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Abstract—Voice anonymization protects speaker privacy by
concealing identity while preserving linguistic and paralinguistic
content. Self-supervised learning (SSL) representations encode
linguistic features but preserve speaker traits. We propose a novel
speaker-embedding-free framework called SEF-MK. Instead of
using a single k-means model trained on the entire dataset,
SEF-MK anonymizes SSL representations for each utterance by
randomly selecting one of multiple k-means models, each trained
on a different subset of speakers. We explore this approach
from both attacker and user perspectives. Extensive experiments
show that, compared to a single k-means model, SEF-MK
with multiple k-means models better preserves linguistic and
emotional content from the user’s viewpoint. However, from the
attacker’s perspective, utilizing multiple k-means models boosts
the effectiveness of privacy attacks. These insights can aid users
in designing voice anonymization systems to mitigate attacker
threats. 1

Index Terms—Voice anonymization, speaker embedding free,
multi-k-means

I. INTRODUCTION

Voice-based human-computer interaction is becoming in-
creasingly prevalent, offering significant convenience in our
daily lives. However, uploading raw audio recordings to social
media without proper protection may lead to the leakage of
personally identifiable information [1]. One form of additional
protection is to encrypt utterances, thereby restricting access
to unintended recipients and allowing only authorized users
to recover the speech using a decryption key. However, this
approach effectively prevents open communication and is
not suitable for public-oriented applications. In most cases,
users wish to convey the content and emotional tone of their
speech while concealing their identity. This is where a Voice
Anonymization System (VAS) has been proposed [2]–[5].
Specifically, VAS processes the original speech to produce
anonymized outputs in which speaker-identifiable information
is removed (privacy), while essential attributes, such as lin-
guistic content and emotional expression, are preserved to
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enable the use of anonymized speech for various downstream
tasks (utility). The anonymized speech can be shared openly,
mitigating concerns over the misuse of the source speaker’s
identity.

There are two mainstream approaches to voice anonymiza-
tion. Digital Signal Processing (DSP)-based methods are
training-free approaches that modify speech characteristics
from a speech production perspective to conceal the speaker’s
identity. Techniques include altering formants [6]–[8], chang-
ing speech speed [9], and modifying other vocal tract or
voice source features [10]. However, DSP-based methods often
suffer from content distortion and are generally ineffective
against stronger attackers [2], [11], [12].

Deep Neural Network (DNN)-based methods, on the other
hand, are generally more effective and draw on techniques
from neural voice conversion and speech synthesis. A straight-
forward solution involves first transcribing speech into text
using an automatic speech recognition (ASR) system, followed
by re-synthesizing the speech via a text-to-speech (TTS)
model [13]. While this ASR+TTS pipeline has been shown
to effectively conceal the speaker’s identity, it often compro-
mises the utility of the original speech. Specifically, inevitable
transcription errors and the loss of important paralinguistic
cues, such as emotion, prosody, and accent, can degrade the
quality and expressiveness of the anonymized output.

Widely used DNN-based approaches primarily leverage dis-
entangled representation learning and rely on explicit speaker
modeling, typically using pretrained speaker encoders. These
approaches generally consist of three stages: (i) Speech dis-
entanglement aims to separate speaker-specific information
from the input speech. Some methods explicitly disentangle
speaker, content, and prosody components [14]–[24], often
extracting content information with self-supervised learning
(SSL) models [25]–[27] and encoding speaker identity through
a pretrained speaker encoder [28], [29]. Others, inspired by
speech codec technology, segment speech into acoustic and
semantic tokens [30], treating acoustic tokens as the pri-
mary carriers of speaker-specific characteristics. (ii) Speaker
embedding anonymization involves replacing or transforming
speaker-specific features with those of a pseudo speaker. Most
approaches rely on an external speaker pool to construct the
pseudo speaker [14], [22], [31]–[33]. (iii) Speech genera-



tion [34] synthesizes anonymized speech by combining the
anonymized speaker (or acoustic) features with the preserved
content and prosody (or semantic) information.

An emerging direction in DNN-based VAS research fo-
cuses on speaker-embedding-free neural methods [13], [35]–
[37], which avoid the explicit modeling of speaker embed-
dings. In these approaches, utterances from both source and
pseudo speakers typically pass through a shared encoding
stage that extracts speech representations using SSL models.
Anonymization is then achieved by replacing the SSL feature
frames from the source speaker with those from the pseudo
speaker’s representation selected according to specific strate-
gies, e.g. k-Nearest Neighbor (KNN) [38]. The resulting rep-
resentations are then used to synthesize anonymized speech.
However, since the SSL features contain speaker-related infor-
mation, the k nearest neighbors and the anonymized waveform
may also encode the traits of the source speaker. These systems
have been shown to provide poor speaker privacy protection
when facing strong attacking [13], [37].

This paper explores the speaker-embedding-free VAS
paradigm and anonymizes SSL representations through
multiple k-means quantization, referred to as SEF-MK. The
method comprises three key stages: (i) Encoding, where an
SSL model-WavLM [26] generates continuous speech rep-
resentations that capture linguistic content and (undesirably)
speaker identity; (ii) Multi-k-means quantization, where SSL
representations are quantized to suppress speaker-specific traits
by randomly selecting a k-means model from multiple quan-
tizers; (iii) Decoding, where high-quality anonymized speech
is reconstructed using a Conformer-based decoder [39] and a
HiFi-GAN vocoder [34], ensuring naturalness while preserv-
ing privacy.

Prior work, such as KNN-based VAS [13], [37], has ex-
plored speaker-embedding-free approaches, none have em-
ployed k-means in this context, despite its demonstrated
effectiveness in suppressing speaker identity [21]. Although
k-means has been applied in disentanglement-based meth-
ods [21], most studies use a single k-means model trained
on a broad speaker population and primarily examine how
varying the number of centroids affects the privacy-utility
trade-off, lacking a thorough investigation of the specific role
and effectiveness of k-means in anonymization.

This motivated us to pose two research questions, one from
the user’s perspective and the other from the attacker’s, within
the context of the VoicePrivacy Challenge (VPC) [5], which
simulates a game-theoretic scenario between users and attack-
ers. In this setting, users apply anonymization techniques to
conceal speaker identities before publication, while attackers
attempt to recover the original identities from the anonymized
data. From the user’s perspective, we explore strategies for
training k-means models within the proposed SSL-based,
speaker-embedding-free VAS paradigm by investigating the
following question: Does the composition of the k-means
training data affect anonymization performance? We construct
a pool of k-means quantizers, each trained on a distinct subset
of speakers using different speaker grouping strategies, such as

training one model per individual speaker or training models
on subsets of multiple speakers. We then investigate how
these strategies affect anonymization performance from the
user/defender’s perspective. Through extensive experiments,
we found that compared to a single k-means model, from
the user’s perspective, the use of multiple k-means models
in the proposed SEF-MK system better preserves linguistic
and emotional attributes.

From the attacker’s perspective, we investigate how the
attacker’s composition of the k-means degrade the anonymiza-
tion performance. We found that employing multiple k-means
models can enhance the effectiveness of privacy attacks,
regardless of which k-means strategy the user adopts. We hope
these findings can be helpful for users when designing the VAS
against attackers with various attacking strategies.

II. SPEAKER-EMBEDDING-FREE VOICE ANONYMIZATION

In this section, we first provide an overview of the voice
anonymization problem formulation and introduce two re-
cently proposed speaker-embedding-free methods, which serve
as baselines for this study. We then present the novel SEF-MK
architecture, which leverages WavLM, k-means, Conformer,
and HiFi-GAN to explore various strategies for training mul-
tiple k-means models to conceal the original speaker identity.

A. Voice Anonymization Problem Formulation

An anonymization system transforms an original speech
utterance X = [x1, . . . , xT̃ ] into an anonymized version
Y = [y1, . . . , yT̃ ], where T̃ is the length of the utterance. An
ideal anonymization system should preserve linguistic content
and emotional cues2 while removing the speaker identity. This
objective can be formally defined as:

Y = f(X), s.t.


ASV(X) ̸= ASV(Y)

ASR(X) ≈ ASR(Y)

SER(X) ≈ SER(Y)

(1)

The transformation function f(·) should simultaneously satisfy
three competing objectives: (i) distort speaker identity, as
measured by automatic speaker verification (ASV) systems,
(ii) preserve linguistic content, as evaluated by an automatic
speech recognition (ASR) system, and (iii) maintain emotional
content, as assessed by a speech emotion recognition (SER)
systems.

B. KNN-based VAS

Among speaker-embedding-free approaches, one popular
approach is based on KNN [38] with encoding, anonymization,
and decoding stages.

In the encoding stage, both the source and target/pseudo
speaker utterances go through the same pretrained WavLM
model [26] to extract SSL representations. In the anonymiza-
tion stage, the goal is to remove speaker-specific information
from the source WavLM representation while preserving other

2While paralinguistic attributes include not only emotion, this study follows
the setup of Voice Privacy Challenge 2024 [5] and only considers emotion.



Fig. 1. Framework of multiple k-means-based speaker embedding-free voice anonymization.

speech attributes. This is achieved by replacing each frame of
the source representation with the most similar frames from
the target speaker. Specifically, for each frame in the source
utterance, a KNN search is performed to identify the top-
k most similar frames in the target speaker’s representation.
In the decoding stage, the average of these top-k target
frames, ideally devoid of the original speaker identity but still
conveying the speech content and emotion, is passed to a HiFi-
GAN vocoder [34], which synthesizes anonymized speech that
retains the linguistic content of the source while adopting the
vocal characteristics of the target speaker.

However, these systems have been shown to provide poor
speaker privacy protection when facing stronger attacks [13],
[37]. One possible reason is that SSL features are known to
encode both content and speaker information. Consequently,
although KNN retrieves the most similar frames from the
target speaker, aiming to remove the timbre of the source
speaker, the retrieved frames may still preserve speaker-
specific cues to reflect the source speaker’s habitual speaking
style, thereby leaking information about the source speaker
under stronger attacks [13], [37]. A variant of the KNN-based
model [40] extends the previously described KNN approach
by introducing two interpretable components that anonymize
the duration and variation of phonemes to enhance privacy.
However, this improvement in privacy comes at the cost of
reduced utility.

C. Proposed SEF-MK VAS

As explained in Section II-B, KNN-based speaker-
embedding-free methods have not utilized k-means, despite
its proven ability to suppress speaker identity [21]. While k-
means has been applied in disentanglement-based approaches,
prior work typically uses a single k-means model trained on
the full dataset and focuses mainly on the number of centroids,
without thoroughly exploring its role in voice anonymization.
To address this gap, we propose a novel speaker-embedding-
free framework that employs multiple k-means quantizers, as
shown in Figure 1.

In the encoding stage, the input speech waveform X is
processed by WavLM [26] to extract SSL representations
h(X) = H = [h1, ...,hT ], where each ht ∈ R1024 captures
comprehensive speech characteristics, and T is the number
of frames in the input utterance. These SSL-based features

inherently encode linguistic content, speaker identity, and
emotional state [21], [41].

In the anonymization stage, the goal is to transform the
SSL features to suppress speaker identity while preserving
linguistic content and emotional expression. We observe that
existing approaches [21] typically train a single k-means
model on the entire data with a large set of speakers. How-
ever, because this clustering captures both phonetic and inter-
speaker variations, the resulting centroids can unintentionally
encode speaker-specific information, potentially leaking source
speaker identity. This raises an important but underexplored
question: Does the composition of the k-means training data
affect anonymization performance? Intuitively, when k-means
is trained on a single speaker’s data, the clustering focuses
solely on intra-speaker phonetic variation, inherently avoiding
the encoding of speaker identity. However, applying such a
speaker-specific quantizer to features from a different speaker
may introduce a mismatch that degrade the linguistic content.
Using multiple k-means models may either improve the the
extraction of linguistic content (i.e., better utility) or leaking
speaker information (i.e., worse privacy).

To verify the above assumptions, the anonymization
stage introduces a pool of N specialized k-means models
{KM1, . . . ,KMN}, where each model is trained on a distinct
subset of speakers to encourage diverse clustering behavior.
Each model uses K = 1024 clusters. During inference, a
model KMn is randomly selected from the pool and applied to
the SSL features H to assign each frame to a cluster, producing
discrete assignments Z = [z1, . . . , zT ] with zt ∈ {1, . . . ,K},
∀t ∈ {1, . . . , T}. Each assignment zt is then mapped to
its corresponding cluster center embedding vector, yielding
E = [e1, . . . , eT ], where et ∈ R1024 represents the 1024-
dimensional centroid of cluster zt. This operation is denoted
as E = Center(Z).

We explore several strategies for constructing the pool of
k-means models based on different speaker groupings in the
training dataset. Let the dataset D contain speech from S
speakers, and let L be the number of speakers per group, with
L < S. We define the following strategies:

• D-all: All utterances from all S speakers are used to train
a single k-means model.

• D-L-sep: The dataset is partitioned into groups of L
speakers, with each group used to train a separate k-
means model, resulting in

⌊
S
L

⌋
number of k-means mod-



Fig. 2. Evaluation protocol following the VoicePrivacy 2024 guidelines. The
subscript att means attacker. The databases are Tratt: libri-train-360; Eatt:
libri-dev-enroll and libri-test-enroll; Tuser : libri-dev-trial-f, libri-dev-trial-
m, libri-test-trial-f, libri-test-trial-m, IEMOCAP-dev, and IEMOCAP-test. If
VAS∗ = VAS, this represents a full attacker; if VAS∗ ∩ VAS ̸= ∅, this
represents a semi-attacker with partial knowledge of the user’s VAS.

els. Note that D-1-sep denotes training a single k-means
model for each speaker.

In our experiments, we evaluate the effects of different
datasets and speaker group sizes. Specifically, we use ei-
ther LibriSpeech-train-clean-4603 with 1,172 speakers (S =
1, 172) or VoxCeleb2 [43] with 5,994 speakers (S = 5, 994) as
the dataset for D, and we conduct experiments using speaker
group sizes L ∈ {1, 10, 20}.

The decoding stage reconstructs natural speech from the
anonymized embeddings E using a Conformer-based sequence
model followed by a HiFi-GAN vocoder. The Conformer
architecture combines self-attention mechanisms for capturing
long-range dependencies with convolutional operations for
local pattern modeling, transforming the input embeddings E
into continuous representations C = [c1, . . . , cT ], where each
ct ∈ R1024 corresponds to a 1024-dimensional frame-level
feature vector. Note that during Conformer training, instead
of using a single general k-means model trained on the entire
training set, we use the matched k-means model trained on the
same speaker as the input feature generator for the Conformer,
aiming to best resynthesize the original speech.

We utilize the discrete representations (i.e., centroids of k-
means models) as the input and the continuous representation
as the target for the Conformer. The HiFi-GAN vocoder
subsequently converts these intermediate representations into
waveform samples, completing the anonymization pipeline
while preserving natural speech characteristics.

III. EXPERIMENTS

A. Evaluation Protocol

We follow the VPC 2024 evaluation protocol [5] to assess
the effectiveness of our proposed VAS as plotted in Figure 2.

1) Privacy Evaluation: The attackers are assumed to have
access to a few original or anonymized utterances for each
speaker, referred to as enrollment utterances and denoted as
Eatt, as well as some knowledge of the VAS. In the case of
SEF-MK, the attackers are assumed to use a different k-means
pool from the one used by the users during anonymization.
This setup is referred to as a semi-attacker. If the attacker
and the user share the same k-means pool, we refer to it as

3LibriSpeech-train-clean-360 and LibriSpeech-train-clean-100 datasets [42]

a full attacker scenario. Note that the VPC 2024 focuses on
the semi-attacker scenario. In the following experiments, we
also examine the full attacker scenario from the user’s point
of view to understand the worst-case situation.4

The attackers employ an ASV model, specifically, the
ECAPA-TDNN model [29], trained on anonymized speech,
denoted as Tratt, to reduce the mismatch between original
and anonymized utterances and infer the speaker’s identity.
The Equal Error Rate (EER) is used to evaluate the privacy
protection capability of the VAS, with an EER close to 50%
indicating perfect privacy protection.

2) Utility Evaluation: The utility evaluation depends on the
downstream tasks. We follow VPC 2024 and consider ASR
and emotion analysis. The evaluation of speech content and
emotion preservation of anonymized test trial speech, denoted
as Tuser, is straightforward. The speech content preservation
ability in anonymized speech is assessed by the word error rate
(WER) computed using an ASR evaluation model5. A lower
WER, similar to that of the original speech, indicates good
speech content preservation ability. The emotion preservation
ability in anonymized speech is assessed by unweighted aver-
age recall (UAR) produced by a pre-trained speech emotion
recognizer (SER), which is a wav2vec2-based system [5]. A
higher UAR, similar to that of the original speech, indicates
better emotional content preservation ability.

B. Datasets and System Configurations
The SEF-MK VAS is built using the publicly available

WavLM-large6. The Conformer encoder consists of 6 lay-
ers with a kernel size of 31, each with 4 attention heads,
and an MLP with a hidden dimension of 2048, trained on
LibriSpeech-train-clean-460 [42]. The HiFi-GAN is trained on
LibriTTS-train-clean-100 [44]. This training setup is compati-
ble with the VPC 2024 evaluation protocol. VASs are evaluated
on the official VPC 2024 dev and test sets [3]. It contains
English utterances by several female and male speakers from
the LibriSpeech corpora, split into dev and test sets.

IV. RESULTS AND DISCUSSION

In this section, we begin from the user’s point of view
to find the best configurations for the proposed SEF-MK,
focusing on how the composition of the k-means training data
affects performance under the full-attacker scenario, where
the attacker shares the same k-means pool as the user, i.e.,
a worst-case (but unrealistic) setting. After determining the
optimal user settings, we shift to the attacker’s point of view
to investigate how the attacker can exploit the composition of
the k-means training data. When the attacker isolates the k-
means pool, this corresponds to evaluating SEF-MK under the
standard VPC scenario, i.e., the semi-attacker setting. Finally,
we compare the results with those of other VASs under both
fully and semi-attacking scenarios.

4It is useful to measure system performance in the worst-cast situation, but
it is unlikely to happen in applications if the users or vendors use a k-means
pool constructed upon undisclosed data that the attacker cannot access.

5https://huggingface.co/speechbrain/asr-wav2vec2-librispeech
6https://huggingface.co/microsoft/wavlm-large



TABLE I
RESULTS (IN %) FOR VARIOUS K-MEANS TRAINING STRATEGIES APPLIED

TO THE USER ON DEVELOPMENT SETS UNDER THE FULL-ATTACKER
SCENARIO. LIBRI-ALL DENOTES A SINGLE K-MEANS MODEL TRAINED ON

THE ENTIRE DATASET. D-L-SEP DENOTES TRAINING ONE K-MEANS
MODEL PER L SPEAKERS. LIBRI REFERS TO THE

LibriSpeech-train-clean-460 DATASET WITH 1,172 SPEAKERS, AND VOX
REFERS TO THE VoxCeleb2 DEV DATASET WITH 5,994 SPEAKERS.

EER ↑ WER ↓ UAR ↑

#k-means dev-f dev-m dev dev

Original - 10.51 0.93 1.80 69.08
Resyn - 17.33 6.55 3.47 59.99

Libri-all 1 22.59 13.34 6.06 49.94
Libri-20-sep 58 23.86 11.36 3.33 56.89
Libri-10-sep 117 21.13 11.80 3.37 55.50
Libri-1-sep 1,172 21.71 15.84 3.99 48.01

Vox-all 1 19.04 16.00 4.98 48.99
Vox-20-sep 299 18.89 14.29 4.58 49.23
Vox-10-sep 599 19.32 12.27 4.65 48.66
Vox-1-sep 5,994 22.73 15.96 7.64 45.67

TABLE II
EER RESULTS (%) FOR VARIOUS K-MEANS TRAINING STRATEGIES

APPLIED TO THE ATTACKER ON TEST AND DEVELOPMENT SETS UNDER
THE semi-attacker SCENARIO.

EER (%) ↑

#k-means dev-f dev-m test-f test-m

Original 10.51 0.93 8.76 0.42

User uses 58 k-means models: Libri-20-sep

Libri-all 1 42.90 35.22 38.53 35.38
Vox-all 1 28.95 25.48 27.19 28.06
Vox-1-sep 5,994 25.98 14.44 15.16 15.59

User uses 1,172 k-means models: Libri-1-sep

Libri-all 1 44.62 41.17 42.93 39.68
Vox-all 1 37.20 37.57 38.14 37.17
Vox-1-sep 5,994 26.56 19.56 16.42 17.60

User uses one k-means model: Libri-all

Vox-all 1 34.20 36.01 37.03 37.39
Libri-1-sep 1,172 23.31 16.62 16.44 17.87
Vox-1-sep 5,994 26.14 20.34 18.40 19.12

A. How can users configure SEF-MK under the full-attacker
scenario

Under this scenario, assuming the worst case where the
VAS is fully shared with the attacker, the user aims to find
a configuration that maximizes privacy (high EER) while
maintaining good utility (low WER and high UAR).

We experiment with different k-means training partition
strategies on the development sets, with the results summarized
in Table I. At the top of the table, we evaluate the performance
of the resynthesized SEF-MK, denoted as ‘resyn’, where each
utterance uses its own data to train the corresponding k-means
model and generate speech. Performance that closely matches
the original speech indicates better generation quality. For
‘resyn’, the EER is close to that of the original speech, while
both WER and UAR show reasonable degradations, reflecting
the trade-offs introduced by the waveform resynthesis process.
This result is consistent with those observed on other main-

stream anonymization systems [51].
The middle and bottom sections of the table evaluate differ-

ent training partition strategies using two datasets: the smaller
LibriSpeech-train-clean-460 dataset with 1,172 speakers, and
the larger VoxCeleb2 dev dataset with 5,994 speakers. For
both datasets, we did not observe significant changes in EER
when switching from a single k-means model (Libri-all, Vox-
all) to multiple models (Libri-20/10/1-sep, Vox-20/10/1-sep).
However, WER and UAR consistently improve when using
multiple k-means models. The best WER and UAR results are
achieved when the k-means models are trained on data from
20 speakers per model, for both the Libri and Vox datasets.

When comparing results between the Libri and Vox datasets
under the same configuration, we observe that using the larger
dataset (Vox) slightly increases the EER, particularly for male
speech, but the utility metrics drop more significantly. One
potential reason could be that the VoxCeleb2 data, which
was sourced from Celebrities’ interviews in the wild, is con-
siderably more noisy than the audiobook-based Librispeech
data. Relatively clean data may be preferred for building
the k-means models that can encode the linguistic contents.
Overall, the Libri-20-sep configuration provides a better trade-
off between privacy and utility.

B. How can attacker configure SEF-MK under the semi-
attacker scenario

After exploring the configuration of SEF-MK from the
user’s perspective, it is also important to examine the attacker’s
configuration. The attacker’s goal is to use a similar VAS to
anonymize speech in a way that mimics the user’s approach,
optimize the ASV model trained on anonymized speech,
and attempt to trace the original speaker identity from the
anonymized speech. This only impacts the privacy aspect of
the system. Hence, Table II presents the EER results on both
development and test sets for various attacker configurations,
assuming fixed user settings.

We first examine the attackers’ performance, assuming
users using ‘Libri-20-sep’ (the best configuration for users
as reported in the section IV-A). At the top of the table, we
list various attacker configurations. Interestingly, we observe
that when the attacker uses only a single k-means model to
generate anonymized speech, the resulting EER is significantly
higher, e.g., over 35% for ‘Libri-all’ and over 25% for ‘Vox-
all’, indicating poor attacking effectiveness (and good privacy
protection from the user’s point of view). However, when the
attacker employs multiple k-means models, even with different
training data (e.g., Vox-1-sep), the attack becomes much more
effective, reducing the EER to around 15%. We confirm this
trend by testing under different user settings, as shown in
the middle and bottom sections of the table, and consistently
observe the same pattern.

One possible reason is that using randomly selected multiple
k-means models produces more diverse anonymized utterances
compared to using a single k-means model, which benefits the
attacker. The attacker’s ASV model trained on more diverse
anonymized utterances may perform better in discriminating



TABLE III
RESULTS (%) ON VARIOUS VASS. B1-B6 DENOTES THE SIX BASELINE MODELS IN VPC 2024.

EER ↑ WER ↓ UAR ↑

dev-f dev-m test-f test-m avg dev test avg dev test avg

Original 10.51 0.93 8.76 0.42 5.66 1.80 1.85 1.83 69.08 71.06 70.07

D
is

en
ta

ng
le B1 [45] 10.94 7.45 7.47 4.68 7.64 3.07 2.91 2.99 42.71 42.78 42.75

B3 [46] 28.43 22.04 27.92 26.72 26.78 4.29 4.35 4.32 38.09 37.57 37.83
B4 [47] 34.37 31.06 29.37 31.16 31.99 6.15 5.90 6.03 41.97 42.78 42.38
B5 [48] 35.82 32.92 33.95 34.73 34.36 4.73 4.37 4.55 38.08 38.17 38.13
B6 [48] 25.14 20.96 21.15 21.14 22.10 9.69 9.09 9.39 36.39 36.13 36.26
OH [49] 44.89 34.74 39.26 37.64 38.54 2.36 2.48 2.42 47.01 47.37 47.19

DSP B2 [50] 12.91 2.05 7.48 1.56 6.00 10.44 9.95 10.20 55.61 53.49 54.55

SE
F KNN* [35] 18.35 13.66 16.24 12.50 15.19 2.99 2.96 2.98 47.70 50.61 49.16

Private KNN* [40] - - - - 49.40 - - 4.80 - - 49.40
SEF-MK 42.90 35.22 38.53 35.38 38.01 3.33 3.30 3.31 56.89 58.31 57.60

*Note that these systems use the same target speaker pool for both the user and the attacker, more likely a full attacker scenario.

incoming anonymized utterances and exploit more speaker-
specific attributes that are not fully removed by SEF-MK.

C. Comparasion with other VASs

Finally, we select the best semi-attacker configuration of
our system where the user uses ‘libri-20-sep’, and the attacker
uses ‘Libri-all’ as the k-means pool, and compare it with other
VASs, as shown in Table III. Among the disentanglement- and
DSP-based VASs, speaker-embedding-free (SEF) KNN-based
methods achieve decent performance even under full attacker
scenarios. However, SEF-MK achieves the highest UAR while
maintaining a good balance between privacy protection and
content preservation.

Note that the private KNN system [40] obtained the highest
EER likely because of the additional component to anonymize
the duration of the phones, but it may also have affected the
utility of the anonymized speech. The anonymization of the
durations can also be incorporated in our proposed system, but
this is left to future work.

D. Furthur analysis

To further visualize the effectiveness of the proposed SEF-
MK, we use t-SNE [52] to visualize the k-means and Con-
former output embeddings for both the single-model setting
(libri-all) and the multi-k-means model setting (libri-1-sep)
as shown in Figure 3. The speaker embeddings are extracted
from 29 speakers in the libri-dev-enroll dataset, with each
speaker represented by a different color. In Figure 3(a), the
WavLM features form clear and distinct speaker clusters,
indicating that they encode a significant amount of speaker
identity-related information. However, after applying k-means
and the Conformer, these clusters become indistinct, and
speaker separability is no longer clearly visible. Additionally,
the embedding distributions before and after the Conformer
remain similar, demonstrating its strong feature reconstruc-
tion capability. Furthermore, compared to the single k-means
model, the multiple k-means models also result in embeddings
with less speaker information, but they form two clusters
(which probably represent the genders). This echoes with

(a) WavLM: H

(b) k-means: Elibri-all (c) k-means: Elibri-1-sep

(d) Conformer: Clibri-all (e) Conformer: Clibri-1-sep

Fig. 3. Libri-dev-enroll: Comparison of WavLM representations and
clustering-based embeddings across speaker and separation settings. Different
speaker identities are marked using different colors.

the results in Sec. IV-A that libri-1-sep degraded the privacy
protection (i.e., higher EER) for one of the gender.

V. CONCLUSION

In this work, we propose a speaker-embedding-free voice
anonymization system that leverages multi-k-means quantiza-
tion on SSL features. Specifically, our method utilizes a pool
of k-means models, with one randomly selected at either the
frame level or the utterance level during inference. We system-
atically analyze the impact of different k-means anonymization
strategies from both the user’s and the attacker’s perspectives.
Experimental results demonstrate that our approach achieves
superior utility preservation while providing strong privacy
protection, outperforming various existing VASs.
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