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ABSTRACT

This paper presents the first study on the impact of audio
watermarking on spoofing countermeasures. While anti-
spoofing systems are essential for securing speech-based
applications, the influence of widely used audio watermark-
ing—originally designed for copyright protection—remains
largely unexplored. We construct watermark-augmented
training and evaluation datasets, named the Watermark-
Spoofing dataset, by applying diverse handcrafted and neural
watermarking methods to existing anti-spoofing datasets.
Experiments show that watermarking consistently degrades
anti-spoofing performance, with higher watermark density
correlating with higher Equal Error Rates (EERs). To miti-
gate this, we propose the Knowledge-Preserving Watermark
Learning (KPWL) framework, enabling models to adapt to
watermark-induced shifts while preserving their original-
domain spoofing detection capability. These findings re-
veal audio watermarking as a previously overlooked do-
main shift and establish the first benchmark for developing
watermark-resilient anti-spoofing systems. All related pro-
tocols are publicly available at https://github.com/
Alphawarheads/Watermark_Spoofing.git|.

Index Terms— Audio watermarking, Audio Antispoof-
ing, Audio Deepfake Detection, Domain adaptation

1. INTRODUCTION

In recent years, advances in speech synthesis and voice con-
version have enabled highly realistic artificial speech, raising
serious concerns about security in voice-based applications.
Automatic speaker verification (ASV) and its anti-spoofing
countermeasures have thus become essential for safeguard-
ing applications such as banking, forensics, and access con-
trol [1]. Meanwhile, audio watermarking is widely used for
copyright protection and content authentication [2].

Most watermarking research has focused on impercep-
tibility and robustness to common signal processing oper-
ations [3H5]], while anti-spoofing has advanced with self-
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supervised front ends like XL.S-R [6] and WavLM [7], com-
bined with strong back-end models such as AASIST [8],
SLS [9] and Nes2Net [10]. However, despite growing re-
search on adversarial perturbations, the impact of audio wa-
termarking—introducing structured yet persistent perturba-
tions—on anti-spoofing systems remains unexplored.
Although audio watermarks are designed to be impercep-
tible to human listeners, they inevitably modify the underly-
ing speech signal distribution [2}|11], especially in real-world
scenarios where multiple watermarking schemes may coex-
ist. Such modifications can introduce complex and previously
unstudied domain shifts between original and watermarked
audio, potentially leading spoofing detectors to misclassify
genuine or synthetic speech. This issue is critical for cross-
dataset generalization, where anti-spoofing models must han-
dle unseen spoofing techniques [12], and unexamined inter-
actions with watermarking could compromise their security
benefits.
Our main contributions are as follows:

* Watermark-Spoofing Dataset: We create dedicated
training and evaluation datasets for anti-spoofing mod-
els under watermark-induced domain shifts.

» Extensive evaluation: A diverse set of handcrafted and
DNN-based watermarking methods [5,/13H19]] is sys-
tematically applied to benchmark datasets [12}20,121]
to assess their impact on state-of-the-art spoofing de-
tection models.

* Adaptation framework: We propose the Knowledge-
Preserving Watermark Learning (KPWL), a framework
that mitigates watermark-induced performance degra-
dation while preserving original-domain detection ac-
curacy.

2. WATERMARKING IMPACT ANALYSIS

In this section, the impact of audio watermarking on spoof-
ing detection is evaluated. A set of six handcrafted water-
marks [11}/15}17,{19} 22 23] and three DNN (Deep Neu-
ral Network)-based methods [4}|5||13] is applied to bench-
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mark datasets and assessed using three state-of-the-art anti-
spoofing models [9,/10,[24]]. The Equal Error Rate (EER) of
each model is measured as the proportion of watermarked
samples in the evaluation data increases. Each watermarked
evaluation set maintains a strict 1:1 ratio between DNN-
based and handcrafted watermark types, and all watermark-
ing methods within each group are represented in equal pro-
portion. Furthermore, each type of watermark is applied
to both bonafide and spoof samples proportionally to their
natural distribution within the corresponding dataset. This
setup is designed to simulate the cases that both bonafide
and spoofing samples could be protected by different kinds
of watermarking algorithms. This balanced design ensures
that any observed performance differences can be attributed
to the presence of watermarking, reducing the effect of class
imbalance or unequal representation of specific watermarking
methods.

2.1. Watermark-Spoofing Dataset

A mixed watermark dataset comprising six handcrafted
methods [[11,/15L{17,/19,[22,[23]] and three DNN-based meth-
ods [4,/5L(13]] is constructed to approximate real-world con-
ditions. This collection is applied to three benchmark anti-
spoofing datasets—ASVspoof 2021 LA, ASVspoof 2021 DF
(LA21, DF21) [20], and the In-the-Wild dataset ITW) [21].
For each dataset, three watermarked variants are created,
with 75%, 50%, and 25% of the samples watermarked while
the remaining samples are kept clean, following the distri-
bution described above. Together, these corpora constitute
the Watermark-Spoofing Seen Evaluation dataset. Similarly,
50% of the ASVspoof 2019 LA (LA19) training data [[12]
is watermarked using the same configuration, forming the
Watermark-Spoofing Training dataset.

2.2. Impact of Watermark Data on Anti-Spoofing

Anti-Spoofing on Single Watermark Data: To quantify the
impact of individual watermarking methods, four represen-
tative DNN-based watermarks—RobustDNN [3]], WavMark
[4], Timbre [5]], and AudioSeal [[13]—are applied to the In-
The-Wild evaluation dataset (ITW) [21]]. Equal Error Rates
(EERSs) are measured under varying watermark ratios using an
XLSR+SLS [9]] baseline detector trained on ASVspoof 2019
(LA19) [12].

Table [T] shows that single watermarking indeed degrades
spoofing detection performance, with EERs increasing as the
watermark proportion grows. Moreover, the observed degra-
dation tends to diminish with newer watermarking methods,
suggesting that recent designs introduce less disruptive per-
turbations.

Anti-Spoofing on Mixed Watermark Data: The
Watermark-Spoofing Seen Evaluation dataset is then used to
assess three state-of-the-art models trained on the LA19 train-

Table 1. EER (%) on ITW dataset under different watermark
ratios. A shows relative degradation compared to the clean
(0%) setting.

Method |75% 50% 25% 0% |75%A(%)
AudioSeal (2024) [13] | 7.46 7.40 7.35 7.32| 1.91%
Timbre (2023) [5] 8.18 793 7.53 732| 11.75%
WavMark (2023) [4] [ 9.90 9.06 823 7.32| 35.25%
DNN (2022) [3] 9.06 8.65 806 7.32| 23.77%

Table 2. EER (%) of three baseline models trained on
LA19 and evaluated on Watermark-Spoofing Seen Evaluation
dataset sets at different ratios.

Model |TestData|75% 50% 25% 0% |75%A(%)
XLSR LA21 | 088 083 079 0.73| 20.55
+AASIST ITW |11.28 10.65 10.00 9.42| 19.75
(2022) DF21 | 6.16 6.08 599 586| 5.12
XLSR LA21 |3.68 3.52 335 3.02| 21.85
+SLS ITW | 846 7.83 757 732| 1557
(2024) DF21 |223 213 217 201| 1094
XLSR LA21 | 225 220 208 200| 1250
+Nes2Net-X | ITW | 640 6.07 584 5.50| 1636
(2025) DF21 1.85 1.84 1.82 1.76| 5.11

ing set: XLSR-AASIST [24], XLSR-SLS [9]], and XLSR-
Nes2Net-X [10]. As shown in Table results across all
models and datasets reveal a clear positive correlation: higher
proportions of watermarked samples consistently lead to in-
creased EERs, demonstrating that watermarking degrades
spoofing detection performance.

Furthermore, as shown in Table 3] a multi-dataset [12)25-
27 trained XLSR+SLS model, achieving state-of-the-art re-
sults on both experimental (LA21 and DF21) and real-world
(ITW) deepfake datasets, also suffers a notable performance
drop when tested on watermarked audio. Even the advanced
model struggles under watermarked conditions, suggesting
that audio watermarking introduces a previously unstudied
form of domain shift that current anti-spoofing systems are
not designed to adapt to or be robust against.

Limitations of Direct Training for Watermarked Anti-
Spoofing:  To further examine the domain shift induced
by watermarking, the Watermark-Spoofing Training dataset
was used to train the three selected models—XLSR-AASIST,
XLSR-SLS, and XLSR-Nes2Net-X.

As displayed in Table[d] the results were complex: models
such as XLSR+SLS and XLSR+Nes2Net-X appeared to ex-
tract more stable features and partially suppress watermark-
induced shifts as the watermark density increased, albeit at
the cost of degraded performance on the original clean evalu-
ation sets.

In contrast, XLSR+AASIST showed more dramatic
changes. On the In-The-Wild dataset, it exhibited behavior



Table 3. EER (%) of XLSR+SLS trained on TIMIT [26],
FoR [25]], ODSS [27]] and ASV19 [12] and evaluated under
3 datasets with Watermark-Spoofing Seen Evaluation dataset.
A denotes the relative increase from 0%.

Dataset | 75% 50% 25% 0% | 75%A (%)
LA21 | 282 267 255 246| 14.63%
ITW | 406 377 349 3.17| 28.08%
DF21 | 1.I8 1.10 1.04 1.02| 15.69%

Table 4. EER (%) of three models trained with Watermark-
Spoofing Training dataset, evaluated Watermark-Spoofing
Seen Evaluation dataset.

Model | Dataset | 75% 50% 25% 0%
XLSR LA21 | 441 4.18 396 3.84
+AASIST ITW |10.08 9.56 9.16 8.73
(2022) DF21 | 3.11 298 285 2.66
XLSR LA21 | 328 325 323 3.17
+SLS ITW | 9.03 875 857 821
(2024) DF21 | 2.13 207 200 1.87
XLSR LA21 | 289 283 279 275
+Nes2Net-X | ITW | 7.58 7.23 690 6.58
(2025) DF21 | 192 190 1.88 1.87

resembling data augmentation, achieving slight performance
gains, while on the ASVspoof2021 LA dataset its perfor-
mance dropped sharply from a state-of-the-art 0.78% EER to
an average level of 3.84%. This degradation may be linked
to a reduction of overfitting on LA21 caused by the added
watermark noise.

These observations indicate that introducing watermarked
audio into training does not provide a consistent benefit and
may distort model learning in unexpected ways.

3. METHODOLOGY

As shown in the previous sections, audio watermarking in-
troduces a notable domain shift that degrades the perfor-
mance of anti-spoofing models. While directly incorporat-
ing watermarked data into training can sometimes suppress
watermark-induced changes, the results are highly unstable
and often compromise the model’s performance on clean,
unwatermarked data.

To reduce the negative impact of watermarks while pre-
serving the model’s spoofing detection ability on original
data, we propose Knowledge-Preserving Watermark Learn-
ing (KPWL) as shown in Fig. [I}

Original Baseline Pretraining: We first train the anti-
spoofing model on the original LA19 data using a standard
supervised objective, establishing a strong original-domain
baseline, in this case, the XLSR+SLS model.

Knowledge-Preserving Watermark Learning: Next,
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Fig. 1. The Knowledge-Preserving Watermark Learning
framework: the model is first trained normally as [9]], then
adapted with the SSL front end and classifier frozen while
only intermediate layers are updated

the Watermark-Spoofing Training dataset is used for model
adaptation. In this phase, the SSL front end (e.g., XLSR) and
the final classification layer (e.g., £c3 in SLS) are kept frozen
(non-trainable), while only the intermediate backend layers
are updated. Training is conducted with a slightly higher
learning rate than in the previous phase and for 2 epochs,
enabling rapid adaptation with minimal drift. To stabilize
this process, a teacher—student framework is employed, in-
corporating symmetric knowledge distillation and parameter
anchoring (L2-SP), as shown in Eq. [I]
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where Liaqx is @ weighted cross-entropy loss to optimize clas-
sification performance. Lkp is a symmetric knowledge dis-
tillation loss that constrains the adapted model’s predictions
to remain close to those of the frozen teacher snapshot. In
addition, L2-SP regularization Ly gp penalizes deviation of
trainable parameters from their initialization at the start of
Knowledge-Preserving Watermark Learning phase, thereby
reducing parameter drift during adaptation.

Freezing the SSL front end preserves low-level features
against watermark-induced shifts, while fixing the classifier
maintains the decision boundary. Symmetric Knowledge
Distillation constrains the outputs to remain close to the
pre-adaptation model, while L2-SP constrains the trainable
parameters not to drift far from the Knowledge-Preserving
Watermark Learning phase starting point. Together, these
choices allow the model to maintain its original-domain per-
formance while reliably adapting to watermarked inputs.



4. EXPERIMENTAL ANALYSIS

4.1. Experimental Settings

Preprocessing: All audio is resampled to 16 kHz and normal-
ized to 64,600 samples by tiling or truncation. RawBoost [28]]
is applied with colored noise at random SNRs, and the result-
ing waveforms are converted to single-channel format.
Training: Original Baseline Pretraining phase trains on the
LA19 split using Adam with a learning rate of 1 x 10~7, and
weight decay of 10, optimized with class-weighted cross-
entropy for up to 50 epochs with early stopping. The KPWL
adaptation phase continues from Original Baseline Pretrain-
ing phase, trained with Watermark-Spoofing Training dataset,
the watermarked version of LA19, using Adam with a learn-
ing rate of 5x 10~7, and weight decay of 10~*. The SSL fron-
tend and classifier are frozen while only intermediate layers
are updated, trained for 2 epochs using class-weighted NLL
with symmetric knowledge distillation (5 = 0.3) and L2-SP
regularization (u = 10~%).

Evaluation: To assess the effectiveness of the KPWL, three
variations of XLSR+SLS were compared: (i) Model trained
solely on original LA19 data (hereafter referred to as the
baseline model), (ii) Model trained on Watermark-Spoofing
Training dataset (hereafter referred to as the watermarked
model), and (iii)) Model trained using the KPWL method
(hereafter referred to as the KPWL model). These models
were evaluated on the LA21, DF2], and In-the-Wild datasets,
each tested in their original form and in watermarked ver-
sions—collectively referred to as the Watermark-Spoofing
Seen Evaluation dataset—as well as on a more challenging
Watermark-Spoofing Unseen Evaluation dataset, which was
generated using the same procedure as the seen set but with a
distinct set of watermarking methods [3}(11}/14}/16,/18L[29].

4.2. Experimental Results

As shown in Table[5] the proposed KPWL model consistently
outperforms the baseline on the Watermark-Spoofing Seen
Evaluation dataset, reducing the EER on ITW with 75%
watermarked data from 8.46% to 7.92%. It also maintains
comparable performance on clean data (3.06% vs. 3.02%
on LA21). In contrast, the watermarked model gains robust-
ness against domain shift as watermark density increases, but
sacrifices clean-domain accuracy. These results show that
KPWL suppresses watermark-induced domain shifts while
preserving spoofing detection capability, indicating that ex-
isting models can adapt to watermarked data when guided by
an appropriate training strategy.

As shown in Table [6] performance changes were far
more drastic on the Watermark-Spoofing Unseen Evaluation
dataset. The baseline model outperformed both the water-
marked and KPWL variants (9.94% vs. 10.21% and 11.22%
on 75%-watermarked data from the Watermark-Spoofing Seen
Evaluation dataset LA21), indicating that the latter two may

Table 5. Comparison of three XLLSR+SLS variants on differ-
ent test datasets under Watermark-Spoofing Seen Evaluation
dataset. A denotes relative increase from 0%.

Dataset Model \ 5% 50% 25% 0%

Baseline 3.68 3.52 335 3.02
LA21 Watermarked | 3.28 3.25 3.23 3.17
KPWL 321 3.18 3.12 3.06
Baseline 846 7.83 17.57 17.32
ITW Watermarked | 9.03 8.75 8.57 8.21
KPWL 792 774 7.60 7.37
Baseline 223 213 2.17 2.01
DF21 Watermarked | 2.13 2.07 2.00 1.87
KPWL 2.04 195 192 1.74

Table 6. EER(%) of different variants of XLSR+SLS under

Watermark-Spoofing Unseen Evaluation dataset across dif-

ferent test datasets.
Dataset Model

| 5% 50% 25% 0%

Baseline 994 801 572 3.07
LA21 Watermarked | 10.21 8.00 5.64 3.17
KPWL 11.22 847 5.66 3.04
Baseline 1341 1143 936 7.32
IT™W Watermarked | 15.66 13.15 10.68 8.62
KPWL 1478 1227 9.71 17.37
Baseline 842 634 431 201
DF21 Watermarked | 8.60 6.40 420 1.87
KPWL 10.05 7.24 450 1.75

have over-adapted to the specific watermarking methods used
to generate the Watermark-Spoofing Training dataset. This
suggests that current anti-spoofing models lack robustness to
diverse distortions, with watermarking exposing a critical gap
that warrants further investigation.

5. CONCLUSION

This work presents the first study on how audio watermark-
ing impacts anti-spoofing detection systems. Experiments
across diverse datasets and models show that watermark-
ing can significantly degrade detector performance during
both training and evaluation. To support future research,
we constructed watermark-augmented training and evalu-
ation datasets. To mitigate mentioned issues, we propose
KPWL, a teacher—student adaptation framework that pre-
serves original-domain decision boundaries while adapting
to watermark-induced shifts. These findings highlight au-
dio watermarking as an overlooked source of domain shift
and underscore the need for anti-spoofing models robust to
real-world watermark contamination, while handling unseen
watermark scenarios remains an open challenge.
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