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Abstract. We propose TSELM, a novel target speaker extraction net-
work that leverages discrete tokens and language models. TSELM utilizes
multiple discretized layers from WavLM as input tokens and incorporates
cross-attention mechanisms to integrate target speaker information. Lan-
guage models are employed to capture the sequence dependencies, while
a scalable HiFi-GAN is used to reconstruct the audio from the tokens.
By applying a cross-entropy loss, TSELM models the probability distri-
bution of output tokens, thus converting the complex regression problem
of audio generation into a classification task. Experimental results show
that TSELM achieves excellent results in speech quality and comparable
results in speech intelligibility.
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1 Introduction

In contrast to blind speech separation, which seeks to isolate individual utter-
ances from a mixture of known speakers [20], Target Speaker Extraction (TSE)
focuses on extracting only the voice of the target speaker in a mixture using
auxiliary information [40]. Current models are predominantly discriminative,
employing masking strategies to directly minimize the distance between the es-
timated and clean speech signals [11}/16,[27,/39]. However, these discriminative
approaches often struggle to generalize to unseen data and may introduce unde-
sirable distortions [31]. To solve these issues, researchers have proposed genera-
tive models. This method aims to learn the underlying distribution of the target
speaker’s voice and use this knowledge to generate the clean speech of the target
speaker from a mixture of voices rather than directly mapping from mixed speech
to clean speech. Some generative models, like diffusion models [19] and varia-
tional autoencoders (VAE) [32] have been studied. It has been demonstrated
that generative models can achieve results comparable to those of discriminative
models [10L[19].

The modeling of discretization of audio has gained significant attention with
the advancement of language models (LMs) in modeling texts [3}8}23}24,[29].
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Fig. 1. Overview of our proposed target speaker extraction framework with discrete
tokens and language models.

Researchers are trying to convert audio into discrete tokens and leverage LMs to
model them, thereby simplifying audio generation tasks by transforming com-
plex regression problems into classification tasks . LMs have demonstrated
scalability and unification of different modalities in audio synthesis tasks [4]7][14].
It has also achieved superior performances compared with discriminative models
in tasks such as speech enhancement and blind speech separation [10].

Some discretization methods use Kmeans on the output of Self-
Supervised Learning (SSL) models such as HuBERT and WavLM [5]. SSL
models have demonstrated outstanding performances across numerous down-
stream tasks , as they extract continuous representations rich in semantic
and timbral information from speech. In addition, some works |§|| use neural au-
dio codec for discretization. However, their performances on Speech Separation
are limited .

There are only few works about discretization in Target Speech Extraction
(TSE). SkiM-UniCATS is among the first to use discrete tokens in TSE,
leveraging SSL models like HUBERT and vg-wav2vec . However, it overlooks
the WavLM model, which excels in speech separation . Also, it mainly focuses
on single-layer outputs for discretization. Moreover, its evaluation is limited to
speech quality, neglecting intelligibility and speaker similarity, both crucial for
TSE . We try to address these potential issues by proposing TSELM, which
uses multiple WavLM layers for discretization and adds metrics for intelligibility
and speaker similarity. Our demos are available at E

2 Method

TSELM has three stages: encoding, modeling and decoding. In the encoding
stage, both reference and mixed speech are tokenized using WavLM and Kmeans.

! https://beilong-tang.github.io/ TSELM.demo/
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Fig. 2. Details of the Cross-Attention mechanism in modeling.

The reference speech is passed directly to the encoder, while for the mixed
speech, we concatenate the reference speech to both sides of the mixture be-
fore passing it through the WavLM model. After tokenization, we retain only
the tokens corresponding to the mixed speech. In the modeling stage, an at-
tention embedding mechanism is employed to combine the embeddings from all
layers. A cross-attention mechanism, similar to that used in [38], is applied to
inject speaker-specific information. An encoder-only language model, followed
by a linear classifier, is then used to generate the reconstructed tokens. In the
decoding stage, we leverage the pretrained scalable HiFi-GAN in [18] to recon-
struct the audio from the discrete tokens. Unlike SELM [34], where a conformer
detokenizer is trained to reconstruct WavLM embeddings before passing them
through HiFi-GAN, the scalable HiFi-GAN in [18] uses a dropout mechanism to
directly reconstruct audio from multiple layers of tokens, eliminating the need
for a conformer detokenizer and the complexity of training a separate HiFi-GAN
for each layer. Both the encoder and decoder are kept frozen during training.
An overview of TSELM is shown in Fig[l] Extensive experiments demonstrate
that our method achieves excellent speech quality and comparable intelligibility
results.

2.1 Encoding

We use the pretrained SSL model WavLM Large [5] to encode speech into contin-
uous representations. Specifically, we extract the outputs from six hidden layers:
1,3, 7, 12, 18, and 23, following [17]. Given a speech signal s € R”", the output
of WavLM is a tensor r with shape n x T' x E, where n is the number of output
layers (6 in this case), T is the time dimension, and E represents the embedding
dimension. For tokenization, we apply a separate Kmeans model to each output
layer, with each model using the same number of clusters, denoted by K. After
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tokenization, the continuous embedding 7 is transformed into a discrete tensor d
with shape n x T, where each value d; € (0, K —1). In all our experiments, we set
K = 1000. For both reference and mixed speech, the same Kmeans model and
the same layer combination from WavLM Large are used. The encoder remains
frozen during training.

The encoding strategy for mixed speech is crucial to the performance of the
model. Given a reference speech s, € RT" and a mixed speech s, € RT/, we
follow the previously described procedure to encode the reference speech into a
tensor d, of shape n x T,.. However, for the mixed speech, instead of applying
the encoding directly, we first concatenate it with the reference speech, creating
a signal s’ = [s,, Sm, s,] € RTHT+T") This concatenated signal is then input
into the encoder, producing an output tensor d’ with shape n x (T, + T + T,.),
where T represents the length for the mixed speech embedding. The tensor d’
contains discrete tokens for the two segments of reference speech and the mixed
speech. We extract the portion d corresponding to the mixed speech, resulting
in an output tensor of shape n x T.

This approach is inspired by WavLM [5], which trains the model by overlap-
ping clean speech with an interfering signal covering less than 50% of the speech,
using the first utterance as the primary speaker. This allows WavLM to focus on
producing target speaker dependent embeddings. Our experiments demonstrate
that this concatenation strategy significantly enhances the model’s performance
by guiding it to prioritize the target speaker’s information.

2.2 Modeling

Attention Embedding After obtaining the discrete tensor d with shape 6 x T,
we use 6 learnable embedding tables each with K entires to embed the 6 layers
respectively, each resulting in a tensor of shape T'x E. After embedding, we follow
the same recipe as in [17] to aggregate the tensor by using attention mechanism
to sum all the 6 tensors. This summation keeps the information of each layer
while reducing the dimension of layers and system complexity. After attention
embedding, we obtain reference embedding E, and mixture embedding F,,.

Cross Attention We apply cross-attention module in [38] to inject the reference
embeddings into the mixture. The details are shown in Fig[2] The cross-attention
module consists of a stack of cross-multiple head attention modules, followed by
a Feature-wise Linear Modulation (FiLM) module. We use E,, as the query
and E, as the key and value for the attention module. The output from the
cross-multiple head attention module Ej,; is passed together with E,, to the
FiLM to obtain the final output. The output of FILM E; = FiLM (E,,, Espr) =
YEspr - By + BEspr where v and 3 are learnable parameters denoting the scaling
and shifting vectors respectively.

Language Modeling We use encoder-only transformers containing multiple
self-attention modules to model the embedding F¢. Due to encoder-only style,



the LM is able to learn from all the positions. Finally, 6 linear classifiers each with
dimension K is used to produce the logit scores of the tokens. Cross-entropy loss
is applied between the predicted tokens and the clean tokens, which are obtained
by discretizing the ground truth clean audio.

3 Experiments Setup

3.1 Training

We use the publicly available Kmeans tokenizer and scalable HiFi-GAN decoder
in [25]. The Kmeans tokenizer is trained on train_clean_[100,360,500] of
LibriSpeech [21], and the scalable HiFi-GAN is trained on train_clean_100
of LibriTTS [37]. The modeling stage is trained on train_clean_[100,360]
of LibriSpeech. All training data are generated on the fly with relative SNR
between 0 to 5 dB. The mixture audio and reference audio is clipped to 3 and 4
seconds, respectively.

We utilize the output from hidden layers 1, 3, 7, 12, 18, 23 from WavLM
Large and Kmeans model with K = 1000. We use 1024 as the embedding di-
mension. The cross-attention module consists of 4 transformer encoders, each
with 16 attention heads and an MLP with a hidden dimension of 1024. Layer
normalization is applied after the cross-attention module. The LM of small ver-
sion TSELM-S uses embedding dimension d = 256, absolute sinusoidal positional
embedding, conformer encoders as the backbone of LM. The conformer encoder
consists of 6 layers with a kernel size of 31, each with 4 attention heads, and an
MLP with a hidden dimension of 2048. The medium version TSELM-M uses d =
512 with 8 layers and 8 heads and the large version TSELM-L uses d = 768 with
12 layers and 16 heads. We use AdamW as our optimizer for all the experiments.
The learning rate is 5 x 10~% for TSELM-S and 5 x 10~° for TSELM-M and
TSELM-L. We train our models using 8 GPUs with 32 GB of RAM, each with
batch size 16 for a total of 40,000 steps.

3.2 Evaluation

We evaluate our models using Libri2Mix [6] and WSJ0-2mix [12]. We follow the
recipesﬂ to form the reference speeches for WSJ0-2mix. We use the clean testset
of Libri2MixE|, and the reference speeches are randomly selected. It is shown that
metrics like PESQ, SI-SNR, STOI do not accurately reflect the speech quality of
vocoder outputs due to the fact that the vocoder output does not focus strictly
on frame alignment |10,34]. Instead, we use DNSMOS [26] to measure the speech
quality, and the differential Word Error Rate ({AWER) [33] using the base model
of Whisper [22] to measure the speech intelligibility. For speaker similarity, we use
the ResNet221_LM from the public WeSpeaker |30] to calculate the embedding
cosine speaker similarity.

2 https://github.com /xuchenglin28/speaker _extraction
3 https://github.com/JorisCos,/LibriMix
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3.3 Baseline models

Baseline models are presented in Table [I] and 2] TSELM is compared with
Spex-+ |11], a discriminative separation model trained on Libri2Mix [6]. We also
compare our model with SkiM-UniCATS(vg-wav2vec) from [36], which uses dis-
crete tokens from vg-wav2vec to conduct TSE. Mixture refers to the unprocessed
mixed speech. Target-Discrete refers to the discretized target speech using our
encoder and decoder. It serves as the upper bond for our model performance.
Besides TSELM, we conduct 3 main experiments, named Continuous-WavLM-
L6, TSELM-L-Hybrid and TSELM-S-NoCat using the same training data. For
Continuous-WavLM-L6, we directly pass the embeddings from the 6th hidden
layer output of WavLM Large to the cross-attention without discretization. The
concatenation strategy is still applied to the mixed speech. Mean Square Error
loss is applied between the output embeddings and the clean embeddings. HiFi-
GAN in [1] is used for audio reconstruction. For TSELM-L-Hybrid, inspired
by MaskSR [15], we discretize the reference speech while utilizing the contin-
uous embeddings from the mixed speech. In TSELM-S-NoCat, we utilize the
TSELM-S model architecture but abandon the mixture concatenation strategy
in the encoding step. The code and pretrained models are available at El

Table 1. Results on Libri2Mix clean. In the "Category” column, "G" refers to
generative models, while "D" refers to discriminative models. The "Type" column cat-
egorizes methods as "D" (discrete), "H" (hybrid), or "C" (continuous). For discrete
methods, speaker similarity is compared against the discretized target speech (denoted
as Target-Discrete) instead of the original target speech. It is denoted as "_d".

DNSMOS 1
Syst Cat Type———————dWER | Spk Si
ystem ategory Type SIG BAK OVL J Spk Sim 1
Mixture - - 3.38 3.10 2.65 79.2 0.762

3.47 4.03 3.19 11.8 0.654
3.38 3.77 3.00 19.0 0.922

Target-Discrete
Spex+ [11]

G
D
SkiM-UniCATS(vg-wav2vec) [36] G D - - - - -
Continuous-WavLM-L6 G C 3.57 4.06 3.28 14.6 0.870

TSELM-L-Hybrid G H 3.49 4.05 3.22 20.0 0917 d
TSELM-S-NoCat G D 3.48 4.02 3.19 71.5 0.854_d
TSELM-S G D 3.50 4.06 3.23 281 0.883_d
TSELM-M G D 349 4.04 3.21 29.0 0.892_d
TSELM-L G D 349 4.04 3.21 275 0.895_d

* https://github.com/Beilong-Tang/TSELM



Table 2. Results on WSJ0-2mix.

DNSMOS 1 .
Syst Cat Type——————dWER | Spk S
ystem ategory Type SIG BAK OVL J Spk Sim 1

3.42 3.28 2.81 63.6 -

Mixture

Target-Discrete G - 3.56 4.09 3.30 10.1 0.657
Spex+ [11] D - 349 400 321 150  0.943
SkiM-UniCATS(vg-wav2vec) [36] G D 3.62 4.10 3.37 - -

Continuous-WavLM-L6 G C 3.61 4.08 335 8.0 0.892
TSELM-L-Hybrid G H 3.57 4.10 3.31 126 0.915_d
TSELM-S-NoCat G D 3.55 4.08 3.28 64.5 0.888 _d
TSELM-S G D 3,57 410 3.32 194 0915 d
TSELM-M G D 3.57 4.10 3.32 18.8 0.921 d
TSELM-L G D 3.57 4.10 3.31 17.8 0.924 d

4 Results and Discussions

Table [I] and 2] present the performance of different systems evaluated on the
Libri2Mix testset and WSJ0-2mix testset. DNSMOS is computed over the out-
put since this metric is reference-free. dAWER is calculated with respect to the
clean speech. For continuous methods, speaker similarity is directly computed
against the clean speech. However, since discretization inherently results in some
loss of speaker information—Target-Discrete shows a speaker similarity score of
0.654 on Libri2Mix —we follow |17] to assess the speaker similarity of the output
from the discrete methods against the target audio produced by discretizing the
clean speech. The observed speaker information loss is likely due to the tokeniza-
tion process, which inherently reduces speaker fidelity. Future work should aim
to enhance tokenization methods for SSL models to mitigate this loss. Since the
primary goal of this research is to explore target speaker extraction using dis-
cretized information rather than to develop improved tokenization methods, we
argue that comparing the speaker similarity output with discretized clean speech
is a reasonable approach, as it represents an upper bound of performance.

We observe that TSELM-L outperforms Spex+ in terms of DNSMOS scores,
indicating better speech quality, but performs slightly worse in dWER, sug-
gesting lower speech intelligibility. One potential reason for this could be the
discretization process applied to the mixed speech. Our Kmeans algorithm is
trained on clean speech rather than mixed speech, which is advantageous for
speech enhancement as it likely aids in denoising. However, when applied to
mixed speech, this discretization might lead to the model focusing on the wrong
speaker, as it is most likely to retain only the dominant speaker information,
causing a reduction in intelligibility. This hypothesis is supported by the results
of TSELM-L-Hybrid, where continuous embeddings from the mixture speech
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Table 3. Performance of different SSL models and layer selections on Libri2Mix clean.
WavLM-L6 uses only the 6th layer of hidden output of the WavLM Large model.
WavLM denotes our TSELM-L model which uses 6 hidden layers.

DNSMOS 1
SIG BAK OVL
Discrete 3.57 4.09 3.31 82.2 0.854_d

SSL-Model Type dWER | Spk Sim 1

HuBERT
" Hybrid 3.57 4.10 3.32 36.1 0.900_d
WavI M-L6 Dlscre?te 2.08 2.07 1.64 122.14 0.589_d
Hybrid 3.54 3.93 3.18 29.3 0.838 _d
WavLM Discrete 3.49 4.04 3.21 27.5 0.895 d

Hybrid 3.49 4.05 3.22 20.0 0.917_d

are used without discretization, achieving dWER scores better than Spex+ on
WSJ0-2mix.

We observe a significant increase in dWER when the mixture audio is not
concatenated with the reference in the encoding step, as seen in the TSELM-
S-NoCat results in Table [I] and 2] For WavLM to effectively perform target
speaker separation, the input audio must follow specific conditions: the mixture
should be less than 50% of the total length, and the first utterance should be
the target speaker. Under these conditions, WavLM outputs a slightly denoised
embedding that emphasizes the target speaker. When the entire input is a mix-
ture, however, we found that WavLM sometimes extracts the wrong speaker.
Our current concatenation strategy, inspired by SELM’s [34] success in speech
denoising, reframes the target speaker extraction task as a more challenging
speech enhancement problem, utilizing WavLM’s denoising capabilities. How-
ever, this approach remains suboptimal, and we believe our future work should
prioritize developing a speaker-aware tokenization method.

In Table 3] we compare the performance of HuBERT and WavLM as SSL
models and examine the effects of using either one or multiple layers for dis-
cretization. Our findings indicate that using HuBERT as the SSL model results
in slightly better DNSMOS scores but much worse dWER compared to our
WavLM baseline. The improved DNSMOS scores likely stem from the vocoder
performance, yet they do not adequately reflect speech intelligibility, which is
crucial for speech separation tasks. The poorer dAWER scores observed with this
HuBERT model may be attributed to its training on clean speech, which might
not equip it to capture the complexity and richness of mixed speech. Moreover,
our results from WavLM-L6 suggest that when performing speech separation,
discretizing across multiple layers provides better results than relying on a sin-
gle layer. This might be because that using multiple layer outputs can better
tolerate errors compared to using just one layer output.

Finally, we observe a performance gap between discrete methods and continu-
ous methods, as demonstrated by Continuous-WavLM-L6. Continuous-WavLM-
L6 has the best performance in terms of DNSMOS and dWER among all the



experiments while using only the 6th layer output of WavLM Large. The gap
in performance may be attributed to the information loss inherent in the dis-
cretization process. We hope our future research will bridge this gap.

5 Conclusion

In this work, we introduce a novel way using discrete tokens and language mod-
els for target speaker extraction. Our method leverages multiple hidden layers
of WavLM and Kmeans tokenizers for encoding, employs cross-attention and
a language model for separation, and utilizes a scalable HiFi-GAN for audio
reconstruction. Experiments have shown that our model can achieve excellent
performance in terms of speech quality, and comparable performance in terms of
speech intelligibility. However, we observe a gap between discrete methods and
continuous methods especially in speech intelligibility and speaker similarity.
Our future work will focus on shrinking this gap.
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