanic participants as we had hoped to. We also see that Black or African 

American participants were able to successfully recruit within race, which could have been 

a way to increase participation among a group that has been historically excluded from 

research. 

Recruitment tended to occur either within the same age band, or one age band above or 

below (Table 3). Participants aged 20-29 years who managed to successfully recruit 

another participant mostly did so within their own age group, although they also recruited 

30-39 and 50-59 year old participants. Many of the recruitments more than two age bands

apart are family members. Participants aged 30-39 years recruited people across every age

band except 80 years or older; in fact, no one that was recruited as a peer was 80 years of

age or older. All people in the survey who were older than 80 were seed cases (the peer

column for 80+ years is empty). We can see that 30-39 year olds distributed to nearly every

age band, but if we look down the column for 30-39 year olds we can see that they were

mostly recruited by their own age group and one band younger.

On the other hand, participants aged 50-59 years only successfully recruited two people 

aged 40-49 years and recruited five people in their own age band (50-59 years).  

However, 50-59 year olds were recruited by people across the spectrum, from the group 

younger than 20 years all the way through 60-69 year olds. Those aged 50-59 years were 

not as effective at recruiting other participants, but they appear amenable to recruitment 

by other members, many of whom were family members.   

Table 2.  Sender-Receiver Matrix by Ethnicity/Race. The referring participant is represented in the rows 
and the recruited participant is represented in the columns. 
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For a further analysis of percent positivity, we separated Snowball tests administered by 

whether the peer was a strong or weak tie. We calculated this in two ways. In the first graph, 

cohabitants and local family members were strong ties and all others were weak ties. In the 

second graph, strong ties were those peers identified as a contact in the coupon source’s 

survey and peers not identified were weak ties. For both graphs, the Snowball proportions 

have a 95% confidence interval and each point is labeled with the number of positive PCR 

tests over the total number of PCR tests. 

Figure 5. Snowball Study Percent Positivity by Strong and Weak Ties. Strong ties (blue) are household members 
and local family members. Weak ties (yellow) are all others. 

Table 3. Sender-Receiver Matrix by Age. The referring participant is represented in the rows and the 
recruited participant is represented in the columns. 
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We also extended this among strong ties by calculating the secondary attack rates within 

the household, then compared the household secondary attack rates by selected 

characteristics of the household or seed case to determine whether some factors were 

associated with higher or lower secondary attack rates (Table 4).  

Among 384 seeds with complete surveys, 302 (79%) had at least one cohabitant who was 

not also a contemporaneous seed case, and who also let us know the general location 

where they believed that they were infected. Of these, one-quarter (74; 25%) believed that 

they caught SARS-CoV-2 within their own home. For these 74, we calculated the number of 

likely secondary infections within the household based on the cohabitants who displayed 

symptoms or were diagnosed after the initial household member brought the infection 

into the home, out of the total number of household members minus the initially infected 

person. For the other 228 (75%) who believed they were infected outside their home, we 

calculated the number of likely secondary infections from the seed within the household 

based on the number of cohabitants who displayed symptoms or were diagnosed 3-12 

days after the seed case’s symptom onset, out of the total number of household members 

besides the Snowball seed. We present these results below, as a total secondary attack rate 

and then by the selected characteristics.   

Figure 6. Snowball Study Percent Positivity by whether Peer was Reported by Source. Strong ties (blue) were 
described in the respondent’s survey and were recruited for study participation. Weak ties (yellow) are those who 
were not described in the respondent’s survey, but were recruited for study participation anyway. 
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Table 4.  Secondary Attack Rates Within Households by Selected Characteristics. 

n Secondary Attack Rate (%) 
(95%CI)  

O verall 302 21 (19-23) 
Children in household* 

Yes 106 23 (20-25) 
No 196 19 (12-19) 

Cohabitants composition* 
Some or all familial relations 250 23 (20-24) 
No familial relations 52 12 (7-19) 

Duke affiliation 
Yes; affiliated 154 22 (20-26) 
No; not affiliated 148 21 (17-22) 

Household social distancing prior 2 weeks* 
Always, Most of the time 134 28 (25-31) 
Sometimes, Rarely, Never 168 15 (11-16) 

Household mask wearing prior 2 weeks* 
Always, Most of the Time, Didn’t leave house 250 23 (20-24) 
Sometimes, Rarely, Never 52 12 (12-21) 

Seed’s daily contacts 
Above median (>15) 144 20 (17-23) 
At or below median (0-15) 158 23 (19-25) 

Predominant circulating variant† 
Delta 63 26 (24-33) 
Omicron BA.1 138 22 (16-22) 
Omicron BA.2 / 2.12 / 2.75 84 19 (12-20) 
Omicron BA.4 / BA.5 15 12 (6-20) 

* Difference in groups significant at α ≤ 0.05
† 2 participants recruited during Alpha wave were dropped from this analysis due to small cell size

We expected to see a lower secondary attack rate in households affiliated with Duke, as 

these households are likely better resourced than other households in the area and had 

excellent access to testing, presumably leading to earlier detection and hopefully less 

onward transmission. We were also surprised that households that reported higher levels 

of mitigating social behaviors (masking, social distancing) at the time of the household’s 

infection had significantly higher secondary attack rates than households that were less 

likely to report engaging in these behaviors. We cannot explain this result from the data 

that we have. We did expect the higher secondary attack rates among households with 

children and households where family members resided together that we observed.   

Delta appeared to have a higher secondary attack rate than the other variants among this 

cohort.  This is not in line with estimated effective reproduction numbers for the variants, 

in which Omicron and its sublineages appear to be more transmissible. It is possible that 

higher vaccination rates and less severe symptoms led to fewer Omicron infections being 

detected within households, and could indicate that a lower proportion of cases were or 

are being counted in the communities.    
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Methods for Social Mixing Findings 

Cohort and Target Population 

One goal of the Snowball project was to reach people using RDS methodology who might 

not otherwise have been tested. We did this by 1) checking how well our cohort matched 

the target population; 2) examining how the seeds differed from the peers, under the 

assumption that the chains allow us to reach people who might not have been able 

themselves to access care, as well as looking at in- vs out-group patterns of recruitment; 

and 3) by examining the percentage of peers who tested positive for COVID, as they 

represent a group who may not have been tested elsewhere.   

We periodically checked the demographic proportions of our cohort against the target 

population (a table of proportions for each variable of interest). We used this to prioritize 

seed cases and incentivized peer recruitment among people who were members of groups 

who were not well represented in the study cohort and de-emphasized participation 

among members of groups who were over-represented in the cohort. This is the check of 

representativeness, and success in the first step of guiding enrollment to reach either a 

representative or an under-represented set of people for the cohort. 

We also compared the demographic proportions of the seed cases to the demographic 

proportions of the peer participants to assess whether we were reaching a different set of 

community members by creating a table of seed demographic proportions compared to 

peer demographic proportions (a table of proportions for each variable of interest). The 

sender-receiver matrices were restricted to successfully recruited participants (for the 

Snowball Study, this was defined as any participant who was recruited, provided informed 

consent to participate, and completed the survey). The demographic category of the 

recruiting participant is the row and the demographic category for the person who was 

recruited is the column. The matrix cells sum to the total number of people who were 

successfully recruited into the study by another participant. Any participant who recruited 

more than one person into the study would be represented that many times in the matrix, 

but each person successfully recruited would be represented only once. For the sender-

receiver matrices, we created a dataset with one row for each successfully recruited peer 

with the peer’s demographic traits as well as the demographic traits of the referring 

participant (even if the referring participant was repeated across multiple rows). We then 

ran a cross-tabulation of the referring participant’s demographic traits by the recruited 

participant’s demographic traits. These are the second checks of the success of the peer 

recruitment method in collecting a representative cohort.   

Finally, we calculated the percent positivity overall and split by whether the peer recruited 

was strongly or weakly tied to the recruiting participant.   
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Percent Positivity 

To calculate the percent positivity, we aggregated the number of tests conducted for the 

Snowball Study to the month in which sampling occurred and calculated the proportion of 

tests that were positive for SARS-CoV-2. We performed this calculation for all tests 

conducted, and then split by whether the person who was sampled was recruited along a 

strong or a weak network tie to compare percent positivity. We calculated a confidence 

interval for proportions for the Snowball Study samples, and compared this to the percent 

positivity (positive tests divided by total tests administered) for local testing programs – in 

our case, the county testing program (abstracted from CDC’s website  [17,18]) and the 

programs at two local academic medical centers (Duke University and the University of 

North Carolina at Chapel Hill [data not publicly available]). R code for this analysis is 

included in Appendix SCM-A: Snowball Study Social Mixing Analysis – Example Code. 

Mixing Patterns 

To check for assortativity (preference for homophily /in-group mixing) among categorical 

variables such as combined ethnicity/race or gender, we calculated the proportion of 

contacts per demographic trait category by the respondent’s demographic trait category 

for categorical variables and compared those proportions to the background/target 

population. If there is not homophilous mixing on that trait, the proportions of contacts 

should follow the proportions of the target population. Instead, Figure 2 shows high 

ethnic/racial homophily among Snowball respondents, as the proportions of same-race 

contacts are observed to be well above those expected based on the background/target 

population. 

To check for similarity between egos and their contacts among a continuous variable (age; 

Figure 3), we calculated Pearson’s Phi statistic, which provides an average Euclidean 

distance measurement among the ego and contacts in each egocentric network 

component [19]; a lower score indicates more similarity and a higher score indicates 

greater dissimilarity. Pearson’s Phi compares ages across the entire egocentric network 

component (not just from ego to contact) and accounts for number of contacts, so the 

measure does not increase simply due to having a greater number of contacts.   

Ordinal variables (e.g., socioeconomic status) can be changed to a binary variable above or 

below a stated threshold and treated as categorical or assigned a weight based on number 

of strata crossed for a continuous assessment, although some information is lost in both 

transformations. 

It is important to note that if these analyses are conducted for the social ties described by 

the respondent, the analysis is likely to be relevant to the mixing patterns among strong 

rather than weak ties. This has implications for the drivers influencing the formation of the 

network communities in which cases could rise quickly (leading to one of the bursts in the 
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epidemic). To better understand whether risk differs by some traits, both the plots of in -

group vs outgroup mixing for categorical variables and Pearson’s Phi can be calculated for 

different traits of interest (subgroup analysis). For example, in-group vs out-group mixing 

by ethnicity/race among sexual partners may differ by gender and/or sexual orientation, 

and Pearson’s Phi for age of social contacts may differ according to whether the 

respondent is affiliated with a university.   

R code for these analyses is included in Appendix SCM-A: Snowball Study Social Mixing 

Analysis – Example Code. 

Secondary Attack Rates 

For this analysis, we calculated the secondary attack rate within households, using survey 

data from seeds with at least one other household member.  The secondary attack rate 

was the number of people who were documented or likely to be positive based on test 

results and/or symptoms, over total household members minus the respondent.  For 

houses in which we enrolled multiple people, we used only the first person enrolled.   

For seeds who believed that they were infected at home, we calculated the number of 

other household members who were also diagnosed or symptomatic at the time of the 

seed case’s survey completion, over the total number of household members minus the 

initially-infected person, as the likely secondary infections within the household based on 

the cohabitants who displayed symptoms or were diagnosed after the initial household 

member brought the infection into the home.  

For seeds who believed that they were infected outside of the home, we calculated the 

proportion of cohabitants who had symptoms or were diagnosed 3-12 days after the seed 

case’s symptom onset or until time of survey completion (if less than 12 days after 

symptom onset) as an indicator of likely onward (secondary) transmission from the seed.   

We calculated the overall household secondary attack rate and then compared rates 

among:  

 Households with children vs not;

 Households comprising family members or significant others vs roommates:

 Households affiliated with Duke;

 By seed’s reported household social-distancing;

 By seed’s reported mask-wearing;

 By seed’s number of daily contacts outside the home being above or at/below this

analysis subset’s median; and

 The predominant circulating variant when the seed enrolled in the study.

We calculated 95% confidence intervals for the proportions for the comparisons. 
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R code for these analyses is included in Appendix SCM-A: Snowball Study Social Mixing 

Analysis – Example Code. 

R Program Code for Analyses 

Example R code is supplied as Appendix SCM-A: Snowball Study Social Mixing Analysis – 

Example Code for the comparison of the target population and cohort, the assessment of 

mixing patterns, the percent positivity graphs, and the secondary attack rates.  
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Appendix SCM-A: Snowball Study Social Mixing Analysis – Example Code 

and Files 

The Snowball Toolkit has been made publicly available on the website: 

https://sites.duke.edu/dnac/resources/snowballtoolkit/.   

The site, which briefly introduces the Snowball Toolkit, includes the R code and example 

input files for the Snowball Study social mixing analyses. 

Three zip files are linked on the site for these analyses.  The first includes example input 

files (.xlsx and .csv) and R code for the main analyses used to understand social mixing 

patterns and assess the Snowball Study outcomes, which included its effectiveness in 

enrolling a representative cohort.   

 The social_mixing_analysis.R file includes the code to compare the study cohort to

the target population; compare mixing patterns among cohort members to what

would be expected if people mixed in the community without any assortativity along

both categorical (i.e., ethnicity/race) or continuous (i.e., age) attributes of the people;

the graphs to compare percent positivity of the study or sampling program being

tested to other local testing programs; and the calculation of secondary attack rates

within a household or defined setting, both overall and by selected traits.

 contacts.xlsx is the input attributes file that is the basis of the social mixing analyses.

It has the attributes of everyone represented in the network:  the enrolled

participants and the contacts described by that person.  For each enrolled

participant (SnoID) who took the survey (the respondent), this long-format dataset

has one row for the respondent and a row for each contact described by that

respondent. Each row has columns to track the referring (CASE), household (HH),

and familial (FAM) connections; relationship type between the respondent and

cohabitant (Recommend, cohab, cont, fam); enrollment status of each person (Seed,

Peer); demographic attributes of the contact being described (gender, age,

ethnicity/race, employment status, education level, marital status); and the

respondent’s assessment of the contact’s SARS-CoV-2 status and reason for that

assessment. This is test data.

 demographics.csv is the demographic proportions of the background / target

population.  The file has columns for gender/sex, age band, and combined ethnicity

and race.  This is real data for Durham County, NC, as estimated for July 2019.

 household_data.csv contains the pertinent variables for the secondary attack rate

calculations.  This wide-format dataset has one row for each enrolled participant

(sno_id) who had at least one other cohabitant (up to 7 cohabitants).  The dataset

https://sites.duke.edu/dnac/resources/snowballtoolkit/
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includes a diagnosis date for the referring participant (target_date); indicators used 

for the stratified secondary attack rate calculations 

(household_members:predom.var); and a set of columns for each cohabitant (series 

of indicator columns for demographics and SARS-CoV-2 status, including a date 

used for the days between infections [hierarchical symptom onset to diagnosis]); 

household indicators used for the stratified analyses (household_response, 

mask_practice); and the days between the respondent’s and cohabitant’s SARS-CoV-

2 dates (cohab_covid_daysdiff_1: cohab_covid_daysdiff_7).  This is test data. 

 PercentPositive.xlsx has the information used for the percent positivity

comparisons.  The file has the ID number of the person referred to the study for

testing, the dates of sampling, and the results.  This is test data.

 strongWeak.xlsx contains the indicators for whether the contact described was

referred by a strong or weak contact.  This file has the ID number of the contact

described (Record ID) and 3 different examples of ways to stratify strong vs weak

contacts (as the a priori measure commonly used in the social sciences; by coworker

status; and whether the contact was described as a contact in the referring

participant’s survey).  This is test data.

The last two zip files contain the data made available by CDC disclosing number of SARS-

CoV-2 tests and positive results by FIPS code by date.  These were the basis of our 

comparison of the Snowball Study’s percent positivity against the target population, which 

was Durham County (FIPS code 37063).    

All study data provided in the input files are test data and do not represent actual study 

data collected.  

Back to top 
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Predictive Model 

Predictive Model from Biometric Data that Maximizes Sensitivity to 

Recommend/Prescribe Diagnostic Testing  

Because diagnostic testing occurs at a single point in time and must be optimally timed to 

detect infection, the Snowball study integrated with the CovIdentify study (Duke IRB #2020-

0412), which uses biometric monitoring from common consumer wearable devices to 

detect digital biomarkers that can be used to detect infection early in the course of illness. 

Participants who enrolled in Snowball were also invited to join the CovIdentify study. Study 

participants were given the option of sharing their data from a wearable device they 

already owned, or were offered a smartwatch for biometric data collection of measures 

such as heart rate, physical movement, sleep data, and blood oxygen saturation. Forty 

Snowball participants co-enrolled in CovIdentify via this referral pathway and were 

integrated into the larger CovIdentify cohort that was used to develop the predictive model 

from the biometric cohort.  

The Intelligent Testing Allocation (ITA) method used to develop the predictive model and 

the results and performance of the model were made available as a preprint manuscript in 

April of 2022; the final, peer-reviewed version was published in the journal NPJ Digital 

Medicine in September of 2022. The citation is below and the final published paper itself is 

attached to this Toolkit as Appendix PM-A. 

Shandhi MMH, Cho PJ, Roghanizad AR, Singh K, Wang W, Enache OM, Stern A, Sbahi R, 

Tatar B, Fiscus S, Khoo QX, Kuo Y, Lu X, Hsieh J, Kalodzitsa A, Bahmani A, Alavi A, Ray 

U, Snyder MP, Ginsburg GS, Pasquale DK, Woods CW, Shaw RJ, Dunn JP. A method for 

intelligent allocation of diagnostic testing by leveraging data from commercial 

wearable devices: a case study on COVID-19. NPJ Digit Med. 2022 Sep 1;5(1):130. doi: 

10.1038/s41746-022-00672-z. PMID: 36050372; PMCID: PMC9434073 

Lastly, from the outset of the CovIdentify project, the study team has been committed to 

making any algorithms developed for the study publicly available. To that end, the de-

identified CovIdentify dataset generated and/or analyzed during the current study will be 

submitted 1 year from the publication date of the manuscript to the Digital Health Data 

Repository (DHDR) repository:  

https://github.com/DigitalBiomarkerDiscoveryPipeline/Digital_Health_Data_Repository 

under the title BigIdeasLab_CovIdentify. The ITA model development code used for this 

manuscript is available at the digital biomarker discovery pipeline (DBDP) GitHub 

repository (https://github.com/DigitalBiomarkerDiscoveryPipeline/CovIdentify). 
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Appendix PM-A: Shandi et al., 2022 

A method for intelligent allocation of diagnostic testing by leveraging data from commercial 

wearable devices: a case study on COVID-19. 

npj Digital Medicine (2022) 5:130 ; https://doi.org/10.1038/s41746-022-00672-z  
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ARTICLE OPEN

A method for intelligent allocation of diagnostic testing by
leveraging data from commercial wearable devices: a case
study on COVID-19
Md Mobashir Hasan Shandhi 1,11, Peter J. Cho 1,11, Ali R. Roghanizad1,11, Karnika Singh 1, Will Wang1, Oana M. Enache 2,
Amanda Stern1, Rami Sbahi 1, Bilge Tatar1, Sean Fiscus1, Qi Xuan Khoo1, Yvonne Kuo1, Xiao Lu1, Joseph Hsieh1, Alena Kalodzitsa1,
Amir Bahmani 3, Arash Alavi 3, Utsab Ray3, Michael P. Snyder 3, Geoffrey S. Ginsburg 4, Dana K. Pasquale 5,6,
Christopher W. Woods7,8, Ryan J. Shaw9,10 and Jessilyn P. Dunn 1,2✉

Mass surveillance testing can help control outbreaks of infectious diseases such as COVID-19. However, diagnostic test shortages
are prevalent globally and continue to occur in the US with the onset of new COVID-19 variants and emerging diseases like
monkeypox, demonstrating an unprecedented need for improving our current methods for mass surveillance testing. By targeting
surveillance testing toward individuals who are most likely to be infected and, thus, increasing the testing positivity rate (i.e.,
percent positive in the surveillance group), fewer tests are needed to capture the same number of positive cases. Here, we
developed an Intelligent Testing Allocation (ITA) method by leveraging data from the CovIdentify study (6765 participants) and the
MyPHD study (8580 participants), including smartwatch data from 1265 individuals of whom 126 tested positive for COVID-19. Our
rigorous model and parameter search uncovered the optimal time periods and aggregate metrics for monitoring continuous digital
biomarkers to increase the positivity rate of COVID-19 diagnostic testing. We found that resting heart rate (RHR) features
distinguished between COVID-19-positive and -negative cases earlier in the course of the infection than steps features, as early as
10 and 5 days prior to the diagnostic test, respectively. We also found that including steps features increased the area under the
receiver operating characteristic curve (AUC-ROC) by 7–11% when compared with RHR features alone, while including RHR features
improved the AUC of the ITA model’s precision-recall curve (AUC-PR) by 38–50% when compared with steps features alone. The
best AUC-ROC (0.73 ± 0.14 and 0.77 on the cross-validated training set and independent test set, respectively) and AUC-PR
(0.55 ± 0.21 and 0.24) were achieved by using data from a single device type (Fitbit) with high-resolution (minute-level) data. Finally,
we show that ITA generates up to a 6.5-fold increase in the positivity rate in the cross-validated training set and up to a 4.5-fold
increase in the positivity rate in the independent test set, including both symptomatic and asymptomatic (up to 27%) individuals.
Our findings suggest that, if deployed on a large scale and without needing self-reported symptoms, the ITA method could improve
the allocation of diagnostic testing resources and reduce the burden of test shortages.
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INTRODUCTION
The COVID-19 pandemic has severely impacted our world, with
more than 562 million COVID-19 cases and 6.37 million deaths
estimated worldwide1. In the US alone, there have been more
than 90 million cases and 1 million deaths at the time of writing2.
Mass surveillance testing has been identified as the most effective
tool to monitor the spread of infectious diseases including COVID-
193. However, a combination of cost, availability, and impracti-
cality of frequent and widespread testing impedes the mass
epidemiologic surveillance needed to curb new disease outbreaks.
To date, COVID-19 diagnostic test shortages are still prevalent
globally, and shortages continue to occur in the US with the onset
of new variants (e.g, Delta, Omicron)4–6. For example, when the
Delta variant emerged in July 2021, daily demand for tests across
the US surged from 250k to 1.5 million in the span of 2 months7. A
similar circumstance occurred with the Omicron variant, where

testing capacity failed to meet the sudden demand8–10. Inefficient
diagnostic testing is also exacerbating the emerging threat of
monkeypox in the US11,12. Furthermore, rural-urban disparities in
testing access have worsened existing inequities resulting in
further harm to underserved communities13,14. In June 2020, it
was estimated that 64% of counties in the United States,
predominantly rural, did not have access to COVID-19 testing15.
Such circumstances lead to underreporting of COVID-19 incidence
and may lead to a premature sense of security and unwarranted
changes in public health measures14. Thus, there is an unprece-
dented need to improve our current and future methods for mass
COVID-19 surveillance testing, especially as stronger testing
capacity has been associated with reduced mortality and greater
pandemic control16.
By targeting surveillance testing toward individuals who are

more likely to be infected with the disease, more positive cases
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can be captured with the same number of tests, increasing the
positivity rate of the tested population (Fig. 1a)4. The positivity rate
(i.e., percent positive rate or percent positive) is the percentage of
all diagnostic tests performed that are positive. The likelihood of
disease presence prior to a diagnostic test, or the pretest
probability, is dependent on disease prevalence in the population
under surveillance. By filtering the broader surveillance population
to a subpopulation with a higher likelihood of infection, the
allocation and utility of tests can be improved (Fig. 1a). In other
words, more positive cases can be captured with the same
number of tests and, thus, the testing positivity rate is increased.
The development of tools to increase the testing positivity rate is
not only crucial in the early phase of an infectious disease
outbreak when the available clinical diagnostic testing tools are
inadequate to meet the existing demand, but also throughout
pandemics in remote locations, underserved communities, and
low- and middle-income countries where testing is known to be
particularly scarce17.
The rapid adoption of commercial wearable devices such as

smartwatches and activity trackers brings forth opportunities to
apply artificial intelligence methods toward the development of
novel tools to support an intelligent disease detection infra-
structure. Methods such as reinforcement learning or graph neural
networks have already been proposed to aid contact tracing and

surveillance testing18,19. Multiple studies suggest the utility of
digital biomarkers, objective and quantifiable digitally collected
physiological and behavioral data (e.g., resting heart rate (RHR),
step count, sleep duration, and respiratory rate), collected by
consumer devices along with patient-reported symptoms to
monitor the progression of respiratory and influenza-like ill-
nesses20–27. These studies emphasize the utility of wearables data
as compared with symptom surveys or known exposure to COVID-
19 as a result of its accessibility and scalability.
To determine who to test in settings where there are a limited

number of diagnostic tests available (i.e., limited testing capacity),
we explored whether information from wearables could help rank
individuals by their likelihood of a current COVID-19 infection. To
achieve this, we developed an Intelligent Testing Allocation (ITA)
model that leverages differences in digital biomarkers to
distinguish individuals who are likely positive or negative for
COVID-19 in order to improve current methods of diagnostic test
allocation and increase testing positivity rates.

RESULTS
We developed the CovIdentify platform in April 2020 to integrate
commercial wearable device data and electronic symptom surveys
to calculate an individual’s real-time risk of being infected with

Fig. 1 Overview of the Intelligent Testing Allocation (ITA) model, the CovIdentify cohort, and data. a Overview of the ITA model in
comparison to a Random Testing Allocation (RTA) model that demonstrates the benefit of using the ITA model over existing RTA methods to
improve the positivity rate of diagnostic testing in resource-limited settings. Human symbols with orange and blue colors represent
individuals with and without COVID-19 infection, respectively. b A total of 7348 participants were recruited following informed consent in the
CovIdentify study, out of whom 1289 participants reported COVID-19 diagnostic tests (1157 diagnosed as negative for COVID-19 and 132
diagnosed as positive for COVID-19). c The top panel shows the time-averaged step count and the bottom panel shows the time-averaged
resting heart rate (RHR) of all participants (n= 50) in the training set (Supplementary Fig. 3, blue) who were tested positive for COVID-19 with
the pre-defined baseline (between –60 and –22 days from the diagnostic test) and detection (between –21 and –1 days from the diagnostic
test) periods marked with vertical black dashed lines. The dark green dashed lines and the light green dash-dotted lines display the baseline
period mean and ± 2 standard deviations from the baseline mean, respectively. The light purple dashed vertical line shows the diagnostic
test date.
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COVID-19. A total of 7348 participants e-consented to the
CovIdentify study between April 2, 2020, and May 25, 2021,
through the secure Research Electronic Data Capture (REDCap)
system (Fig. 1b)28. Of those who consented, 6765 participants
enrolled in the study (Supplementary Table 1) by completing an
enrollment survey consisting of 37–61 questions that followed
branching logic (Supplementary Note 1)28. Of those enrolled, 2887
participants connected their smartwatches to the CovIdentify
platform, including 1689 Garmin, 1091 Fitbit, and 107 Apple
smartwatches. Throughout the course of the study, 362,108 daily
surveys were completed by 5859 unique participants, with a mean
of 62 and a median of 37 daily surveys completed per individual.
Of all CovIdentify participants, 1289 participants reported at least
one diagnostic test result for COVID-19 (132 positive and 1157
negative) (Fig. 1b). All survey and device data collected through
CovIdentify were transferred securely to a protected cloud
environment for further analysis. Out of the 1289 participants
with self-reported diagnostic test results, 136 participants (16
positive and 120 negative) had smartwatch data available during
the time periods needed for analysis. These 136 participants had
151 ± 165 days of wearable data before the corresponding
diagnostic test date. The relatively small number of participants
with available smartwatch data out of the larger population is
consistent with similar bring-your-own-device studies aimed at
COVID-19 infection prediction from personal devices22,23,27.

Development of the Intelligent Testing Allocation (ITA) model
A diagnostic testing decision support model was designed to
leverage real-world data to intelligently allocate diagnostic tests in
a surveillance population where there are insufficient tests
available to test all people in the surveillance group (Fig. 1a,
top). To increase the study population size, we augmented our
dataset with data from the MyPHD study. Similar to CovIdentify,
MyPHD collected simultaneous smartwatch, symptom, and
diagnostic testing data during the COVID-19 pandemic23,27. The
wearables and diagnostic testing data were publicly available23,27

while symptom data were added for this work. From the MyPHD
study, smartwatch, symptom, and diagnostic testing data from an
additional 1129 participants (110 positive and 1019 negative) were
included in this analysis, including 53 ± 52 days of wearable data
before corresponding diagnostic test dates.

Differences in resting heart rate (RHR) and steps measured by
smartwatches well before and immediately prior to a COVID-
19 diagnostic test
To compare digital biomarkers between healthy and infected
states, data were segmented into two time periods: a baseline
period (22–60 days prior to the diagnostic test date) and a
detection period (21 days prior to the diagnostic test date). We
chose this window for the detection period to encompass the
COVID-19 incubation period (2–14 days) reported by the CDC as
well as the common delay between symptom onset and
diagnostic testing. Consistent with prior literature20,24, daily RHR
increased significantly during the detection period from baseline
for those who were COVID-19 positive, with an average difference
(±SD) of 1.65 ± 4.63 bpm (n= 117, p value <0.001, paired t-test)
over the entire time periods. On average, daily RHR values more
than two standard deviations from the baseline mean were
present as early as 13 days prior to the positive test, with an
increasing trend that peaked at 1 day prior to the test date (Fig. 1c,
bottom). Conversely, the step count during the detection period
decreased significantly from baseline, with a difference of
–854 ± 2386 steps/day (n= 125, p value <0.0001, paired t-test).
On average, step counts less than two standard deviations from
the baseline mean were present as early as 10 days prior to the
positive test and reached the minimum value 2 days after the test
date (Fig. 1c, top). For the subset of participants in our dataset

with available symptom onset dates, daily RHR and step count
that differed beyond two standard deviations from the baseline
mean occurred as early as 5 days before the symptom onset date
(Supplementary Fig. 1). Timelines for this and other real-world
infection studies should be considered as rough estimates
because exact dates of exposure and symptom onset are
unknown, unlike in controlled infection studies26,29. Our findings,
however, are consistent with the 2–14-day COVID-19 incubation
period reported by the CDC30.
There was also a significant difference in digital biomarkers

between the baseline and detection periods of participants who
tested negative, but it was less pronounced than for those who
tested positive. Specifically, the daily RHR difference was
0.58 ± 4.78 bpm (n= 1094, p value <0.05, paired t-test) and the
step count difference was –281 ± 2013 steps/day (n= 1136,
p value <0.0001, paired t-test). We hypothesized that the digital
biomarker differences in the COVID-19-negative group were
because a subset of the negative group may have experienced
a health anomaly other than COVID-19 (e.g., influenza) that
resulted in physiological differences between the baseline and
detection periods. Another recent study also observed RHR
elevation and activity reduction in individuals who were COVID-
19 negative but flu positive, and the magnitudes of these
differences were lower than in individuals who were COVID-19
positive22. To explore the possibility that our COVID-19-negative
group contains false negatives due to test inaccuracies or
physiological differences due to a health anomaly besides
COVID-19, we performed hierarchical clustering on the symptom
data from individuals who reported negative tests and found a
trend toward multiple subgroups (Supplementary Fig. 2). This
finding supports the existence of COVID-19-negative subgroups. It
should also be noted that the highly significant p value for the
digital biomarker differences in the COVID-19-negative group is
likely attributable to the higher number of participants (9-fold
higher) compared with the COVID-19-positive group.

Cohort definition
For the ITA model development, we only included subjects with
sufficient wearable data (≥50% days with a device-specific
minimum amount of data availability during periods of sleep for
participants with high-frequency wearable data or ≥50% days with
device-reported daily values for participants without high-
frequency wearable data) in each of the baseline and detection
periods. Sleep periods were defined as epochs of inactivity that
occurred between midnight and 7 AM on a given day27.
Consequently, 83 participants from CovIdentify (9 COVID-19
positive and 74 COVID-19 negative) and 437 participants from
MyPHD (54 COVID-19 positive and 383 COVID-19 negative) were
included in the ITA model development process (Table 1). Of the
63 COVID-19-positive cases, 24 had a clinically documented
diagnosis, while the remainder were self-reported. Of the 520
participants with sufficient wearable data, 469 had high-frequency
minute-level wearable data (280 from Fitbits) from which we
calculated daily RHR and step counts. Device-reported daily values

Table 1. Summary of the cohorts.

Cohort Total N (Test N) Total COVID
+ (test)

Total
COVID– (test)

All-Frequency (AF) 520 (105) 63 (13) 457 (92)

All-High-
Frequency (AHF)

469 (97) 54 (11) 415 (86)

Fitbit-High-
Frequency (FHF)

280 (63) 40 (7) 240 (56)

Total refers to training + test data.
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were available for the remaining 51 participants. To explore
whether high-frequency wearable data or high-frequency wearable
data from a single device type could improve the performance of
digital biomarkers for ITA, we developed and validated our ITA
model using three cohorts, which we refer to as (1) the All-
Frequency (AF) cohort: participants with both high-frequency and
device-reported daily values, (2) the All-High-Frequency (AHF)
cohort: participants with high-frequency data only, and (3) the
Fitbit-High-Frequency (FHF) cohort: participants with high-
frequency Fitbit data only (Supplementary Fig. 3 and Supplemen-
tary Table 2). We analyzed these three cohorts separately in the
subsequent analysis and compared the resulting ITA model
performance. We divided each cohort into an 80% train and 20%
test split, with FHF as a subset of AHF, which itself is a subset of AF
to ensure that no observations in the training set of one cohort
existed in the test set of another (Supplementary Fig. 3).
To explore differences in digital biomarkers (median or mean)

between the detection and baseline periods that may be useful
for the development of ITA model features, we designed four
deviation metrics including (1) Δ (detection – baseline), (2)
normalized Δ, (3) standardized Δ, and (4) Z-score ((detection –
baseline mean) / baseline standard deviation) (Table 2). Each of
the four deviation metrics was calculated on the training data by
digital biomarkers (RHR and step count), day in the detection
period, and cohort (examples in Supplementary Figs. 4 and 5),
resulting in four calculated metrics per cohort per biomarker.
These training data deviation metrics were used as inputs into the
subsequent statistical analysis for feature extraction and the ITA
model training. We extracted the same resultant features from the
independent test set for subsequent ITA model evaluation.
On average, step count decreased (ΔSteps) significantly from

baseline to the detection period in COVID-19-positive versus
-negative participants (574 vs. 179, 479 vs. 234, and 601 vs.
216 steps per day for the AF, AHF, and FHF training data,
respectively; p value <0.05, unpaired t-tests) (Fig. 2a and
Supplementary Figs. 6a and 7a, top plots). Conversely, RHR
increased (ΔRHR) significantly from baseline to the detection
period in COVID-19-positive versus -negative participants (1.8 vs.
0.7, 1.9 vs. 0.8, and 1.8 vs. 0.7 bpm for the AF, AHF, and FHF
training data, respectively; p value <0.05, unpaired t-test) (Fig. 2a
and Supplementary Figs. 6a and 7a, bottom plots). The 95%
confidence intervals of the mean ΔSteps and the mean ΔRHR
overlap considerably between positive and negative participants
for the initial phase of the detection period (approximately
21–5 days prior to the test date). However, closer to the diagnostic
test date (approximately 4–1 day prior to the test date) the 95%

confidence intervals of mean ΔSteps largely do not overlap, and
the 95% confidence intervals of mean ΔRHR do not overlap at all
(Fig. 2a). The fact that the 95% confidence intervals of mean
ΔSteps and mean ΔRHR do not overlap later in the detection
period is consistent with prior literature31 and suggests that it is
possible to aggregate data into summary statistics to develop a
decision boundary that effectively separates COVID-19-positive
and -negative cases. However, the overlap in estimated mean
values prior to day 5 suggests that separation between positive
and negative cases may be more challenging prior to that point in
time. Although the 95% confidence intervals closer to the test
date were non-overlapping, there was overlap in the variance of
the digital biomarkers between the two groups during that time
period (Supplementary Fig. 8), which may hinder model perfor-
mance as separation of the 95% confidence intervals does not
necessarily imply significant differences between the groups32.
Similar estimates of variability have not been reported prior, so we
were unable to compare our mean statistics variability to prior
literature.
To maximize the separability of the COVID-19-positive and

-negative groups in the training set, we performed statistical
analysis to explore how different lengths and start times of the
detection window, parametrized respectively by two variables (the
detection end date, defined by days prior to the diagnostic test
date, and the detection window length defined by number of
days), would affect the separation between these two groups. We
performed a combinatorial analysis across these two parameters
(detection end date and detection window length) to calculate
five summary statistics (mean, median, maximum, minimum, and
range) of the four deviation metrics (Table 2) to be used as
features for model building. This resulted in 40 total summary
statistics (20 each from steps and RHR), which we refer to as steps
and RHR features, respectively. Statistical comparison of the steps
and RHR features between the COVID-19-positive and COVID-19-
negative groups was performed on the training data for the AF,
AHF, and FHF cohorts separately to uncover the statistically
significant features (unpaired t-tests; Benjamini–Hochberg cor-
rected p value <0.05).
A systematic grid search to optimize the detection end date and

detection window length demonstrated that the closer the
detection period is to the diagnostic test date, the larger the
number of features that are significantly different between the
COVID-19-positive and -negative groups (Fig. 2b and Supplemen-
tary Figs. 6b and 7b). Across all evaluated detection end dates, the
day prior to the diagnostic test date (detection end date= –1)
generated the largest number of significant features for all

Table 2. Features extracted from the digital biomarkers (DBs) for the development of ITA algorithm.

Metric Definition Equation

Deviation metrics

Delta (Δ) Deviation in digital biomarker from baseline median value DBDetection – DBBaseline, Median

Delta_Normalized Delta normalized by baseline median value ((DBDetection – DBBaseline, Median) / DBBaseline,
Median)

Delta_Standardized Delta standardized by baseline median and interquartile range (IQR) ((DBDetection – DBBaseline, Median) / DBBaseline,
IQR)

Z-score Deviation in digital biomarker from baseline mean, standardized by baseline
standard deviation (SD)

((DBDetection – DBBaseline, Mean) / DBBaseline, SD)

Summary statistics (features)

Average Average of interday deviation metrics

Median Median of interday deviation metrics

Maximum Maximum of interday deviation metrics

Minimum Minimum of interday deviation metrics

Range Range of interday deviation metrics
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cohorts. Also, across all cohorts, there were more significant RHR
features than steps features (Fig. 2b and Supplementary Figs. 6b
and 7b). Additionally, RHR features became significant earlier in
the detection period than steps features (detection end date as
early as –10 vs. –5 days, respectively), which indicates that
changes in RHR occur earlier than steps during the course of
infection. Comparison across the three cohorts revealed AF
generated the highest number of significant features compared
with the AHF and FHF cohorts, which may be attributable to the
larger population size of AF. This demonstrates the tradeoff in
wearables studies between high-frequency data, which is less
common but contains more information, and larger population
data, which contains data at a variety of sampling frequencies but
overall more data to train the models. Across detection window
length values, 3 and 5 days generated the largest number of
significant features for all cohorts (Fig. 2c and Supplementary Figs.
6c and 7c), while 5 days also corresponded to the date of the
maximum divergence between ΔSteps and ΔRHR (Fig. 2a).
Ultimately, this systematic analysis pointed to an optimal
detection end date of 1 day prior to the diagnostic test date
and an optimal detection window length of 5 days for the

detection window duration, both of which were used to generate
features for the ITA model.
When implementing the detection end date timepoint and

detection window length duration that best separated the COVID-
19-positive and -negative groups, there were 28–31 significant
features (p value <0.05; unpaired t-tests with Benjamini–Hochberg
multiple hypothesis correction) that overlapped across the three
cohorts, indicating their robustness to differences in data
resolution and device types (Supplementary Table 3). The top
7–9 features, ranked in order of significance, originated from the
RHR digital biomarker. To gain a more mechanistic understanding
of the RHR and step digital biomarkers, we explored the top two
most significantly different (lowest p value) features for each
digital biomarker between those who were COVID-19-positive or
-negative in the AF cohort (Fig. 2d). The decrease in steps during
the detection period as compared to baseline was greater in those
with COVID-19, with a 2054 vs. 99 median decrease in steps
(median ΔSteps) and a 1775 vs. 64 mean decrease in steps for
those who were COVID-19 positive vs. those who were COVID-19
negative, respectively (p values <0.0001; unpaired t-tests with
Benjamini–Hochberg multiple hypothesis correction). Conversely,

Fig. 2 Overview of digital biomarker exploration and feature engineering for the ITA model development on the AF cohort. a Time-series
plot of the deviation in digital biomarkers (ΔSteps and ΔRHR) in the detection window compared to baseline periods, between the
participants diagnosed as COVID-19 positive and negative. The horizontal dashed line displays the baseline median and the confidence
bounds show the 95% confidence intervals. b Heatmaps of steps and RHR features that are statistically significantly different (p value <0.05;
unpaired t-tests) in a grid search with a different detection end date (DED) and detection window length (DWL) combinations, with green
boxes showing p values <0.05 and gray boxes showing p values ≥0.05. The p values are adjusted with the Benjamini–Hochberg method for
multiple hypothesis correction. c Summary of the significant features (p value <0.05; unpaired t-tests) from b, with each box showing the
number of statistically significant features for the different combinations of DED and DWL. The intersection of the significant features across
DWL of 3 and 5 days with a common DED of 1 day prior to the test date (as shown using the black rectangle) was used for the ITA model
development. d Box plots comparing the distribution of the two most significant steps and RHR features between the participants diagnosed
as COVID-19 positive and negative. The centerlines denote feature medians, bounds of boxes represent 25th and 75th percentiles, whiskers
denote nonoutlier data range and the diamonds denote outlier values.
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the increase in maximum deviation in RHR in the detection period
as compared to baseline (maximum ΔRHR) and the increase in
mean of Z-scores in the detection period as compared to baseline
(mean of Z-score RHR) were both significantly higher for COVID-
19-positive participants compared to COVID-19-negative partici-
pants (8.4 vs. 4.3 bpm for maximum ΔRHR and 0.9 vs. 0.2 for the
mean of Z-score-RHR; p values <0.0001; unpaired t-tests with
Benjamini–Hochberg multiple hypothesis correction). Consistent
across all three cohorts, the median and mean ΔSteps were the
most significant (lowest p value) steps features (Supplementary
Figs. 6d and 7d). However, the top two RHR features differed,
which were median and mean Z-score-RHR, and maximum ΔRHR
and maximum of normalized ΔRHR for the AHF and FHF cohorts,
respectively (Supplementary Figs. 6d and 7d and Supplementary
Table 3). The observation of the same top two steps features given
the differences in the top two RHR features across the three
cohorts may originate from the resolution and device-reported
digital biomarkers. For example, the definition of a step and the
calculation of the daily step count may be more similar across
different device types, while the RHR definition and available HR
data resolution may vary more substantially across device types.
Although these top features are significantly different between
those who are COVID-19 positive and negative, their distributions
do overlap, even though the tailedness varies in direction and
extent (Fig. 2d and Supplementary Figs. 6d, 7d, and 9), which
points to broader challenges surrounding predictive modeling
efforts using standard consumer wearable device data for COVID-
19 infection detection.
To achieve our broader goal of determining who should

receive a diagnostic test under circumstances where there are
limited tests available, we aimed to design a model that outputs
the probability of a person being infected. However, because our
ground truth information is binary (positive or negative for
COVID-19), we designed this model as a binary classifier that
enabled a straightforward evaluation of its performance. We used
the features that were significantly different in the training data
between those who were COVID-19 positive and negative
(29 features for AF, 28 for AHF, and 31 for FHF) as inputs into
five machine learning classification models: logistic regression,
k-nearest neighbors, support vector machine, random forest, and
extreme gradient boosting (Supplementary Table 4). We chose
these five well-established classification models to explore how
increasing model complexity and the addition of non-linearity
impact the model performance. We trained these classification
models on the training data using nested cross-validation (CV)
with an inner loop for hyperparameter tuning and an outer loop
for model selection. We chose recall as our preferred scoring
metric for model selection and evaluation to emphasize the
relative impact/cost of false negatives compared to false
positives, as an individual who is truly positive for COVID-19
and is wrongly classified as negative (or healthy) would further
spread disease.
Following training, we evaluated the performance of the trained

model on the independent test set and used two well-established
reporting metrics, including the most commonly reported metric
for studies of this kind (the area under the curve for the receiver
operating characteristic curve (AUC-ROC))24,33–37, and the metric
that is most appropriate for this classification task (AUC for the
precision-recall curve (AUC-PR))38 (Supplementary Table 3, Figs. 3
and 4, and Supplementary Fig. 10). AUC-PR is more appropriate
with class-imbalanced data38,39, which is the case here (12–15%
COVID-19 positive and 85–88% negative in each of the three
cohorts). The class imbalance in our dataset was not correctable
through resampling methods—we have observed that distribu-
tions of features overlap between the COVID-19-positive and
-negative participants, as demonstrated in the individual feature
comparison (Fig. 2d and Supplementary Figs. 6d and 7d), as well
as in the low dimensional representation (using principal

component analysis and t-stochastic neighbor embedding) of all
the features in the training set of the AF cohort (Supplementary
Fig. 11).
Of the five models tested, logistic regression outperformed all

other models based on the training AUC-PR for all three cohorts
and was also the best performing model based on the training
AUC-ROC for the AF and FHF cohorts. The superior performance of
the logistic regression among other (more complex and nonlinear)
models may be attributed to the tendency of more complex and
nonlinear models to overfit the training data40, which comes to
light with our CV methods. The superior performance of the
logistic regression also points to the potential to develop
explainable machine learning predictive models for the ITA model
that enables rapid translation from bench to bedside. Overall, the
classifier performed best in the FHF cohort (Supplementary
Table 3, Fig. 3c, f, and Supplementary Fig. 10c, f), followed by
the AHF cohort, (Fig. 3b, e and Supplementary Fig. 10b, e) and
finally the AF cohort (Fig. 3a, d and Supplementary Fig. 10a, d).
These performance differences indicate that device-related and
data resolution differences may confound disease-related physio-
logical differences captured by digital biomarkers. Therefore,
building models using a single device type and with higher
resolution data improves performance. For the FHF cohort, the
logistic regression model resulted in an AUC-ROC of 0.73 ± 0.12
and AUC-PR of 0.55 ± 0.21 on the cross-validated training set
(Fig. 3c, f), and AUC-ROC of 0.77 and AUC-PR of 0.24 on the test set
(Supplementary Fig. 10c, f). The AUC-ROC from the models were
similar to those reported in recent similar studies24,34,37.
However, the performance of the models based only on AUC-

ROC in the context of imbalanced data can be misleading, as a
large change in the number of false positives may have a small
effect on the false-positive rate39. The precision metric, which
integrates both true positives and false positives, can mitigate the
effect of an imbalanced dataset (e.g., the higher proportion of
negatives seen in this type of data) on a model’s performance. Our
precision-recall analysis (Fig. 3d–f and Supplementary Fig. 10d–f)
demonstrates that we can improve the recall (minimizing false
negatives) at the expense of precision. In an extreme example, we
were able to achieve 100% recall with a precision of 0.4 on the
cross-validated training set of the FHF cohort, whereas, a dummy
classifier with random chance (i.e., Random Testing Allocation
(RTA)) can achieve a precision of 0.15 on this dataset. It is also
important to note that we are not considering resource-limited
settings in the ROC and PR analysis; instead, it is assumed that
there are a sufficient number of diagnostic tests available for the
entire surveillance group. In a resource-limited setting, 100% recall
may not be achievable due to the shortage of diagnostic testing.
To understand the relative contribution of the steps and RHR

digital biomarkers to the ITA model performance, we developed
two separate sets of models using features based only on either
steps or RHR using the training set data with logistic regression,
and later validated on the test set. Consistent with previous
literature24,34 the models using steps-based features alone had a
higher AUC-ROC than models using RHR-based features alone
(cross-validated AUC-ROC of 0.67 vs. 0.64, 0.69 vs. 0.63, and 0.72
vs. 0.68 for steps vs. RHR features for the AF, AHF, and FHF training
sets, respectively) (Fig. 3). Interestingly, when using the AUC-PR as
the performance metric, models using features based on RHR
digital biomarkers outperformed models using features based on
steps digital biomarkers, a finding that has not been previously
reported (cross-validated AUC-PR of 0.30 vs. 0.38, 0.28 vs. 0.37, and
0.40 vs. 0.49 for steps and RHR features for the AF, AHF, and FHF
training datasets, respectively) (Fig. 3). The validation on the test
sets also demonstrated similar results (AUC-ROC of 0.61 vs. 0.60,
0.66 vs. 0.58, and 0.71 vs. 0.70 and AUC-PR of 0.16 vs. 0.18, 0.17 vs.
0.17, and 0.18 vs. 0.22 for steps vs. RHR features for the AF, AHF,
and FHF test sets, respectively) (Supplementary Fig. 10). Overall,
the addition of steps features increased the AUC-ROC of the ITA
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Fig. 4 Prediction and ranking results of the ITA models on the test set of the FHF cohort using RHR digital biomarkers. a ROC and b PRC
for the discrimination between COVID-19-positive participants (n= 7) and -negative participants (n= 56). The red dashed line shows the
results based on an RTA model. c Positivity rate of the diagnostic testing subpopulation as determined by ITA given a specific number of
available diagnostic tests. The red dashed line shows the positivity rate of an RTA (null) model.

Fig. 3 Prediction and ranking results of the ITA models on the training sets for the AF (a, d, and g), AHF (b, e, and h), and FHF (c, f, and i)
cohorts using features from a combination of Steps and RHR (blue), Steps (green), and RHR (violet) digital biomarkers. a–c Receiver
operating characteristics curves (ROCs) and d–f precision-recall curves (PRCs) for the discrimination between COVID-19-positive participants
and -negative participants in the training set. The light blue, light green, and light violet areas show one standard deviation from the mean of
the ROCs/PRCs generated from 10-fold nested cross-validation on the training set and the red dashed line shows the results based on a
Random Testing Allocation (RTA) model (the null model). g–i The positivity rate of the diagnostic testing subpopulation as determined by ITA
given a specific number of available diagnostic tests. The red dashed line displays the positivity rate/pretest probability of an RTA (null) model.
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model by 7–11% compared with RHR features alone, while RHR
features improved the AUC-PR of the ITA model by 38–50%
compared with steps features alone on the training set. In other
words, the exclusion of each steps and RHR features individually
decreased the AUC-ROC of the ITA model by 7–10% and 1–3% for
the training set (5–11% and 2–9% for the test set), respectively,
compared to the ITA model with both steps and RHR features (Fig.
3a–f and Supplementary Fig. 10a–f). On the other hand, the
exclusion of each steps and RHR features individually decreased
the AUC-PR of the ITA model by 10–12% and 19–27% for the
training set (5–15% and 5–25% for the test set) compared to the
ITA model with both steps and RHR features. These results suggest
that, while steps features provide more salient information on the
tradeoff between the true-positive rate and false-positive rate,
RHR features provide more salient information on the tradeoff
between the true-positive rate and the precision (positive
predictive value). In other words, while steps features improved
the specificity of the predictive model, RHR features improved the
precision.
In addition to comparing the performance of ITA models with

steps and RHR features alone to ITA models with both steps and
RHR features on both training and test set, we also compared the
relative feature importance in the logistic regression model using
both steps and RHR features on the training set. Our results
demonstrated that two, one, and four of the top five features
originated from RHR in the AF, AHF, and FHF cohorts, respectively,
with the remaining features originating from steps (Supplemen-
tary Fig. 12). In all three cohorts, median ΔSteps and mean ΔSteps
were the two most important steps features, which was consistent
with our earlier statistical analysis. Maximum ΔRHR was the most
important RHR feature for the AF and AHF cohorts and the second
most important RHR feature for the FHF cohort, and was also one
of the top two most significant features in our earlier statistical
analysis for the AF and FHF cohorts.

Improvement in positivity rate for COVID-19 diagnostic
testing using the ITA method
We next evaluated how the ITA model can improve the current
standard of practice for COVID-19 infection surveillance. Under
current surveillance testing methods in the US, while some tests
are taken due to symptoms or possible exposure, many are taken
as precautionary measures for traveling or for surveillance in
schools and workplaces30. While such forms of widespread RTA
surveillance are beneficial, the positivity rate of widespread
diagnostic testing is typically low and, thus, requires sufficient
testing capacity in order to prevent testing shortages (e.g., sold
out at-home testing kits). Applying an equivalent RTA surveillance
approach to our study population results in a 12% positivity rate in
both our AF-training (50 COVID-19-positive participants out of 365
participants in total) and AF-test (13 COVID-19-positive partici-
pants out of 92 participants in total) datasets. It is important to
note that the 12% positivity rate is consistent for all levels of
diagnostic testing capacity (0–100% of population). When
employing ITA with both steps and RHR features, and adding
the constraint of limited diagnostic testing capacity (10–30% of
population), the testing positivity rate of the cross-validated
model increased 2–3 fold (21–36% positivity rate) for the training
dataset (Fig. 3g) and 1.5–2.5 fold (19–29% positivity rate) for the
testing dataset (Supplementary Fig. 10g).
A comparison of the three cohorts demonstrated that the best

performing ITA model with both steps and RHR features stemmed
from the FHF cohort and was followed by the AHF cohort (Fig. 3h, i
and Supplementary Fig. 10h, i). By utilizing ITA and assuming a
diagnostic testing capacity at 10–30% of the population, the
positivity rate of the FHF and AHF cross-validated training datasets
increased by 4 fold (64% positivity rate) and 3 fold (35% positivity
rate) when compared to the RTA positivity rates of 15% and 12%

for FHF and AHF cohorts, respectively. For the FHF cohort, the
positivity rate further increased up to 6.5 fold (100% positivity
rate) in the cross-validated training dataset when the diagnostic
testing capacity was reduced to 2.5–5% of the population (5–11
diagnostic tests to be allocated to individuals in the training
dataset) (Fig. 3i). Using the independent test dataset with both
steps and RHR features, the positivity rate of the FHF and AHF
cohorts increased by 1.5–3 fold (17–31% positivity rate) and 2–3
fold (21–32% positivity rate), respectively, compared to the RTA
positivity rate of 11%, when the diagnostic testing capacity was
10–30% of the population. These results indicate the potential of
the ITA model to target diagnostic testing resources toward
individuals who have a higher likelihood of testing positive (i.e.,
increasing the positivity rate of diagnostic testing) and enable
more efficient allocation of testing capacity. When we compared
the ITA model performance in terms of improving the positivity
rate of the diagnostic testing in a resource-limited setting among
models with steps and RHR features separately and together, the
results demonstrated that ITA models using only RHR features
often achieved similar performance (similar positivity rate) on the
training set and similar and in some cases even better
performance (further improved positivity rate) on the test set in
comparison with the models that used both steps and RHR
features together (Fig. 3g–i and Supplementary Fig. 6g–i). For
example, the ITA model using only RHR features improved the
positivity rate up to 4.5 fold (positivity rate of 50%) compared to
the RTA positivity rate of 11% on the test set of FHF cohort
(Supplementary Fig. 10i). The superior performance of the ITA
model using RHR-only features over the ITA model using steps-
only and the ITA model using both steps and RHR features may be
attributed to the nonspecific nature of the steps features, which
can experience changes unrelated to COVID-19 (other diseases,
quarantine, stress, etc.). These results demonstrate the potential to
develop an ITA system to allocate diagnostic testing in limited
resource settings only using physiological digital biomarkers
without relying on potentially nonspecific activity digital biomar-
kers, which is a key finding from our work.
We further explored how the ITA model performs in sympto-

matic versus asymptomatic COVID-19-positive individuals in each
cohort. We considered participants to be symptomatic who
reported any symptoms in the detection period or on the
diagnostic test date. Assuming a diagnostic testing capacity of
30%, ITA indicates testing for 19 of 29 symptomatic and 7 of 21
asymptomatic COVID-19-positive individuals in the cross-validated
model using both steps and RHR features, and 5 of 8 symptomatic
and 1 of 5 asymptomatic COVID-19-positive individuals in the
independent test set of the AF cohort. In other words, 7 of 26
(27%) and 1 of 6 (17%) COVID-19-positive individuals were
asymptomatic in the ITA-determined subpopulation for the
cross-validated training set and an independent test set of the
AF cohort, respectively. Results were similar for the AHF and FHF
cohorts (Supplementary Table 5). These findings indicate that the
ITA model can not only target diagnostic testing resources toward
individuals with symptoms, but also those without any reported
symptoms, further increasing the utility of this method.

DISCUSSION
The COVID-19 pandemic revealed the fragility of our existing
healthcare infrastructure to detect the virus and prevent its
spread. One key tool for reducing disease spread is bringing
diagnostic testing to the right people at the right time and
ensuring appropriate interpretation of the diagnostic testing
results based on the prevalence of the disease in the population4.
In light of this need, in April 2020 we developed CovIdentify to
integrate commercial wearable device data and electronic
symptom surveys to assess the real-time risk of being infected
with COVID-19. We envisioned two possible scenarios where
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CovIdentify would be useful for informing intelligent testing
decisions, including (1) ranking individuals in a group by likelihood
of current infection with COVID-19 to determine who to test, and
(2) tracking a single individual over time for evidence of new
infection onset to determine when to test. In our initial
development of the ITA model, we focused on the first question,
and ultimately improved the positivity rate of COVID-19 diagnostic
testing up to 6.5 fold when compared against RTA. These results
indicate that if deployed on a large scale, the ITA model could
potentially be used to better allocate diagnostic testing resources.
To test the real-world efficacy of the ITA model, a simple approach
may be to compare the positivity rate of ITA recommended
diagnostic testing versus traditional surveillance testing in cohorts
of school teachers in the same jurisdiction or school (i.e., similar
prevalence rate). This method is likely applicable to other
diagnostic areas as well, where digital biomarkers can be used
to indicate the likelihood of disease.
In this work, we demonstrated that wearable device data can be

used to strategically target the allocation of diagnostic tests to
where they are most useful. This approach not only increases
testing efficiency and allocation but also reduces the costs and
supply chain burden of surveillance testing which is an ongoing
challenge. Our results further demonstrate that the ITA method is
able to filter a surveillance population to generate a subpopula-
tion with a higher density of true positives, regardless of the
prevalence and pretest probability of COVID-19 infection in the
population under surveillance for the disease, and, thus, increases
testing positivity rates. We note that, although there is a possibility
that our COVID-19-negative group may contain other illnesses
(e.g., flu) which also reflects a more realistic setting, we were still
able to improve resource allocation by over 450% in the
independent test set. Another key contribution of our work is
the utility of the ITA model using only physiological digital
biomarkers (RHR). As steps (and other physical activity) may be
reduced due to other reasons than COVID-19 infection, steps may
result in nonspecific models, as we have observed from our results
on the independent test set. For that reason, an ITA model using
more specific digital biomarkers (e.g., RHR) demonstrates the
potential of solely relying on physiological data from wearables to
develop such an ITA model in a resource-limited setting. We also
demonstrate the utility of the ITA to filter individuals for allocating
diagnostic tests not only in cases of symptomatic individuals but
also for asymptomatic individuals who may not be tested and
diagnosed otherwise. While the sensitivity and specificity of
diagnostic tests are not affected by ITA, this more efficient testing
allocation approach identifies more cases in less time and with
fewer resources41–44.
The basis of the ITA method is the detection of physiological

changes associated with infection onset, which are well estab-
lished to be detectable by biometric sensors20–24,26,34–37. Con-
sistent with prior literature, we demonstrate here that digital
biomarkers derived from heart rate and physical activity are
indicative of infection onset. A unique contribution of our work is
the demonstration of differences in digital biomarker significance
with respect to time prior to the diagnostic test date; specifically,
we show that differences in RHR features were significant between
COVID-19-positive and -negative groups as early as 10 days prior
to the diagnostic test date whereas differences in most steps
features were not significant until 5 days prior to the diagnostic
test date. One steps feature, minimum ΔSteps, was significant up
to 9 days prior to the diagnostic test date, potentially
demonstrating a link between activity levels (and perhaps
noncompliance with lockdown measures) and COVID-19 exposure.
Furthermore, RHR begins to deviate from baseline earlier than
steps (as early as 13 vs. 10 days prior to the diagnostic test date,
respectively), and the peak effect (maximum deviation from
baseline) of infection also occurs earlier in RHR than steps (1 day
prior vs. 2 days after the diagnostic test date, respectively) for

those who were COVID-19 positive. These results indicate that
changes in physiology (RHR) occur earlier in the infection period,
while symptoms and reduced physical activity (steps) transpire
later in the infection period, when people may limit their
movement due either to illness or mandatory quarantine. A
recent COVID-19 study assessing prolonged physiological and
behavioral changes using wearables also observed that COVID-19-
positive individuals took more time to return to their RHR baseline
values compared to their step and sleep baseline values following
the acute COVID-19 infection period31; however, this work
explored the post-infection period of the data whereas here we
explore the pre-infection period as well as the acute infection
period using a systematic grid search approach. Another recent
study34 that developed machine learning models to passively
detect COVID-19 using wearable data noted relative changes in
feature importance when including data post-diagnosis. However,
to our knowledge, we are the first to demonstrate and establish
the dynamics of feature importance over time prior to the
diagnostic test date, indicating which features should be weighted
more heavily in prediction models and when.
Another important contribution of our work is demonstrating

the utility of RHR and steps features in the tradeoff between the
true-positive rate and false-positive rate (ROC analysis) and the
tradeoff between the true-positive rate and the positive predictive
value (PR analysis). Specifically, we show that while steps features
provide more salient information on the tradeoff between the
true-positive rate and false-positive rate, RHR features provide
more salient information on the tradeoff between the true-
positive rate and the precision (positive predictive value). To our
knowledge, this is the first demonstration of this tradeoff in
predictive model development for COVID-19 infection detection.
The ITA model, in addition to using features of RHR and steps, can
likely be further extended and improved with features from other
digital biomarkers such as skin temperature, respiratory rate,
blood oxygen saturation, and sleep duration25,26,35,36. It is
anticipated that each of these distinct digital biomarkers would
capture a physiological response to infection at different times
during the detection period, thus improving the robustness and
overall performance of the ITA approach.
One of the important observations from our work was the clear

separation of the 95% confidence intervals of the means of digital
biomarkers between COVID-19-positive and -negative populations
as early as 5 days prior to the test date (Fig. 2a and Supplementary
Figs. 6a and 7a), while the variances of the groups have
overlapping distributions in the same time window (Supplemen-
tary Fig. 8). Notably, a lack of overlap in 95% confidence intervals
does not necessarily imply significant differences between the
groups32 as standard deviation is a valuable descriptive measure
of the data that should be considered as well. There are many
possible sources of variance in studies involving wearable data,
including the inclusion of different device types and technologies,
contexts of measurement (e.g., time of day, activity type, etc.),
differences in physiological response to infection, etc. We
mitigated this issue by segmenting by device type and data
resolution, as well as by utilizing measurements during resting
periods only for the RHR calculation. In the future, larger datasets
can enable segmentation by demographics (e.g., age, sex, weight,
etc.) that would likely further reduce the variance. Sharing
datasets between studies, as demonstrated here, can also
augment the study population and further reduce the variance.
An open question is whether the resolution of current
photoplethysmography-based wearable heart rate technologies
is high enough to adequately detect signals above the population
variance.
Here, we did not deploy the ITA method in real-time and, thus,

its performance in practice still remains to be tested. Both the
CovIdentify and MyPHD studies were primarily bring-your-own-
device study designs, in which people who already own smart
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devices are recruited to participate. The bring-your-own-device
design presents two major challenges: (1) participants must own a
smart device, which limits eligibility to those who can afford
devices, and (2) many different types of devices are used,
introducing an additional source of noise in the analysis. We
mitigated the first challenge by developing and implementing the
Demographic Improvement Guideline, which resulted in a 250%
increase in the representation of black and African American
participants and a 49% increase in the Latinx and Hispanic
population within 4 months of the implementation of the
guideline45. The second challenge by dividing our overall dataset
into cohorts with homogeneous sampling frequencies and/or
device types. Although we recognize that certain factors decrease
the likelihood of wearable device ownership, such as lower
income or living in a rural area46–48, the precipitously decreasing
cost of wearable technology is rapidly increasing the equitable
distribution of these technologies49.
Another limitation of the study is the data missingness and its

impact on the deviation of the digital biomarkers, as the source of
missingness may confound the disease-related physiological
variation. For example, we observed that some participants in
our study did not wear their devices when they were feeling sick
and/or during sleep, as observed in other studies23, which resulted
in a reduction in data availability as a result of our rigorous data
inclusion criteria. For that reason, it can be a challenge to isolate
the effects of physiological and behavioral changes on the digital
biomarkers. Furthermore, some devices require more frequent
charging (e.g., Apple Watch), which results in more missing data
that may also impact model performance. We mitigated this
challenge by further developing our model on a single device and
homogeneous sampling frequency (FHF) cohort.
Another limitation of the study is the self-reported diagnostic

testing results from the majority of our study participants. While
we acknowledge that self-reported COVID-19 testing results can
be less reliable than clinically documented results, similar COVID-
19 digital health studies23,24,27 utilized self-reported diagnostic
testing results for their algorithm development. To instill further
confidence in this approach, it is worth noting that if any
inaccuracies do exist in the reported testing, which is to be
expected in a real-world setting where inaccurate diagnostic
testing can occur regularly, our study population was sufficiently
large to be powered to handle such noise and variance as
demonstrated by the strength of the results.
The recent body of work on COVID-19 detection using

smartwatches uses AUC-ROC to evaluate model perfor-
mance24,34–37, which is only an appropriate metric for class-
balanced data, and is otherwise misleading38,39. In these large-
scale studies conducted on a convenience sample of the
population for a disease with low prevalence, there exists an
inherent challenge of class imbalance because most of the study
population does not contract the disease. This was a challenge
that we faced in our study, and, further complicating matters,
many of the COVID-19-positive participants did not wear their
wearable devices at the start of their infection, exacerbating the
class imbalance. While less frequently reported than AUC-ROC, the
AUC-PR is the correct evaluation metric for evaluating a classifier
on imbalanced data38, which is what we report here. We show
that even with a strong AUC-ROC, the AUC-PR demonstrates the
limitations of performance. Methods to resolve class imbalance,
especially when working with wearable device data, can be further
investigated for future studies. Furthermore, more advanced
artificial intelligence methods such as reinforcement learning or
graph neural networks may further enhance the performance of
the ITA model and is a topic that will be further explored in future
studies.
While our study focused on improving testing allocation for

COVID-19, the methods developed herein are extensible to other
types of infections and could be used to fortify our future

pandemic preparedness. Using ITA to improve disease surveillance
could be especially important in underserved communities that
may benefit from the fact that the ITA method is useful even with
only steps digital biomarkers which may be obtained from
smartphones which are owned by 85% of the population in the
US50 and up to 76% globally51. By targeting diagnostic testing
toward individuals who are more likely to truly be infected with a
disease, we can improve the allocation and utility of diagnostic
tests, ultimately reducing mortality and increasing our ability to
control current and future pandemics.

METHODS
Participant recruitment and data collection
The CovIdentify study launched on April 2, 2020 (Duke University
Institutional Review Board #2020-0412). Eligibility criteria included age
over 18 years and internet access. Social networks and social media
advertising were used to recruit participants. By May 25, 2021, a total of
7348 participants were recruited and e-consented through the REDCap
system28. During enrollment, participants were given the option to donate
12 months of retrospective wearable data and 12 months of prospective
wearable data. Wearable data was collected via the CovIdentify iOS app for
devices connected to the Apple Health kit (e.g., Apple Watch) or via
Application Programming Interfaces for other devices (e.g., Garmin and
Fitbit devices). The participants were also asked to complete an
onboarding (enrollment) survey and daily surveys. The surveys were in
English or Spanish and included questions on symptoms, social distancing,
diagnostic testing results, and related information (Supplementary Note 1).
Surveys were collected using the CovIdentify iOS app, text messaging, and/
or emails. All wearable data and survey results were stored in a secured
Microsoft Azure data platform and later analyzed in the Microsoft Azure
Machine Learning environment. Soon after CovIdentify was launched,
exploratory data analysis (EDA) revealed major differences between
CovIdentify demographics and the demographics of COVID-19-positive
cases and deaths in the U.S., as well as overall U.S. demographics based on
the 2020 U.S. Census52,53. We sought to mitigate the imbalance throughout
the duration of the study by providing wearable devices to under-
represented populations45. COVID-19 vaccine reporting was added to the
daily surveys in February 2021, where we asked questions regarding the
vaccination date, vaccine brand, vaccine-related symptoms, and dose
number.

Wearable data processing and analysis
Participants were asked to fill out an enrollment survey following the
informed e-consent. Daily symptom surveys and wearable data from the
participants were analyzed both separately and together. For the overall
analysis, we only included participants with self-reported diagnostic test
results for COVID-19. These participants were further divided into two
categories based on the self-reported diagnostic test results: COVID-19
positive and COVID-19 negative.
In addition to the data collected via CovIdentify, we augmented our

analysis by including data from the MyPHD study, as reported in the two
recent publications by Mishra et al.23 and Alavi et al.27. The data from
Mishra et al. included heart rate, step count, and sleep data for 27 COVID-
19-positive cases. It also included metadata of symptom onset and test
dates. The data from Alavi et al. included heart rate and step count data for
83 COVID-19-positive cases and 1019 COVID-19-negative cases as well as
metadata including symptom onset and test dates.
For wearable data analysis, we only included days of wearable data

when both heart rate and step count were available. Out of the 1239
participants (113 from CovIdentify and 1126 from MyPhD study) who had
both heart rate and step count data available, we had device-reported
daily values of RHR and step count for 67 participants, and high-frequency
(second or minute level, depending on device types) wearable data for
1172 participants. For participants with high-frequency heart rate data, we
calculated daily RHR from the heart rate data points recorded between
midnight and 7 AM, when there were no steps recorded. For those
participants with available high-frequency wearable data, we chose a data-
driven threshold (i.e., a minimum number of heart rate data points
between midnight and 7 AM with zero recorded steps) to include our
calculated RHR data from that day in the subsequent analysis. As the
sampling rate varies by device type (Fitbit, Garmin, and Apple Watch), we
generated separate data distributions of the datasets for these three
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device types and selected the first quartile of heart rate data points per
device as the data-driven threshold, which resulted in a threshold of 2630,
19, and 1389 heart rate data points for Fitbit, Apple Watch, and Garmin
devices, respectively. In other words, on a given day, a participant with
Fitbit wearable data required at least 2630 heart rate data points between
midnight and 7 AM with zero recorded steps to be included in the
subsequent analysis. Following this intraday data point threshold, we used
an interday data threshold: a minimum number of days with available
wearable data to be included in the analysis (50% in the baseline period
and 50% between 9 days and 1 day prior to the diagnostic test date in the
detection period). We explored different minimum number of days of
available wearable data in the baseline and detection periods and selected
these two thresholds to maximize the number of participants while
keeping the performance of the ITA model on the training dataset
consistent, defined as less than 10% variation of the performance metrics
(AUC-ROC and AUC-PR)).

Cohort definition
The wearable data availability thresholds (both intraday and interday)
resulted in an AF cohort of 520 participants (83 from CovIdentify and 437
from MyPHD) with sufficient wearable data (63 COVID-19 positive and 457
COVID-19 negative). 24 of the 63 COVID-19 positive cases had clinical
documentation for their diagnosis while the others were self reported. We
then created two more subsets from this cohort (Supplementary Fig. 3): (1)
AHF cohort: participants with high-frequency wearable data (469
participants, 54 COVID-19 positive and 415 COVID-19 negative), and (2)
FHF cohort: participants with high-frequency wearable data from a single
source (Fitbit) (280 participants, 40 COVID-19 positive and 240 COVID-19
negative) to explore the impact of utilizing wearable data from different
sources and resolutions on the ITA model development. We employed
these three cohorts separately for the ITA model development and
compared the resulting models’ performance in the corresponding
training and test datasets of these cohorts. We divided each cohort into
an 80% train and 20% test split, with FHF as a subgroup of AHF (which
itself is a subset of AF) to ensure that no observations in the training
dataset of one cohort existed in the test dataset of another (Supplemen-
tary Fig. 3).

Digital biomarker definition
Given the use of datasets with different device types, a consistent RHR
definition was used in order to harmonize the cohorts with high-frequency
wearable data. We calculated the daily RHR digital biomarker by
aggregating the high-frequency heart rate data points available between
midnight and 7 AM, when there were no steps recorded. Step count was
calculated by summing all recorded step values during a 24-h period in
order to produce a daily step count digital biomarker.

Feature engineering and extraction
Following the creation of three cohorts (AF, AHF, and FHF) and their
corresponding training and test sets, we performed EDA and extracted
features from the time-series digital biomarkers (RHR and step count). For
the EDA on the time-series digital biomarkers, we explored the difference
in trajectories of digital biomarkers between COVID-19-positive and
COVID-19-negative participants (Fig. 2a and Supplementary Figs. 6a and
7a). Following the EDA, we extracted the features mentioned in Table 2
from the raw digital biomarkers. We first calculated four deviation metrics,
which capture the deviation in digital biomarkers from participants’
baseline during the detection phase. Following the deviation metrics
calculation, we calculated summary statistics of these four deviation
metrics which we refer as to features for this manuscript. We extracted the
same features from the training and test datasets. Following the feature
extraction, we performed statistical analysis on the features from the
training datasets of the three cohorts to see which features are statistically
different between the two groups and how their significance levels vary
with different detection period combinations (detection end date and
detection window length) using a systematic grid search to optimize
detection end date and detection window length (Fig. 2b and
Supplementary Figs. 6b and 7b). We utilized multiple hypothesis testing
with Benjamini–Hochberg adjusted p values for this statistical analysis.
Following the statistical analysis and systematic grid search to obtain the
optimal detection period to extract the features, we only utilized the
intersection of the statistically significant features (p value <0.05; unpaired
t-tests with Benjamini–Hochberg multiple hypothesis correction) extracted

from digital biomarkers recorded between 5 days and 1 day and 3 days
and 1 day prior to the diagnostic test date for the development of the
ITA model.

ITA model development
Following feature extraction, we developed predictive models to classify
COVID-19-positive and -negative participants in the training dataset of
each cohort (AF, AHF, and FHF) using nested CV and later validated the
models on corresponding independent test datasets. We chose five state-
of-the-art machine learning models (logistic regression, K-nearest neigh-
bor, support vector machine, random forest, and extreme gradient
boosting54,55) for the development of the ITA models to explore how
increasing model complexity and adding non-linearity would impact the
model performance. We trained these classification models on the training
dataset using nested CV with an inner CV loop for hyperparameter tuning
and an outer CV loop for model selection. For model training, we selected
recall as our preferred scoring metric for model selection to emphasize the
relative impact/cost of false negatives compared to false positives, as an
individual who is truly positive for COVID-19 and is wrongly classified as
negative (or healthy) would further spread disease. For model performance
evaluation, we used two well-established reporting metrics, including the
most commonly reported metric for studies of this kind (AUC-ROC)24,33–37,
and the metric that is most appropriate for this classification task (AUC-
PR)38 (Supplementary Table 3, Figs. 3 and 4, and Supplementary Fig. 10).
AUC-PR is more appropriate with class-imbalanced data38,39, which is the
case here (12–15% COVID-19 positive and 85–88% negative for each of the
three cohorts). The results reported for the training dataset (Supplemen-
tary Table 3 and Fig. 3a–f) were generated from the validation on the held-
out dataset (fold) from each iteration of the outer CV loop which was not
used in the model training. Based on the CV results of the five machine
learning models on the training dataset, we chose the logistic regression
model to further evaluate performance on the independent testing dataset
(Supplementary Fig. 10a–f). For validation on the independent test dataset,
we trained the logistic regression model on the entire training dataset
using a grid search with five stratified folds for hyperparameter tuning and
selected the best model (with tuned hyperparameters) to validate on the
test dataset.

Nested cross-validation
For model development with the training dataset, we utilized nested CV
over traditional CV, which is a common approach in similar stu-
dies24,34,36,37, because it uses the same data for hyperparameter tuning
and model performance evaluation56. In nested CV (also called double CV),
the hyperparameter tuning procedure is nested (inner loop) under the
model selection procedure (outer loop) and the inner loop is used for
optimizing the hyperparameters of the model with inner CV, and the outer
loop is used to compute the error of the optimized model with outer CV57.
For the nested CV, we divided the training set into ten stratified folds
(keeping the ratio of COVID-19-positive and -negative participants the
same across each fold) for the outer loop. For each iteration of the outer
loop, the model was trained on data from nine folds by optimizing the
hyperparameters of the model with inner CV, and validating on the left-out
fold, a process which was repeated nine more times. In each iteration of
the outer loop, the outer training data (from nine folds) were further
divided into five stratified folds (inner loop) to tune hyperparameters using
a grid search. Out of the five iterations with the grid search in the inner
loop, the best model (including hyperparameters) was selected, and this
model was used in the model performance evaluation in the outer loop.
This way of model development using two CV steps separates
hyperparameter tuning and model selection in order to reduce bias in
model performance.

Feature importance ranking
To calculate the feature importance ranking, we trained the logistic
regression model using a grid search with five stratified folds for
hyperparameter tuning and selected the best model (with optimized
hyperparameters) to train on the entire training set of each cohort, and
extracted the coefficients for each feature used in the optimized model.
We reported the absolute value of each coefficient as the relative
importance of the features (Supplementary Fig. 12).
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The de-identified CovIdentify dataset generated and/or analyzed during the current
study will be submitted 1 year from the publication date to the Digital Health Data
Repository (DHDR) repository (https://github.com/DigitalBiomarkerDiscoveryPipeline/
Digital_Health_Data_Repository) under the title BigIdeasLab_CovIdentify. The de-
identified MyPHD dataset used in Alavi et al. (Nature Medicine 2021) study can be
downloaded at the following publicly available link: https://storage.googleapis.com/
gbsc-gcp-project-ipop_public/COVID-19/COVID-19-Wearables.zip and the dataset
used in Mishra et al. (Nature Biomedical Engineering 2020) study can be downloaded
at the following publicly available link: https://storage.googleapis.com/gbsc-gcp-
project-ipop_public/COVID-19-Phase2/COVID-19-Phase2-Wearables.zip.

CODE AVAILABILITY
ITA model development code used for this manuscript is available on the digital
biomarker discovery pipeline (DBDP) GitHub repository (https://github.com/
DigitalBiomarkerDiscoveryPipeline/CovIdentify).
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