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ABSTRACT

Large-scale self-supervised Pre-Trained Models (PTMs) have shown
significant improvements in the speaker verification (SV) task by
providing rich feature representations. In this paper, we utilize
w2v-BERT 2.0, a model with approximately 600 million parameters
trained on 4.5 million hours of unlabeled data across 143 languages,
for the SV task. The MFA structure with Layer Adapter is em-
ployed to process the multi-layer feature outputs from the PTM and
extract speaker embeddings. Additionally, we incorporate LoRA
for efficient fine-tuning. Our model achieves state-of-the-art results
with 0.12% and 0.55% EER on the Vox1-O and Vox1-H test sets,
respectively. Furthermore, we apply knowledge distillation guided
structured pruning, reducing the model size by 80% while achieving
only a 0.04% EER degradation. Source code and models are released
at https://github.com/ZXHY-82/w2v-BERT-2.0_SV.

Index Terms— speaker verificaition, w2v-BERT 2.0, LoRA,
knowledge distillation, structured pruning

1. INTRODUCTION

Speaker verification (SV) aims to authenticate the identity of a
speaker by analyzing the voice signal. In recent years, significant
advancements in deep learning, coupled with large-scale labeled
datasets [1–5], have led to substantial improvements in the perfor-
mance of deep neural network-based SV systems [6–8].

However, the scale of existing labeled datasets remains insuffi-
cient to meet the increasing complexity of model architectures. As
a result, researchers have turned to large-scale Pre-Trained Models
(PTMs) [9–13], which are typically trained on hundreds of thou-
sands or even millions of hours of unlabeled speech data. These
models offer powerful feature representations that can significantly
enhance performance on downstream tasks. Chen et al. [13, 14]
employ a layer-wise weighted average of PTM’s features, followed
by a speaker model such as ECAPA-TDNN [6] for the SV task. Kim
et al. [15] introduces Layer-wise Attentive Pooling, which applies
time-dynamic weighting to multi-layer representations, overcom-
ing the limitation of conventional weighted summation that ignores
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certain layers. Peng et al. [16] introduces Context-Aware Multi-
Head Factorized Attentive Pooling, which incorporates contextual
information and grouped queries, thereby obtaining more robust
utterance-level representations. Zhao et al. [17] and Cai et al. [18]
build upon the concept of MFA-Conformer [19], concatenating all
or part of the features from different PTM layers to capture richer
and more comprehensive speaker representations.

Previous studies focused on Transformer-based self-supervised
PTMs for the SV task [13–16]. In contrast, w2v-BERT 2.0 [12]
is a self-supervised PTM built on a Conformer-based architecture,
which has been demonstrated by MFA-Conformer [19] to be effec-
tive for SV and superior to the Transformer-based architecture. Fur-
thermore, w2v-BERT 2.0 adopts a training strategy that optimizes
both a contrastive loss and a masked prediction loss simultaneously,
and trained on 4.5 million hours of unlabeled audio covering 143 lan-
guages, leading to strong performance on audio classification tasks.

In this work, we utilize w2v-BERT 2.0 as the encoder for the
SV task. Speaker embeddings are extracted using the MFA [19]
structure, and a Layer Adapter [18] module is introduced for each
layer’s output before concatenation, enabling better adaptation of the
PTM’s output to the specific task domain. Additionally, Low-Rank
Adaptation(LoRA) [20] is employed for efficient fine-tuning. To en-
hance the model’s practicality for real-world deployment, we apply
a knowledge distillation guided structured pruning technique [21],
which prunes the PTM while minimizing performance degradation.

The primary contributions of this paper can be summarized as
follows:

• We are the first to apply the w2v-BERT 2.0 PTM to the SV task,
achieving state-of-the-art(SOTA) results of 0.12% and 0.55% EER
on the Vox1-O and Vox-H test sets, respectively.

• We employ the MFA structure, combined with the Layer Adapter
and LoRA modules, to efficiently adapt the model to the SV task.

• We utilize a knowledge distillation guided structured pruning
strategy, reducing the model size by 80% with only a 0.04% EER
degradation.

2. METHODS

2.1. Pre-trained Model: w2v-BERT 2.0

w2v-BERT 2.0 [12] is a large-scale multilingual self-supervised
model, designed for speech representation and introduced in the
SeamlessM4T framework [12]. Building on the w2v-BERT [22]
architecture, it consists of 24 conformer layers and integrates both
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Fig. 1: Module architecture for speaker verification with w2v-BERT 2.0 and knowledge distillation guided structured pruning.

contrastive learning and masked language modeling. The model is
trained on 4.5 million hours of unlabeled audio data, covering 143
languages. In this paper, we apply w2v-BERT 2.0 for the SV task.
Given a speech utterance x, we first extract its fbank features, and
then input them into the PTM to obtain the features of each layer:

[h0, h1, . . . , hL] = W2v-BERT-2.0(Fbank(x)) (1)

where hi ∈ RD×T represents the output of the i-th conformer layer,
with D as the hidden dimension and T as the number of frames.

2.2. Layer-wise Weighted Average Model

The layer-wise weighted average approach [13] is currently one of
the most widely used and effective methods for fine-tuning a PTM
on the SV task. In this method, each layer of the PTM is assigned a
learnable weight, which is updated during training. The final frame
feature H is obtained by computing a weighted average of all layer
outputs as shown in Fig.1(a), replacing the Fbank feature fed into the
speaker model for extracting the speaker embedding.

H =

L∑
i=0

ewi∑L
j=0 e

wj
· hi (2)

where wi is the weight of the i-th layer, and hi is the feature output
from the i-th layer.

2.3. Multi-scale Feature Aggregation Model

Another strategy for fine-tuning PTMs is Multi-scale Feature Aggre-
gation. Following MFA-Conformer [19], the features of all layers
are concatenated and fed into an Attention Statistics Pooling (ASP)
module [23]. Unlike weighted averaging, this direct concatenation
preserves the full layer information, while ASP learns the relative
importance across layers and dimensions. The speaker embedding
E is then obtained via a linear transformation of the ASP output.

E = Linear(ASP(Concat(h0, h1, . . . , hL))) (3)

2.4. Layer Adapter for Model Adaptation

Moreover, considering that directly using the raw layer features
for the SV task could lead to poor generalization, we introduce a
lightweight Layer Adapter [18] module for each layer output before

concatenation. The adapter structure consists of two linear layers
followed by layer normalization and a rectified linear unit activation
function. The first linear layer projects the input feature from di-
mension d to a hidden size of d′, while the second linear layer maps
the d′-dimensional representation to another d′-dimensional space.

2.5. LoRA for Model Adaptation

Compared to full fine-tuning, LoRA [20] adapts PTMs efficiently
by introducing a small number of trainable parameters in a low-rank
space, reducing both computational and memory costs while main-
taining effective task adaptation. In this paper, we apply LoRA to the
query and value weights of PTM’s self-attention module. The update
mechanism for the model’s weight matrix is described as follows:

W ′ = W +
α

r
·A ·B (4)

where W ∈ Rd×k is the original weight matrix, A ∈ Rd×r and
B ∈ Rr×k are the low-rank matrices, r is the rank of the adaptation,
and α is a scaling factor that controls the magnitude of the update.

2.6. Structured Pruning with Knowledge Distillation

The large parameter size and computational cost of PTMs pose sig-
nificant challenges for deployment on resource-constrained devices.
Inspired by [21], we apply knowledge distillation guided structured
pruning to the w2v-BERT 2.0 model. To preserve the original rep-
resentational capacity of the model, a teacher–student framework is
employed, aligning the outputs of the pruned student model with
those of the unpruned teacher model. The distillation loss combines
L1 and cosine distances with equal weights:

Ldistill =

L∑
l=0

T∑
t=1

(
L1(h

t
i, ĥ

t
i)− cosine(ht

i, ĥ
t
i)
)

(5)

where L denotes the number of layers, T denotes the number of
frames, ht

i and ĥt
i represent the t-th frame output of the i-th layer

from the teacher and student models, respectively.
Pruning is achieved by optimizing the L0 regularization term

||θ||0, where θ denotes the parameters to be pruned. However, the L0
term is discrete and non-differentiable. To address this, the parame-
ters targeted for pruning are modeled as random variables governed
by the Hard Concrete distribution, as described in [21]:

θ = {θ̂jzj}Jj=1, zj ∼ q(zj |αj) (6)



where θ̂j denotes the j-th group of prunable parameters, and zj is a
stochastic binary gate sampled from the Hard Concrete distribution:

sj = σ(
log uj − log(1− uj) + logαj

β
),

zj = min(1,max(0, (ζ − γ) · sj + γ))

(7)

where uj is drawn from a uniform distribution, β is a temperature
parameter controlling the smoothness of sj , and ζ and γ control the
upper and lower bounds of sj . We set β = 2/3, γ = −0.1, and
ζ = 1.1. Finally, the expected value of the L0 norm is given by:

Eq(θ|θ̂,α)[||θ||0] =
|G|∑
j=1

|g| · σ(logαj − β log
−γ

ζ
) (8)

where |G| denotes the number of groups and |g| is the number of
parameters in the g-th group.

The final loss function employs the augmented Lagrangian
method [24] for more effective fine-grained control of the sparsity
in the pruned model:

max
λ1,λ2

min
θ̂,α

Eq(θ| ˆθ,α)[Ldistill + λ1(||θ||0 − t) + λ2(||θ||0 − t)2] (9)

where λ1 and λ2 are learnable Lagrange multipliers and t represents
the predefined target sparsity.

3. EXPERIMENTS

3.1. Datasets

The experiments are conducted using the VoxCeleb1&2 [1, 2],
VoxBlink2 [3] and CN-Celeb1&2 [4, 5] datasets. For VoxCeleb
model training, we utilize the VoxCeleb2 development set and the
VoxBlink2 dataset. During the evaluation phase, both the Vox-
Celeb1 development and test sets are used. The SV performance
is evaluated based on three official trial lists: Vox1-O, Vox1-E and
Vox1-H. For CN-Celeb, only the development sets of CN-Celeb1
and CN-Celeb2 are used for training. We choose to average all the
embeddings that belong to the same enrollment speaker to get the
final speaker embedding for the CN-Celeb test set evaluation.

3.2. Model Configuration

We use w2v-BERT 2.0 as the encoder to extract features from each
layer, followed by the design of four distinct modules for speaker
embedding extraction, as described below:

Layer-wise Weighted Average Model: Similar to [13], we uti-
lize the small ECAPA-TDNN model as the speaker model to process
the weighted average of all layer outputs.

MFA Model: This model consists of an ASP module and a Lin-
ear module, where the outputs from all layers are concatenated and
directly fed into the ASP module. The speaker embedding dimen-
sion is set to 256, and the hidden dimension of the ASP module is
matched to the layer dimension.

Layer Adapter with MFA model: Building upon the MFA
model, we add a Layer Adapter module after each layer. The hid-
den dimension d′ of the Layer Adapter is set to 128, while the ASP
module’s hidden dimension is also set to d′.

LoRA with Layer Adapter and MFA model: In this model,
LoRA is applied to the query and value linear layers of the self-
attention modules in each Conformer layer of the PTM. The rank r
is set to 64, and the weight scaling factor α is set to 128.

3.3. Training Details

Our training process is divided into three stages as follows:
i) PTM freeze training: In this phase, the PTM is frozen. The

acoustic features are 80-dimensional fbank coefficients with a frame
length of 25ms and a hop size of 10ms. These features are nor-
malized using mean and standard deviation before being fed into
the PTM. On-the-fly data augmentation [27] is applied by adding
background noise or convolutional reverberation noise. The MU-
SAN [28] and RIR Noise [29] datasets are used as noise sources and
room impulse response functions, respectively. The speed perturba-
tion [30], which speeds up or down each utterance by a factor of
0.9 or 1.1, is applied to yield shifted pitch utterances that are con-
sidered from new speakers, but is not utilized during training with
the VoxBlink2 dataset. AdamW [31] optimizer with weight decay
of 1e-4 is used, along with a StepLR scheduler with 5 epochs decay.
The learning rate starts at 1e-4 and decreases to 1e-5, with a decay
factor of 0.1. The margin and scale of ArcFace [32] are set to 0.2 and
32, respectively. A linear warm-up learning rate schedule is used for
the first 5 epochs to stabilize training. The input frame length is set
between 200 and 300.

ii) Joint fine-tuning: Subsequently, the PTM is unfrozen for
fine-tuning. The learning rate starts at 1e-5 and decays to 5e-6 us-
ing a cosine decay schedule over 2 epochs, with a total of 4 epochs
dedicated to fine-tuning.

iii) Large margin fine-tuning and score calibration: In this
stage, the Large-Margin Fine-Tune (LMFT) [33] strategy is intro-
duced, using only the VoxCeleb2 dataset. All data augmentation
strategies are stopped. The input frame length is set between 500
and 600. For ArcFace, a margin of 0.5 is applied. The learning rate
starts at 1e-5 and decays to 5e-6 using a cosine decay schedule over
1 epoch, with a total of 2 epochs dedicated to fine-tuning. Addition-
ally, AS-norm [34] and QMF [35] are used for scoring calibration.

3.4. Pruning Details

We perform structured pruning on the joint fine-tuned w2v-BERT
2.0 model, focusing on the FFN intermediate dimensions, convolu-
tion channels, and the number of attention heads of each Conformer
layer. First, the teacher-student framework is initialized with the
w2v-BERT 2.0 model, the teacher model remains frozen. The target
sparsity increases linearly to the pre-set value over the first 10,000
items. The total number of epochs is 20. AdamW optimizer is used,
with a learning rate of 2e-4 and 2e-2 for the student model parame-
ters and sparsity-related parameters, respectively. After pruning, the
pruned student model is further distilled by an additional 20 epochs
from the teacher model. Finally, the pruned student model replaces
the initial joint fine-tuned w2v-BERT 2.0 model, and further fine-
tuning on the SV task based on the stages outlined in Section 3.3.

4. RESULTS

Table 2 shows the SV performance of different w2v-BERT 2.0 based
model architectures, as described in Section 3.2. The results show
that the features extracted from the w2v-BERT 2.0 provide substan-
tial benefits for the SV task. Even with the simplest MFA structure,
the model achieves an EER of 0.26% on the Vox1-O test set. The in-
troduction of the Layer Adapter effectively transforms the raw fea-
tures from the PTM to better suit the SV task, while significantly
reducing the number of parameters from 65.6M to 6.2M through di-
mensionality scaling, resulting in an improved EER of 0.18%. For
the model using the layer-wise weighted average method, although



Table 1: Performance comparison of the w2v-BERT 2.0 based SV model with other SV models.

Frontend Model Params LMFT Score
calibration

Vox1-O Vox1-E Vox1-H CN-Celeb Test

EER(%) mDCF EER(%) mDCF EER(%) mDCF EER(%) mDCF

Fbank

ECAPA-TDNN(C=1024) [6] 14.7M × × 0.87 0.107 1.12 0.132 2.12 0.210 - -
CAM++ [7] 7.2M × × 0.73 0.091 0.89 0.100 1.76 0.173 6.78‡ 0.383‡

ReDimNet-B6 [8] 15.0M ✓ ✓ 0.37 0.030 0.53 0.051 1.00 0.097 - -
ERes2NetV2 [25] 17.8M ✓ × 0.61 0.054 0.76 0.082 1.45 0.143 6.04‡ 0.362‡

ResNet221 [26] 23.8M ✓ ✓ 0.51 - 0.68 - 1.21 - 5.66‡ 0.330‡

ResNet293 [3] 98.9M ✓ ✓ 0.17* 0.006* 0.37* 0.037* 0.68* 0.070* - -

HuBERT Large ECAPA-TDNN(C=512) [14] 317+8.8M ✓ ✓ 0.59 - 0.65 - 1.23 - - -

Wav2Wec2.0 Large ECAPA-TDNN(C=512) [14] 317+8.8M ✓ ✓ 0.59 - 0.63 - 1.14 - - -

UniSpeech-SAT Large ECAPA-TDNN(C=512) [14] 317+8.8M ✓ ✓ 0.54 - 0.57 - 1.18 - - -

WavLM Large
ECAPA-TDNN(C=512) [13] 317+8.8M ✓ ✓ 0.38 - 0.48 - 0.99 - - -

CA-MHFA [16] 317+2.3M ✓ ✓ 0.42 - 0.48 - 0.96 - - -
LAP+ASTP [15] 317+2.3M ✓ ✓ 0.37 0.059 0.50 0.055 1.01 0.099 - -

Nemo Large MFA [18] 131M ✓ ✓ 0.43 0.062 0.66 0.071 1.35 0.135 - -

LoRA Adapter MFA 580+6.2M
× × 0.23* 0.029* 0.38* 0.040* 0.81* 0.082* 4.67‡ 0.297‡
✓ × 0.14* 0.020* 0.31* 0.032* 0.73* 0.071* - -w2v-BERT 2.0
✓ ✓ 0.12* 0.025* 0.27* 0.028* 0.55* 0.051* - -

* indicates results obtained using the VoxCeleb2 and VoxBlink2 datasets for training. ‡ indicates results obtained using only the CN-Celeb1&2 datasets for training.

Table 2: Performance comparison of different w2v-BERT 2.0 based
model architectures.

Model Data Params Vox1-O EER

ECAPA-TDNN(freeze PTM) 0.49%
+ LMFT (Joint Fine-tuning) 0.26%
+ Joint Fine-tuning 0.29%
++ LMFT

VoxCeleb2 580+8.8M

0.22%

MFA(freeze PTM) 0.46%
+ LMFT (Joint Fine-tuning) 0.28%
+ Joint Fine-tuning 0.38%
++ LMFT

VoxCeleb2 580+65.6M

0.26%

Adapter MFA(freeze PTM) 0.43%
+ LMFT (Joint Fine-tuning) 0.22%
+ Joint Fine-tuning 0.28%
++ LMFT

VoxCeleb2 580+6.2M

0.18%

LoRA Adapter MFA(freeze PTM) 0.30%
+ LMFT (Joint Fine-tuning) 580+12.5M 0.22%
+ Joint Fine-tuning (LoRA merge) 0.30%
++ LMFT

VoxCeleb2
580+6.2M 0.24%

LoRA Adapter MFA(freeze PTM) 0.27%
+ LMFT (Joint Fine-tuning) 580+12.5M 0.15%
+ Joint Fine-tuning (LoRA merge) 0.23%
++ LMFT

VoxCeleb2
&

VoxBlink2 580+6.2M 0.14%

CN-Celeb Test EER

Adapter MFA(freeze PTM) 6.51%
+ Joint Fine-tuning

CnCeleb1
&2

580+6.2M 5.17%

LoRA Adapter MFA(freeze PTM) 580+12.5M 4.87%
+ Joint Fine-tuning (LoRA merge)

CnCeleb1
&2 580+6.2M 4.67%

it is followed by a powerful ECAPA-TDNN network, the weighted
summation of features across layers leads to greater information loss
compared to feature concatenation, ultimately achieving an EER of
only 0.22%. The use of the LoRA module has significantly enhanced
training efficiency. In particular, during the PTM freezing phase, the
model’s performance on the Vox1-O test set improved from 0.43%
to 0.30%, and on the CN-Celeb test set from 6.51% to 4.87%. Addi-
tionally, before fine-tuning with PTM unfrozen, the LoRA module’s
weights are merged into the PTM. However, it is important to note
that empolying the LoRA module on small and simple dateset may
pose a risk of overfitting. For instance, when training only on the
VoxCeleb2 dataset, performance slightly declined after unfreezing
the PTM. After incorporating the VoxBlink2 dataset, the overfitting

Table 3: Results of knowledge distillation guided structured prun-
ing on a w2v-BERT 2.0 based SV model trained on VoxCeleb2 and
VoxBlink2. MACs and FLOPs were measured on 1-s long segments.

Model Sparsity Params MACs FLOPs LMFT Vox1-O EER

LoRA Adapter
MFA

0% 580+6.2M 28.75G 57.72G × 0.23%
✓ 0.14%

≈ 80% 124+6.2M 6.31G 12.75G × 0.35%
✓ 0.18%

issue was effectively mitigated.
Table 1 reports a comparison between our w2v-BERT 2.0 based

SV model and other SV models. After LMFT and score calibration,
our model achieves an EER of 0.12% on the Vox1-O test set, out-
performing the SOTA ResNet293’s result of 0.17% EER [3]. More-
over, when trained only on the VoxCeleb2 dataset, the current SOTA
PTM-based model yields 0.37% EER on the Vox1-O test set [15],
whereas our model achieves 0.18% EER only using LMFT. Addi-
tionally, our model achieves an EER of 4.67% on the CN-Celeb test
set by only using the CnCeleb data for training, further demonstrat-
ing the robustness and generalization.

Table 3 presents the results of knowledge distillation guided
structured pruning applied to the w2v-BERT 2.0 based SV model.
At a sparsity level of 80%, our approach achieves an EER of 0.18%
on the Vox1-O test set after LMFT. Compared to the baseline sys-
tem, the performance degradation is only 0.04% EER, demonstrating
promising potential for practical deployment.

5. CONCLUSION

In this paper, we explore the application of the w2v-BERT 2.0 PTM
in the SV task. We adopt a Layer Adapter based MFA framework,
combined with efficient fine-tuning via LoRA, to aggregate multi-
layer features from the PTM and extract speaker embeddings. The
experimental results show that our model achieves the SOTA per-
formance, with an EER of 0.12% on the Vox1-O test set and 4.67%
on the CN-Celeb test set. Furthermore, to enhance practical deploy-
ability, we apply knowledge distillation guided structured pruning,
reducing the PTM’s parameter count by 80% while incurring only a
0.04% increase in EER. Source code and models are released.
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