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Abstract. The target speaker extraction task aims to extract clean
speech of the target person from a segment of mixed speech. In recent
years, audio-visual speech enhancement (AVSE) has been increasingly
applied, and the use of visual information from the target speaker has
important application value in noisy environments. However, existing
AVSE methods often face the problem of insufficient robustness of visual
features, especially when parts of the content are missing or the video
quality is poor. This will significantly reduce the effectiveness of the
extracted visual features, further affecting the extraction performance.
To address this issue, this paper first introduces a power compression
strategy to enhance the effective components of the speech signal and
avoid overreliance on visual information. Then, an end-to-end training
approach is adopted to optimize the feature extraction process, initially
alleviating the problem of insufficient robustness of lip movement fea-
tures. To further improve performance, this paper uses the self-supervised
AV-HuBERT model to extract features of lip movement. Through its mul-
timodal self-supervised learning strategy, it can capture more discrimi-
native dynamic features of lip movements and also achieve deep consis-
tency between audio and video features. Experimental results show that
the proposed method achieves stable improvements in key metrics such
as PESQ, STOI, and SI-SDR, verifying the importance of visual fea-
ture extraction in the AVSE task and providing ideas for target speaker
extraction in complex scenarios.
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1 Introduction

In communication systems, the significance of Target Speaker Extraction (TSE)
has become increasingly prominent. With the in-depth integration of voice in-
teraction technologies into scenarios such as intelligent terminals, remote con-
ferences, and autonomous driving, people’s demands for voice communication
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quality have been continuously rising. As a core means to address the issues,
TSE has demonstrated increasingly notable value. TSE refers to the task of
extracting clear speech from a target speaker within complex acoustic environ-
ments. It is analogous to the well-known classic "cocktail party problem"[2] —
just as humans can accurately focus on a target conversationalist’s voice at a
noisy cocktail party, TSE needs to achieve a similar form of auditory focusing
amid multiple interferences with the help of the target speaker information. Such
environments typically contain adverse factors like background noise and over-
lapping speech from different speakers. The technical challenge lies in thoroughly
eliminating various interferences while preserving as many details of the target
voice as possible, ensuring that the extracted speech possesses high clarity and
intelligibility.

In previous methods, researchers often utilized the target speaker’s speech as
registration information to assist the network in extracting the target speaker’s
voice from mixed speech. Traditional audio-only methods[28I32/7J33lj9] rely solely
on acoustic signals, completing the extraction task by analyzing speech features
such as spectral characteristics and speaker information. Although they perform
adequately in common environments, their effectiveness diminishes in complex
scenarios with high noise and strong reverberation. In such cases, the acoustic
features of the target speech are severely distorted, making accurate separa-
tion difficult using audio information alone. Furthermore, the target speaker’s
speech is not easily accessible in many situations. For instance, when dealing
with unfamiliar speakers or temporary conversational scenarios, the approach of
pre-collecting registered speech has obvious limitations.

In contrast, audio-visual methods[30] combine visual cues (e.g., lip move-
ments) with audio data, leveraging multimodal synergy to enhance the robust-
ness of speaker extraction. Visual information is unaffected by the acoustic en-
vironment, and lip movements have a natural synchronous relationship with
speech content. This can provide additional identity information for the target
speaker in complex environments, assisting in extracting the target speaker and
compensating for the shortcomings of audio-only methods.

Despite significant progress in audio-visual speaker extraction methods in
recent years[I6], key challenges remain. It is widely acknowledged in research
that the most speech-relevant information in the human face is lip movements.
The deformation of the lips directly corresponds to articulatory actions, making
it the most discriminative feature in the visual modality. However, how to cor-
rectly and appropriately encode lip movement information into usable features
has long been a difficult problem. The network needs to capture both the in-
stantaneous changes in lip shape and the continuous temporal characteristics.
How to extract features to retain key information while removing redundancy
is crucial for improving performance. Additionally, in many practical scenarios,
there may be issues such as facial occlusion, video blurring, and reverberation.
These problems can damage the integrity and accuracy of visual features, posing
challenges to the extraction and utilization of visual features.
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To address these issues, we have applied multiple modules. The most straight-
forward approach is to reduce audio-visual mismatch caused by reverberation.
Reverberation can cause delay and distortion in audio signals, leading to a time
difference between originally synchronized lip movements and speech. So we
introduced the power compression method[II], which effectively suppresses the
energy diffusion caused by reverberation through nonlinear compression process-
ing of the audio signal’s power spectrum. This makes the audio features more
similar to the original vocalization state. It can improve the performance of the
separation model in reverberant environments.

Subsequently, we focused on how to obtain more effective feature represen-
tations from limited visual information. To better match lip movement features
with the backend separation network, we improved the traditional step-by-step
training mode and performed joint training of the visual feature extractor and
the separation model together. During the training process, the loss of the sepa-
ration model is backpropagated to the visual feature extractor, guiding it to learn
visual features that are more valuable for the separation task. This end-to-end
optimization method effectively improves the quality of the extracted features.

In addition, a key issue in multimodal fusion is the consistency between
modalities. We should ensure a high degree of synchronization between audio
and visual features in terms of semantics and timing. The self-supervised AV-
HuBERT|21] model is trained in an unsupervised manner on a large amount of
audio-visual data, enabling it to learn the inherent synchronous relationship be-
tween audio and video. Introducing this model into the separation system allows
the synchronous knowledge it has learned to guide the matching process between
lip movement features and audio features. It can also enhance the correlation
between the two at the feature level.

Our experimental results show that after enhancing audio and video features
through the aforementioned methods, the separation system has achieved signif-
icant improvements in key metrics such as PESQ, STOI, and SISDR. Moreover,
we have obtained excellent results on the test set of AVSECA4., verifying the
effectiveness of the proposed methods in complex scenarios.

2 Related Work

2.1 AV-TSE

In recent years, there has been a proliferation of research on audio-visual target
speaker extraction. Early research|8] has explored the impact of various modal-
ities on the extraction of speakers. The authors not only investigated the reg-
istered speaker’s voice and visual information but also examined the role of
the speaker’s azimuth angle. Through a series of comparative experiments, the
authors demonstrated that in complex environments, video provides more infor-
mation than audio. Zexu Pan’s research[I8[17] mainly focuses on how to deeply
fuse the visual feature with mixed audio to better extract the target speaker’s
speech. Kai Li’s research[I2[13], starting from the real structure of the human
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brain and neural responses, attempts to simulate the interaction patterns be-
tween neural signals in the human brain to construct neural networks, achieving
remarkable results.

TF-GridNet|29] is one of the most advanced models in the field of speech
separation. Zexu Pan took the lead in integrating the video modality into this
model and proposed AV-GridNet[I9]. Zhan Jin[I0] improved AV-GridNet by
combining audio and visual features in the channel dimension before entering
the separation module. It simplifies the network while improving its performance.

2.2 Feature Extraction Methods

Scholars have conducted various studies on network structures with the aim of
exploring how to make better use of the synchronous information between audio
and video. The quality and robustness of visual features directly affect the subse-
quent feature fusion and speech separation processes. Early studies have shown
that lipreading tasks can leverage networks to learn the correlation between lip
movements and the expressed content, thereby converting lip movement infor-
mation into sound-related features. Most studies thus utilize features extracted
by the aforementioned methods to assist in target speaker extraction. From the
initial application of 3D convolution [3I627/24] to the subsequent construction
of 3D+2D convolutional neural network structures [25120/14], existing lipreading
technologies have become relatively mature, with the 3D CNN combined with 2D
ResNet structure being widely adopted. A commonly used model is [I5], which
has been applied in many well-known AVSE tasks in recent years. However, in
many cases, human faces are not as clear and stable as those in datasets, which
limits the quality of features extracted by lipreading networks. Moreover, this
approach lacks the capture of temporal consistency among multimodal features.

AV-HuBERT|21] constructs a stronger feature representation network through
self-supervised learning, utilizing the strong correlation between audio and lip
movement information. Moreover, random missing of modalities is introduced
during the training process to enhance the robustness of feature extraction. This
method has been widely used in AVSR[22123] and proven to be effective, but its
application in the speech separation is still limited. Study [4] demonstrates that
partially or fully fine-tuning pre-trained AV-HuBERT can effectively improve
performance in AVSE by leveraging generalizable multi-modal embeddings. And
AVHuUMAR-TSE[3]] integrates AV-HuBERT layers with a Mask-And-Recover
(MAR) strategy to exploit speech context and refine visual-audio correspon-
dence, while contrastive losses and iterative cue refinement mechanisms are em-
ployed to strengthen the consistency between lip movements and speech seman-
tics. In contrast, we adopted a straightforward and simple approach: directly
replacing the original lip-reading model with the AV-HuBERT model, with the
only difference being that the extracted features have a higher dimension.
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3 Methods

The overall architecture of the network is illustrated in Figure 1. Similar to
common AV-TSE structures, the network mainly consists of an audio encoder, a
video encoder, a speaker extractor, and a decoder. The extractor of this system
is similar to [29], which is not the focus of this paper. To achieve good results
on datasets that are complex and close to real-world scenarios, we have adopted
various methods. The first part will briefly introduce our explorations on feature
enhancement; the second part will focus on analyzing the method of extracting
lip movement features using the pre-trained AV-HuBERT.
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Fig. 1: The overall architecture of the proposed system.

3.1 Power Compression And End-to-End Training

In AVSE tasks, the effective utilization of video information is a key factor
in achieving successful separation. Reverberation not only affects the acoustic
structure of speech but also disrupts the synchronization between sound and
lip movements. Therefore, the separation task becomes quite challenging when
dealing with reverberant scenarios. According to [11], power compression and
phase estimation methods can effectively handle acoustic scenarios in reverberant
environments. Thus, we have integrated this method into our structure.
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Specifically, for the input complex spectrogram representation X € CBXMxTxF
(where B denotes the batch size, M is the number of channels, T represents time
frames, and F stands for frequency bins), we first decompose it into the mag-
nitude spectrum |X| and phase spectrum /X. A non-linear transform ||X||3 is
applied to the magnitude spectrum to compress high-power components, effec-
tively mitigating the long reverberation tails and magnitude distortions caused
by reverberation. Subsequently, we reconstruct the complex representation using
the original phase information /X and the compressed magnitude:

Re(X') = [IX][3 - cos(£X),  Im(X') = [|X|[3 - sin(£X) (1)

This processing ensures that phase information is fully retained, while the mag-
nitude is optimally adjusted. Finally, the real part Re(X’) and imaginary part
Im(X") are concatenated along the channel dimension to form an extended fea-
ture [Re(X’), Im(X")] € RBX2M*TXE 'which is fed into the subsequent network.

Most researchers utilize a pre-trained lip-reading network as the extractor
for visual features. However, in complex scenarios, pre-trained networks may not
be sufficient to fully represent a speaker’s lip movement information as features.
Therefore, to enhance the representation capability of visual features, we perform
end-to-end training of the feature extraction network and the separation network.
It enables the extracted features to better adapt to the subsequent separation
process and improves the network’s ability to extract the target speaker. As
shown in Figure 2(a), we unlock the weights of the visual extractor and fine-tune
them during the training process. And lip movement information is encoded into
512-dimensional features.

3.2 AV-HuBERT for Lip Feature Extraction

To further enhance the separation capability in complex acoustic environments,
we focus on exploring how to use better features to represent the speaker’s
lip movement information. Studies in [34] and [26] have shown that in speaker
extraction tasks, there may be cases of extracting incorrect targets, especially
in complex scenarios. [34] also mentions that the reason for this result is likely
that the features of the speaker’s registration information are not strong enough.
The network structure of commonly used methods [I5] is relatively simple, and
it lacks good robustness to special cases such as video frame loss, which may
affect the subsequent speaker extraction results. Based on this, we propose to
use the advanced large model AV-HuBERT to model the speaker’s lip movement
information.

Unlike the method in [31], we directly utilize the pre-trained Noise-Augmented
AV-HuBERT Large weights to convert visual information into features. These
weights were trained on two commonly used audio-visual datasets, LRS3[I] and
VoxCeleb2[5], with the addition of noise to the training data. It can enhance the
robustness in complex scenarios. Compared to ordinary lip-reading networks,
AV-HuBERT is not only trained on a larger scale of data but also simulates
modality missing during the training process, resulting in stronger feature ex-
traction capabilities. Intuitively, using AV-HuBERT to extract video information
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Fig. 2: Detailed structure of the visual encoder.

can capture superior lip movement features, enabling the model to learn a better
matching relationship between audio and video. The extracted features are 1024-
dimensional, which doubles the information volume compared to previous ones.
Therefore, we removed the original V-TCN module, reducing both the network
size and the difficulty of learning. In the multi-layer separation modules, bet-
ter lip movement features can learn more matching information from the mixed
speech.

4 Experiments

4.1 Dataset

We used the provided training set for model training and the development set
for validation in the 4th AVSE challenge. The training set contains 34,524 utter-
ances (with a total duration of 113 hours and 17 minutes), involving 605 target
speakers. The interferers are selected from a pool of 405 competing speakers and
7,346 noise files (covering 15 noise categories). The development set includes
3,306 utterances (8 hours and 38 minutes), involving 85 target speakers. The in-
terferers are chosen from 30 competing speakers and 1,825 noise files (belonging
to the same 15 noise categories as the training set).

The target data of the dataset is composed of videos from the LRS3 dataset,
which includes spoken sentences extracted from TED and TEDx videos. The in-
terferers are divided into three categories: speech interference, non-speech noise,
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and music. Speech interference is also derived from the LRS3 dataset, with strict
measures taken to ensure that the target speakers and interfering speakers belong
to completely disjoint sets. Non-speech noise is sourced from two well-recognized
datasets: the Clarity Enhancement Challenge (CEC1) and the Deep Noise Sup-
pression (DNS) challenge. Music is extracted from the MedleydB multi-track
music dataset, which contains 122 royalty-free songs.

The test set consists of 3,180 utterances, among which 1,500 are used for
leaderboard evaluation, and the remaining are reserved for listening tests.In the
set, the reverberation is not generated by simulation; instead, it is produced in
real conference room scenarios by controlling the room size and sound propaga-
tion distance. And the signal-to-noise ratio (SNR) ranges from -18 dB to 6.55
dB.

4.2 Implementation details

Then we dynamically mixed the target and interferers at signal-to-noise ratios
(SNRs) ranging from -18 dB to 6 dB during training. Mixed audio segments
and corresponding target speaker videos (sampled at 25 frames per second) were
randomly truncated into 3-second chunks. We employed the Adam optimizer
with an initial learning rate of 0.001, and the learning rate was halved whenever
the best validation loss showed no improvement over three consecutive epochs.
The SI-SDR-SE loss, same as [10], was used as the training loss function, with
the batch size fixed at 2.

4.3 Results and discussions

The detailed results are shown in Table [T] and 2} Based on the three objective
metrics in the table, compared with the initial “Noisy” state, both the speech
quality and intelligibility after separation are significantly improved. In compar-
ison with the basic separation system, power compression (System I) exhibits
obvious improvements in all three metrics. Similarly, end-to-end joint training
(System II) further optimizes on the basis of System I and also provides a consid-
erable degree of increment. Meanwhile, System III, which integrates the first two
methods, achieves the optimal results. This fully verifies the effectiveness of the
integration of multiple technologies in enhancing the quality and intelligibility
of noisy speech, and provides a technical path reference for related tasks such
as speech enhancement. Our System III ranks among the top two in all metrics
and ranked first in the subjective evaluation.

Building on the above findings that validate the effectiveness of power com-
pression and end-to-end training in enhancing separation performance, we fur-
ther explored the potential of advanced visual feature extraction methods by
introducing the AV-HuBERT model for lip movement feature extraction. To
isolate the impact of AV-HuBERT on the system, we maintained the power com-
pression strategy—consistent with the setup of System III—to ensure the audio
preprocessing pipeline remained unchanged, while deliberately omitting end-to-
end training. Instead, we directly adopted the lip movement features extracted
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Table 1: Our results evaluated on 1,500 utterances in the test set

power
separation| compres- e2e PESQ STOI SISDR
sion
Noisy x x x L285795 | 0.508202 | o oo
baseline v x x L8T5935 | 0.754096 | o o0 oo
Sysltem Vi N X 1.947982 | 0772565 | o oo
SySItIem v x v 2.069336 | 0.798168 | | oooo.
Sylsltfm Ni Ni V| 2150918 o0s2a580| oo

Table 2: All results evaluated on 1,500 utterances in the test set(WHU DKU
represents System IIT in Table 1.)

System PESQ STOI SISDR
Noisy 1.285795 0.508202 -25.943447
Team-OPTIMAL 1.365186 0.479389 -21.439292
USTC_Entryl 1.350890 0.522072 -23.963609
GU-ENU 1.352315 0.523246 -23.925401
Rahma Team 1.301840 0.545504 -24.722959
TeamKCW 1.578468 0.602192 -21.765331
SND VD 1.720585 0.638246 -21.957590
R-testl 1.643556 0.657688 -19.258877
BioASP 1.714016 0.669129 -20.406594
SUSTechAILab 1.947145 0.671639 -18.744615
CITISIN 2.290222 0.779796 -17.144653
WHU DKU (our) 2.154918 0.824580 -17.138598
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by the pre-trained AV-HuBERT model as input to the separation network, aim-
ing to assess the intrinsic superiority of these features in their raw form.

Notably, the initial leaderboard evaluation was conducted on a subset com-
prising approximately half of the total test set data, which may have limited the
comprehensiveness of performance insights. To address this, we conducted a sup-
plementary evaluation using the complete test set, ensuring a more robust and
representative assessment of AV-HuBERT’s capabilities across diverse acoustic
scenarios, including varying levels of noise, reverberation, and speaker overlap.

As presented in Table [3] the results clearly demonstrate that even without
the benefits of end-to-end fine-tuning, the features derived from AV-HuBERT
still outperform those of our previously best performing System III across key
metrics such as PESQ, STOI, and SI-SDR. This outcome not only underscores
the robustness of AV-HuBERT’s feature representation, which is shaped by self-
supervised multimodal learning on a large scale, but also highlights its potential
to reduce reliance on task-specific fine-tuning, offering a more generalizable so-
lution for visual feature extraction in AVSE tasks.

Table 3: Evaluation results on the complete test set

System PESQ STOI SISDR
Noisy 1.285795 0.508202 -25.943447
System III 1.467925 0.816043 -18.832981
AV-HuBERT 1.534662 0.820336 -17.705436

5 Conclusion

In this study, we explored the impact of various feature enhancement meth-
ods on the AVSE task and investigated the application of AV-HuBERT in lip
movement feature extraction. Experimental results demonstrate that enhanc-
ing the representation capability of visual features can significantly improve the
performance of the separation system. Using lip-reading models is not the only
and best way to extract visual features; instead, adopting self-supervised mod-
els such as AV-HuBERT will deeply explore the connections between audio and
video modalities and help the AVSE task achieve better outcomes.
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