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ABSTRACT

Component-level audio Spoofing (CompSpoof) targets a new
form of audio manipulation where only specific compo-
nents of a signal, such as speech or environmental sound,
are forged or substituted while other components remain
genuine. Existing anti-spoofing datasets and methods treat
an utterance or a segment as entirely bona fide or entirely
spoofed, and thus cannot accurately detect component-level
spoofing. To address this, we construct a new dataset, Comp-
Spoof, covering multiple combinations of bona fide and
spoofed speech and environmental sound. We further pro-
pose a separation-enhanced joint learning framework that
separates audio components apart and applies anti-spoofing
models to each one. Joint learning is employed, preserv-
ing information relevant for detection. Extensive experi-
ments demonstrate that our method outperforms the base-
line, highlighting the necessity of separate components and
the importance of detecting spoofing for each component
separately. Datasets and code are available at: https:
//github.com/XuepingZhang/CompSpoof.

Index Terms— Audio Anti-spoofing, Audio Deepfake
Detection, Speech Separation, Component-Level Audio Anti-
spoofing, Joint Learning

1. INTRODUCTION

Component-level audio anti-spoofing addresses a new type of
audio manipulation where only specific components of a sig-
nal are forged or substituted while the rest remains authen-
tic. Unlike conventional spoofing attacks [1, 2] that gener-
ate or convert an entire utterance or segment along the time
axis, component spoofing operates at a finer granularity: for
instance, the speech content may be substituted with a syn-
thetic voice while keeping the genuine environment noise, or
conversely, the original speech may be preserved while the
environment sound is generated or substituted. Such compo-
nent manipulations are more complex to detect because they
can slip through systems made for whole-utterance or time-
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domain partial spoofing [3, 4], and also sound more real to
human listeners.

Over the past decade, the ASVspoof [5, 6] and other re-
lated datasets [7, 8, 9, 10] have driven significant progress
in audio anti-spoofing research. Current systems [11, 12, 13,
14] typically formulate spoof detection as binary classifica-
tion between bona fide and spoofed utterances. Existing anti-
spoofing methods [12, 15, 16, 17] have achieved strong re-
sults under these formulations. However, these approaches
implicitly assume that an utterance is either entirely genuine
or entirely spoofed. The ADD challenges [18, 19] and related
datasets [18, 19, 20, 21] have recently highlighted an issue of
partial spoofing, where only specific time spans within an ut-
terance are fake. However, even this setting does not address
the scenario of component-level spoofing. Existing methods
are unable to evaluate the genuineness of separate audio com-
ponents in a mixture, which leads to poor performance when
spoofing affects only one component of the audio scene.

To address this gap, we introduce both a new compo-
nent spoofing dataset and a tailored separation-enhanced joint
learning framework. The dataset contains about 2,500 utter-
ances formed by mixing bona fide and spoofed speech or envi-
ronment audio from multiple sources. Each utterance belongs
to one of five categories, covering all combinations of genuine
and spoofed speech and environmental sound. Building on
this dataset, we propose a separation-enhanced joint learning
framework: a mixture detection model first identifies utter-
ances that may contain synthetic or substituted content, after
which each part is then passed to its own anti-spoofing model:
one for speech and one for environmental sound. The outputs
of these models are combined and mapped to five classes. To
preserve more discriminative information for spoofing detec-
tion in the speech separation module, we jointly train the sep-
aration model with the anti-spoofing models. Our contribu-
tions can be summarized as follows.

• We first present the component-level audio anti-spoofing
concept, and introduce the first component spoofing
dataset, covering diverse combinations of genuine and
spoofed speech/environment audio.

• We propose a joint learning framework that couples
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Fig. 1. Overview of the baseline and proposed separation-enhanced joint learning framework. “ → ’ illustrates the joint learning
data flow between the separation and anti-spoofing models.

separation and anti-spoofing, enabling separated sig-
nals to preserve spoof-relevant information.

• Extensive experiments demonstrate that our method
outperforms the baseline, underscoring the importance
of separating components and detecting spoofing for
each.

2. COMPSPOOF DATASET

The CompSpoof dataset is designed for studying component-
level anti-spoofing. The dataset comprises 2,500 audio sam-
ples, evenly distributed across five classes, with 500 samples
per class. Table 1 summarizes the class definitions.

In the mixed part of this dataset, bona fide speech comes
from ASVspoof5 [6] and CommonVoice [22], spoofed speech
from ASVspoof5 [6] and SSTC [23], with bona fide envi-
ronmental sounds from VGGSound [24] and spoofed envi-
ronmental sounds from VCapAV [25]. Speech segments are
chosen to contain clear voice activity, while environmental
sounds are sampled from diverse scenarios such as indoor,
street, and natural settings to ensure acoustic variety. In the
original audio part of this dataset, we choose authentic audio
utterances with both speech and simultaneously captured en-
vironmental audio signals from the VGGSound dataset [24].
The audio durations range from 5 to 21 seconds. More details
can be found at: https://xuepingzhang.github.

io/CompSpoof-dataset/.
During audio processing, all files are resampled to 16

kHz, with the shorter signal determining the final duration
and longer ones truncated. To control the relative promi-
nence of speech and environmental sound, the environmental
sound is adjusted in amplitude to reach a predefined SNR
[26] relative to the speech.

The dataset is partitioned into training, development, and
evaluation sets using stratified sampling to maintain class bal-
ance, with a ratio of 70%, 10%, 20%.

3. SEPARATION-ENHANCED JOINT LEARNING
FRAMEWORK

3.1. Baseline

Fig. 1 a) is the baseline framework; we adopt the XLSR-
AASIST model [12], a widely used architecture for spoofing
detection. Initially designed for binary classification (bona
fide vs. spoofed), we extend it to a five-class classification
task corresponding to the CompSpoof dataset. Although this
direct extension is straightforward, the model does not explic-
itly disentangle the speech and environmental components,
which may lead to confusion when only one component
is spoofed. The limitation motivates the introduction of a
separation-based framework.
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Table 1. CompSpoof dataset class definitions
ID Mixed Speech Environment Class Label Description
0 ✓ Bona fide Bona fide original Original bona fide speech and corresponding environment audio without mixing
1 ✗ Bona fide Bona fide bonafide bonafide Bona fide speech mixed with another bona fide environmental audio
2 ✗ Spoofed Bona fide spoof bonafide Spoof speech mixed with bona fide environmental audio
3 ✗ Bona fide Spoofed bonafide spoof Bona fide speech mixed with spoof environmental audio
4 ✗ Spoofed Spoofed spoof spoof Spoof speech mixed with spoof environmental audio

3.2. Separation-Enhanced Joint Learning Framework

Our method aims to explicitly separate speech and environ-
mental sound components from an audio mixture and lever-
age them for robust anti-spoofing. As shown in Fig. 1(b), the
framework consists of four models: a binary mixture detec-
tion model (implemented by XLSR-AASIST [12]), a UNet-
based separation network, two dedicated anti-spoofing mod-
els for speech and environmental sound components (both im-
plemented by XLSR-AASIST), and a joint learning mecha-
nism that integrates their outputs. The details are introduced
below.

UNet-based Separation Network: To explicitly sep-
arate speech and environmental sound, we design a UNet-
based separation network that operates in the STFT domain.
Given an input mixed waveform, the network first computes
its STFT to obtain the complex spectrogram. The speech
component is estimated by predicting a complex mask via the
UNet [27], which is then applied to the mixture spectrogram.
The inverse STFT (ISTFT) reconstructs the speech waveform
from the masked spectrogram.

Since environmental sounds are highly diverse, obtain-
ing a reliable environmental sound is a challenging task. We
therefore compute the environmental sound in the STFT do-
main using an adaptive soft-mask [28]. Firstly, the remain-
ing residual is computed by subtracting the separated speech
waveform from the mixed waveform. Let S(f, t) and R(f, t)
denote the magnitudes of the separated speech and residual
spectrograms, respectively. We first compute a dynamic scal-
ing factor α to balance the speech and residual magnitudes as
Eq. 1.

α =
mean(|R(f, t)|)

mean(|S(f, t)|) + ϵ
, (1)

where ϵ is a small constant for numerical stability. The envi-
ronmental sound mask Menv(f, t) is then defined as Eq. 2

Menv(f, t) = 1− tanh
( |S(f, t)|
|R(f, t)|+ ϵ

· α
)
, (2)

The soft-mask serves to suppress speech leakage in the resid-
ual, preventing residual speech from being misclassified as
environmental sound. Moreover, the separated environment
waveform is obtained via ISTFT. Finally, the network is
trained using the Mean Squared Error (MSE) between the
separated and reference waveforms for both speech and envi-
ronmental sound.

Joint Learning: Training the separation and anti-
spoofing models independently may cause the separation
network to discard information that is important for detect-
ing spoofed components. To address this, we adopt a joint
learning strategy, where the separation network and the anti-
spoofing models are trained together. Joint learning ensures
that the separated signals retain features relevant to anti-
spoofing.

In our framework, after obtaining the separated speech
W speech

sepa and environmental sound W env
sepa. Both the separated

and the reference waveforms are then fed into the correspond-
ing anti-spoofing models. The outputs from the separated
components are compared to their target labels using cross-
entropy loss Lspeech

cls and Lenv
cls . In addition, a consistency loss

Lcons is computed as the KL-divergence [29] between the pre-
dictions on the separated components and those on the refer-
ence waveform, encouraging the anti-spoofing outputs to be
coherent, as shown in Eq. 3.

Lcons = Lenv
cons + Lspeech

cons

= KL(penvref ∥ penvsepa) + KL(pspeechref ∥ pspeechsepa ),
(3)

where pspeechref and penvref are the softmax outputs from the ref-
erence components in the original mixture, and pspeechsepa and
penvsepa are from the separated speech and environmental sound.

Finally, the overall joint loss Ljoint combines the MSE
separation loss Lsepa, the mixture detection loss Lmixed

cls , the
component-wise classification losses Lspeech

cls and Lenv
cls , and

the consistency loss Lcons as shown in Eq. 4

Ljoint = κ ∗Lsepa +Lmixed
cls +Lspeech

cls +Lenv
cls +Lcons, (4)

where κ is a constant. Joint training ensures the separation
preserves spoof-relevant features while anti-spoofing mod-
els learn from both separated components and the reference
waveform.

Inference: During inference, the mixed waveform is first
passed through the mixture detection model to obtain a bi-
nary decision (c0 vs c1234). The separation model then pro-
cesses the signal to generate speech and background com-
ponents, which are individually evaluated by the speech de-
tector and environment detector, yielding their own binary
decisions (c13 vs c24 and c12 vs c34). These three deci-
sions are then combined and mapped to one of the five target
classes. The above procedure produces segment-level predic-
tions. Segment-level predictions for all chunks of an audio



Table 2. Classification performance (Precision / Recall /
F1) for baseline, Separation-Enhanced Framework (SEF),
and Separation-Enhanced Framework with Joint Learning
(SEF+JL) on dev and eval sets. The “Class” column shows
IDs; the specific categories and their descriptions are provided
in Table 1.

Method Class Dev eval

Baseline

0 1.000 / 1.000 / 1.000 0.962 / 1.000 / 0.980
1 0.746 / 0.820 / 0.781 0.827 / 0.860 / 0.843
2 0.811 / 0.860 / 0.835 0.705 / 0.790 / 0.745
3 0.778 / 0.700 / 0.737 0.860 / 0.800 / 0.829
4 0.872 / 0.820 / 0.845 0.793 / 0.690 / 0.738

ALL 0.841 / 0.840 / 0.840 0.829 / 0.828 / 0.827

SEF

0 1.000 / 1.000 / 1.000 0.990 / 1.000 / 0.995
1 1.000 / 0.340 / 0.508 0.825 / 0.330 / 0.471
2 0.710 / 0.440 / 0.543 0.646 / 0.420 / 0.509
3 0.610 / 0.940 / 0.740 0.588 / 0.800 / 0.678
4 0.613 / 0.920 / 0.736 0.561 / 0.889 / 0.688

ALL 0.787 / 0.728 / 0.705 0.722 / 0.688 / 0.668

SEF
+JL

0 1.000 / 1.000 / 1.000 0.980 / 1.000 / 0.990
1 0.894 / 0.840 / 0.866 0.908 / 0.890 / 0.899
2 0.860 / 0.980 / 0.916 0.903 / 0.840 / 0.871
3 0.849 / 0.900 / 0.874 0.909 / 0.900 / 0.905
4 0.977 / 0.840 / 0.903 0.841 / 0.909 / 0.874

ALL 0.916 / 0.912 / 0.912 0.908 / 0.907 / 0.908

file are combined using majority voting to determine the final
file-level label.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

Preprocessing: All speech samples are normalized before
being fed into the models. For the baseline methods, audio
preprocessing follows the same procedure as in [12]. For the
separation-based methods, audio is chunked with a window
size of 4 seconds and a hop of 2 seconds. We performed
Short-Time Fourier Transform (STFT) on the 16 kHz audio
with a hop length of 16 ms and a window size of 64 ms.

Training: All models are trained on the same training
and validation splits using Adam [30], with learning rates of
1× 10−3 for the separation model and 1× 10−5 for the anti-
spoofing models. In the joint framework, models are trained
independently for the first 4 epochs, then jointly from epoch
5. In the Ltotal, κ = 10.

Evaluation: We evaluate both the separation-based and
baseline models on the dev and eval sets of CompSpoof, using
file-level Precision, Recall, and F1 as the evaluation metrics.

4.2. Experimental results and analysis

Comparative experiments: Table 2 shows that SEF+JL
consistently outperforms both the baseline and SEF, espe-
cially for mixed-content classes where speech and environ-

Table 3. Segment-level detection performance (Precision /
Recall / F1) on separated audio with/without Joint Learning
(JL) on CompSpoof eval set.

Model JL Precision / Recall / F1
Speech

Anti-spoofing
✓ 0.860 / 0.875 / 0.863
✗ 0.777 / 0.764 / 0.720

Environment
Anti-spoofing

✓ 0.846 / 0.863 / 0.849
✗ 0.732 / 0.742 / 0.718

ment components differ. For example, in the spoof bonafide
class (Class ID = 2), F1 increases from 0.835 (baseline) to
0.916 (SEF+JL) on the development set. The improvement
reflects that joint learning stabilizes classification across com-
ponents and enhances robustness in challenging conditions.

In contrast, SEF without joint learning exhibits significant
instability. While perfect performance is achieved on simple
bona fide (Class ID = 0), F1 scores for mixed audio (Class ID
= 1, 2, 3, 4) can drop to 0.508 or lower, indicating that sepa-
ration alone may distort downstream representations without
the guidance of joint learning. This emphasizes that joint op-
timization is critical for effectively leveraging separation in
anti-spoofing detection.

Segment-Level Model Analysis: Table 3 presents the
segment-level performance of each detection model on both
separated and original signals, with and without Joint Learn-
ing (JL). Here, Segment-level metrics reflect predictions on
individual audio chunks prior to aggregation.

Table 3 shows that joint learning significantly improves
the performance of anti-spoofing. For the speech anti-
spoofing, F1 rises from 0.720 to 0.863, and for the envi-
ronment anti-spoofing, F1 increases from 0.718 to 0.849.
These improvements indicate that joint learning enhances
the quality of separated representations and provides bet-
ter supervision for downstream classification. Environment
anti-spoofing consistently performs worse than speech anti-
spoofing, indicating that the XLSR-AASIST-based environ-
ment anti-spoofing model may not be suited for this task.

5. CONCLUSIONS

We presented a component-level audio anti-spoofing method,
tackling audio component manipulations where only speech
or environmental sound is forged. To support this, we con-
structed CompSpoof, the first dataset covering all combina-
tions of component-wise bona fide and spoofed speech or en-
vironmental sound. We proposed a separation-enhanced joint
learning framework that separates audio components and ap-
plies dedicated anti-spoofing models while preserving spoof-
relevant information. Experimental results demonstrate that
our method outperforms baselines, highlighting the effective-
ness of component separation and joint learning.
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