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ABSTRACT

Pre-trained foundation models have demonstrated remark-
able success in audio, vision and language, yet their potential
for general machine signal modeling with arbitrary sampling
rates—covering acoustic, vibration, and other industrial sen-
sor data—remains under-explored. In this work, we propose
a novel foundation model ECHO that integrates an advanced
band-split architecture with frequency positional embeddings,
enabling spectral localization across arbitrary sampling con-
figurations. Moreover, the model incorporates sliding patches
to support inputs of variable length without padding or crop-
ping, producing a concise embedding that retains both tem-
poral and spectral fidelity and naturally extends to streaming
scenarios. We evaluate our method on various kinds of ma-
chine signal datasets, including previous DCASE task 2 chal-
lenges (2020–2025), and widely-used industrial signal cor-
pora. Experimental results demonstrate consistent state-of-
the-art performance in machine signal anomaly detection and
fault classification, confirming the effectiveness and general-
ization capability of the proposed model. We open-sourced
ECHO on https://github.com/yucongzh/ECHO.

Index Terms— Anomalous sound detection, pre-trained
model, foundation model, frequency-aware, band-splitting

1. INTRODUCTION

The reliable monitoring of machine health is critical for
ensuring safety, reducing downtime, and optimizing opera-
tional efficiency across industrial domains. In recent years,
machine signal analysis—encompassing acoustic emissions,
vibration measurements, and other sensor modalities—has
emerged as a central tool for detecting anomalous conditions
and diagnosing faults before catastrophic failure. Traditional
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approaches, such as handcrafted feature extraction combined
with conventional classifiers, have proven effective in narrow,
domain-specific scenarios [1]. However, these methods often
lack generalization capability across heterogeneous machine
types, operating conditions, and sensing modalities.

Large-scale audio foundation models have emerged as
a unifying paradigm for representation learning across di-
verse acoustic domains. Leveraging supervised [2] or self-
supervised [3–7] Vision Transformer (ViT)-based [8] pre-
training on large corpora, these models demonstrate strong
transferability to downstream tasks ranging from tagging to
captioning. Scaling training data further improves robustness
across speech and audio tasks [9]. This success extends to
industrial monitoring, where such models serve as front-end
encoders for anomalous sound detection (ASD) [10–12] and
play key roles in recent DCASE Task 2 challenges. In do-
mains with scarce labeled anomalies and varying conditions,
the generalizable representations of audio foundation models
provide a solid basis for domain adaptation.

Despite their strengths, existing foundation models face
two major challenges in real-world machine signal monitor-
ing tasks. First, current ViT-based pre-trained models rely
on fixed-size spectrogram input for patching, and adopt con-
ventional 2D positional embeddings from image processing
to learn 2D spatial relation among those patches. Modeling
variable-length spectrogram thus requires truncation or inter-
polation, breaking the spatial relation between patches. We
argue that this kind of spatial modeling is not ideal for audio
which is temporally sequential by nature. Second, these mod-
els are trained on samples with a fixed sampling rate and can
only infer at that rate. Inputs with higher or lower rates must
be resampled, which inevitably introduces information loss.

In this work, we address these limitations by proposing
ECHO, an audio foundation model that uses frEquenCy-
aware Hierarchical encOding for variable-length signals.
ECHO is a general-purpose foundation model for machine
signals trained on large-scale audio corpus, achieving state-
of-the-art performance across various benchmarks, includ-



Fig. 1. Feature extraction pipeline of the ECHO framework. F: number of frequency bins after STFT; T: number of time frames
after STFT; N: number of sub-bands after band splitting; W: band width of sub-bands; P: number of sliding patches; D: feature
dimension for each patch.

ing few-shot anomaly sound detection tasks at DCASE,
vibration-based fault detection datasets, as well as multi-
modal machine condition monitoring datasets. The main
contributions of this work are summarized as follows:

i. frequency-aware band-splitting strategy: splitting spec-
trogram into frequency sub-bands with a relative fre-
quency positional embedding mechanism tailored for
arbitrary sampling rates and frequency resolutions, en-
abling the model to encode explicit positional context
of sub-bands within the full spectrum;

ii. a sliding patch design within each sub-band that suits
variable-length signal inputs;

iii. a scalable training framework capable of handling di-
verse machine signal modalities within a unified repre-
sentation space; and

iv. achieving state-of-the-art performance on an open-
sourced benchmark SIREN for general machine signal
embeddings evaluation.

2. RELATED WORK

Concurrent with our study, the FISHER model [13] intro-
duced band-splitting to handle multi-modal signals with
varying sampling rates, where each sub-band is modeled
independently using a ViT backbone. Although both works
share a similar high-level motivation, they were developed
independently and adopt substantially different designs, as
reflected in the released code bases12. In contrast to FISHER,
our approach incorporates frequency positional encoding
within each sub-band before feeding them into the ViT, en-
abling explicit frequency-aware modeling. Moreover, instead
of patch-based image-style tokenization—which is less suit-
able for variable-length or streaming inputs—our method
employs a sliding-window strategy within each sub-band.
Conceptually, our framework is designed to simultaneously
support variable-length and variable-sampling-rate signals,
making it naturally extendable to streaming scenarios.

1Our implementation: https://github.com/yucongzh/ECHO
2FISHER code: https://github.com/jianganbai/FISHER

3. MODEL ARCHITECTURE
In this section, we introduce our proposed framework ECHO
which is designed for robust representation learning of
variable-length signals under arbitrary sampling rates. The
overall architecture is illustrated in Fig. 1. ECHO con-
sists of four key components: (1) spectrogram extraction,
(2) frequency-aware sub-band splitting, (3) temporal sliding
patches extraction, and (4) hierarchical encoding.
3.1. Spectrogram Extraction
Given an input waveform sampled at frequency fs, we com-
pute its Short-Time Fourier Transform (STFT) using a pre-
defined window length twin and hop length thop specified in
seconds. We use the magnitude spectrogram. Because these
time durations are converted per signal to integer samples, the
spectrogram frame rate is fixed by the chosen hop and thus in-
dependent of fs. Consequently, for inputs of equal duration,
the resulting spectrograms contain the same number of time
frames across sampling rates.
3.2. Frequency-Aware Sub-band Splitting with Positional
Encoding
The spectrogram S is uniformly split along the frequency axis
into a set of sub-bands with no overlaps, with the number of
sub-bands proportional to the sampling rate fs. For the k-th
sub-band spanning bstart to bend − 1, the center frequency fc,
its normalized position p, and the corresponding positional
encoding PE(p, j) are computed as

fc =
(bstart + bend − 1)

2
· fs
NFFT

, p =
fc

fs/2
,

PE(p, j) =

{
sin

(
γ·p

100002i/d

)
, j = 2i,

cos
(

γ·p
100002i/d

)
, j = 2i+ 1,

(1)

where NFFT is calculated as fs × tw, d is the embedding di-
mension and γ is the scaling factor. This design ensures that
sub-bands from different sampling rates, but at equivalent rel-
ative frequency positions, share consistent positional encod-
ings.

3.3. Temporal Sliding Patch Extraction
To model signals of variable duration, each sub-band under-
goes temporal segmentation. Specifically, we apply a sliding



Table 1. SIREN Benchmark datasets and their characteristics.
SR: Sample rate; MAFAULDA: Machinery Fault Database;
CWRU: CWRU Bearing dataset; IIEE: IDMT Electric Engine
dataset; IICA: IDMT Compressed Air dataset.

Dataset Modality SR #Classes Split Scoring

DCASE2020 [14] Sound 16k 2 official KNN
DCASE2021 [15] Sound 16k 2 official KNN
DCASE2022 [16] Sound 16k 2 official KNN
DCASE2023 [17] Sound 16k 2 official KNN
DCASE2024 [18] Sound 16k 2 official KNN
DCASE2025 [19] Sound 16k 2 official KNN
MAFAULDA [20] Sound/Vibration 50k 10 LOOCV KNN

CWRU [21] Vibration 12k 10 LOOCV KNN
IIEE [22] Sound 44.1k 3 official KNN
IICA [23] Sound 48k 3 5-Fold-CV KNN

window of length L (equal to the sub-band width) along the
time axis, with a stride of L/2 to achieve 50% overlap ping.

This operation is efficiently implemented via a two-
dimensional convolution with kernel size (sub-band height, L)
and stride (sub-band height, L/2). The convolution collapses
the frequency dimension, resulting in a patch sequence with
shape (N,D), where N is the number of temporal patches
and D is the channel dimension (i.e., the patch embedding
size). Each patch thus represents a localized temporal feature
of the sub-band.

3.4. Hierarchical Encoding
Each frequency-aware patch sequence, prepended with a
learnable classification (CLS) token, is fed to the ViT back-
bone. The CLS token summarizes sub-band information, and
the final embedding concatenates all sub-band CLS tokens.
This hierarchical design enables ECHO to capture local tem-
poral dependencies within sub-bands while distinguishing
frequency ranges via frequency-aware splitting.

3.5. Training and Inference
We adopt a teacher–student framework from EAT [7]. Dur-
ing training, each frequency-aware sub-band is treated inde-
pendently. The student receives masked inputs, while the
teacher is updated via Exponential Moving Average (EMA)
of the student: θteacher,t = αθteacher,t−1 + (1 − α)θstudent,t,
with momentum α. We employ two self-supervised objec-
tives: (1) global alignment between the temporal mean of the
teacher’s layer outputs and student CLS token, and (2) frame-
level alignment on masked positions. This dual-level supervi-
sion enforces consistency at both coarse and fine scales.

During inference, the full spectrogram is processed by
ECHO. CLS tokens from all K sub-bands are concatenated
into a hierarchical embedding z = [CLS1, . . . ,CLSK ] for
downstream tasks.

4. BENCHMARK FOR EVALUATION
For fair comparison, we open-source an evaluation bench-
mark called SIREN (SIgnal Representation EvaluatioN
toolkit). SIREN is tailored for general signal diagnosis,
including tasks like few-shot anomalous detection (DCASE
Task 2 series), and machine fault diagnosis/classification.

The detailed information of the datasets and the correspond-
ing tasks are shown in Table 1 and the GitHub repository3.
The evaluation protocol and metrics are as follows.
DCASE Task 2 series: We follow the official develop-
ment/evaluation splits [14–19], computing file-level anomaly
scores, and aggregate them with machine/section/domain
grouping. Per year, we report ROC-AUC and partial AUC
(pAUC), and summarize performance by harmonic means of
AUC and pAUC across development and evaluation sets.
Fault classification: For datasets (MAFAULDA [20], CWRU [21],
IICA [23]) without official train-test split, we use cross vali-
dation (CV) for evaluation. On MAFAULDA and CWRU, we
use leave-one-out CV (LOOCV) due to limited data for each
fault class; on IICA, we use 5-fold CV. For IIEE [22], we use
the given train-test split for evaluation. These settings (see
Table 1) balance reliability and computational cost. Accuracy
is reported for each dataset.
Scoring. We use k-nearest neighbors (k-NN): (1) compute
training embeddings {ei}Ni=1 to build a memory bank M; (2)
for a test embedding e∗, retrieve its k nearest neighbors in
M. For DCASE anomaly detection, the score is the nearest-
neighbor distance (k=1). For fault classification, the label is
the majority vote of the k neighbors.

5. EXPERIMENTS
5.1. Implementation Details
We adopt the same backbone architecture as the ViT. Cur-
rently, we have released two editions of ECHO: small and
tiny. The spectrogram is extracted using a window size of
25 ms and window shift of 10 ms on normalized raw signals.
The sub-band width in our model is fixed to 32. The model
is trained for a total of 400,000 steps using four NVIDIA
GeForce RTX 3090 GPUs with a global batch size of 256,
with 4,000 warm-up steps. The learning rate is scaled rela-
tive to the effective batch size [3], with a base learning rate of
10−4. Training employs a cosine learning rate scheduler with
a linear warm-up phase spanning 40,000 steps. The minimum
learning rate is set to 10−5, and weight decay is applied with
a coefficient of 0.05.

5.2. Baseline Models
Currently, we include 5 pre-trained foundation models for
comparison: BEATs [5], CED [6], EAT [7], Dasheng [9],
and FISHER [13]. All models use ViT-style structure as
the backbone model, and are trained using open-sourced
audio datasets across various domains, including full Au-
dioSet (AS2M) [25], MTG-Jamendo (MTG) [26], VG-
GSound (VGG) [27], Music4all (M4A) [28], ACAV [29],
and Freesound (FS)4.

5.3. Experimental Results
Table 2 reports the performance on the SIREN benchmark.
Several observations can be made:

3Codes available at https://github.com/yucongzh/SIREN
4https://freesound.org/



Table 2. Performance (%) comparison of pre-trained foundation models across DCASE challenges and machine fault diagnosis
datasets in our SIREN benchmark (k=5). DCASE tasks are reported by the (harmonic) means of AUCs and partial AUCs
among machines, while fault classification tasks are reported by accuracy. DCASE tasks are evaluated according to the officials.
“Mean” stands for arithmetic mean. Sample rates are listed under dataset names. FS∗: Freesound derived from WavCaps [24].

Model Datasets Scale #Param.
DCASE Tasks Fault Classification Tasks

Mean2020 2021 2022 2023 2024 2025 Mean IIEE IICA CWRU MAFAULDA Mean
16k 16k 16k 16k 16k 16k - 44.1k 48k 12k 50k -

BEATs [5] AS2M Base 90M 74.26 61.31 58.97 62.89 55.89 57.84 61.86 65.81 91.55 88.57 99.69/63.66 81.86 71.86

CED [6] AS2M

Base 86M 67.75 56.67 57.26 60.84 57.83 57.72 59.68 80.21 86.08 81.90 99.74/66.48 82.88 71.28
Small 22M 67.69 56.66 56.79 60.04 57.24 57.89 59.39 74.42 85.66 85.71 99.59/64.43 81.96 70.67
Mini 10M 67.59 56.35 57.03 59.85 56.39 57.43 59.11 74.17 84.91 82.86 99.64/63.66 81.05 70.08
Tiny 5.5M 67.21 56.17 56.77 59.61 56.19 57.82 58.96 72.74 84.02 82.86 99.64/63.51 80.55 69.76

EAT [7] AS2M
Large 0.3B 73.94 57.47 58.54 61.66 57.89 60.01 61.58 68.33 89.96 91.43 99.33/85.03 86.82 74.20
Base 86M 72.13 57.79 58.57 59.69 57.12 59.75 60.84 78.97 89.01 85.71 99.90/84.52 87.62 74.23

Dasheng [9]
AS2M+MTG

+VGG
+ACAV

1.2B 1.2B 69.48 57.06 57.29 61.23 57.13 57.12 59.88 96.09 91.91 90.48 99.69/77.24 91.08 75.48
0.6B 0.6B 68.18 56.76 56.61 59.94 56.75 56.73 59.16 99.11 92.11 89.52 99.74/78.22 91.74 75.45
Base 86M 69.15 57.27 57.87 60.70 57.71 57.01 59.95 99.36 90.88 88.57 99.85/81.96 92.12 76.04

FISHER [13]
AS2M+MTG

+M4A+FS

Small 22M 70.54 59.51 59.79 61.83 55.66 58.68 61.00 97.48 94.20 86.67 100.0/85.29 92.73 76.86
Mini 10M 69.98 58.39 57.91 60.35 55.91 56.90 59.91 99.90 94.50 73.33 100.0/87.75 91.10 75.50
Tiny 5.5M 70.64 58.51 57.11 58.46 55.34 57.69 59.62 99.80 95.43 75.24 100.0/88.52 91.80 75.71

ECHO
AS2M+MTG

+FS∗
Small 22M 72.23 60.20 59.96 63.71 57.86 58.70 62.11 99.85 93.67 90.48 99.54/82.42 93.19 77.65
Tiny 5.5M 70.14 59.01 59.76 63.75 56.91 58.40 61.33 100.0 93.58 90.48 99.85/78.83 92.55 76.94

1) Effect of dataset scaling. By comparing BEATs (71.86%),
CED (71.28%) and EAT (74.23%) with Dasheng (76.04%)
with base scale, we observe that incorporating additional
large-scale datasets might help mitigate the domain mismatch
between general audio pre-training and machine sound anal-
ysis. A similar trend can also be found in FISHER (76.86%)
and our proposed ECHO (77.65%), both trained on addi-
tional audio datasets, showing that scale-up of training data
consistently enhances cross-domain representation learning.

2) Sliding-patch vs. conventional patch modeling. Tradi-
tional foundation models (BEATs, CED, and EAT) rely on
conventional patch tokenization, yielding total average scores
in the range of 70–74% in our SIREN benchmark. In con-
trast, Dasheng introduces a sliding-patch strategy, leading to a
higher overall mean of 76.04%, outperforming EAT (74.23%)
by +1.81%. A similar observation is confirmed within the
band-splitting family: our proposed ECHO reaches a total av-
erage of 77.65% on SIREN, surpassing FISHER (76.86%) by
+0.79%. These results highlight that sliding-patch model-
ing is more effective than fixed patch partitioning for machine
sound analysis.

3) Band-splitting architecture. Compared with conven-
tional pre-trained foundation models, band-splitting-based
methods achieve superior performance in fault classification
across multiple modalities and sampling conditions, while
maintaining competitive results on DCASE tasks. As shown
in Table 2, ECHO (93.19%) and FISHER (92.73%) rank
first and second on fault classification tasks, with model with
small scale. This confirms that decomposing signals into
frequency sub-bands facilitates robust cross-sampling-rate
anomaly detection. Furthermore, ECHO consistently outper-
forms FISHER, which we attribute to the integration of fre-

quency positional encoding, enabling better frequency-aware
modeling across sub-bands. It is noteworthy that Dasheng
(92.12%), trained only on samples with fixed sampling rate,
also exhibits strong adaptability to diverse fault classification
tasks, a capability that may stem from its use of large-scale
training data.
4) Effect of model scaling. Comparing ECHO-Small (77.65%)
and ECHO-Tiny (76.94%) shows that enlarging the model
scale yields consistent improvements across both DCASE
(62.11% vs. 61.33%) and fault classification tasks (93.19%
vs. 92.55%). This indicates that our architecture retains
scalability potential, and larger variants may further boost
generalization.

Overall, ECHO achieves the highest overall performance
(77.65%) in our SIREN benchmark, outperforming the strong
baseline (FISHER, 76.86%) by +0.79%. These results show
that combining frequency-aware band-splitting with sliding-
patch modeling is effective in our principled framework for
cross-domain machine signal representation learning.

6. CONCLUSION
In this article, we proposed ECHO, a novel pre-trained
foundation model that incorporates a frequency-aware band-
splitting strategy to handle diverse sampling rates and uses
sliding patches to accommodate inputs of varying lengths.
The model was evaluated on the newly introduced open-
source benchmark SIREN, which includes tasks such as
anomaly detection and fine-grained anomaly classification
across multiple machine modalities, including acoustics and
vibrations. Experimental results demonstrate that ECHO
achieves state-of-the-art performance in both anomaly detec-
tion and fault classification, highlighting its potential for a
wide range of industrial anomaly detection applications.
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