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Abstract—Audio-visual learning has demonstrated promising
results in many classical speech tasks (e.g., speech separation,
automatic speech recognition, wake-word spotting). We believe
that introducing visual modality will also benefit speaker diariza-
tion. To date, Target-Speaker Voice Activity Detection (TS-VAD)
plays an important role in highly accurate speaker diarization.
However, previous TS-VAD models take audio features and utilize
the speaker’s acoustic footprint to distinguish his or her personal
speech activities, which is easily affected by overlapped speech
in multi-speaker scenarios. Although visual information naturally
tolerates overlapped speech, it suffers from spatial occlusion, low
resolution, etc. The potential modality-missing problem blocks
TS-VAD towards an audio-visual approach. This paper proposes
a novel Multi-Input Multi-Output Target-Speaker Voice Activity
Detection (MIMO-TSVAD) framework for speaker diarization.
The proposed method can take audio-visual input and leverage
the speaker’s acoustic footprint or lip track to flexibly conduct
audio-based, video-based, and audio-visual speaker diarization in
a unified sequence-to-sequence framework. Experimental results
show that the MIMO-TSVAD framework demonstrates state-
of-the-art performance on the VoxConverse, DIHARD-III, and
MISP 2022 datasets under corresponding evaluation metrics,
obtaining the Diarization Error Rates (DERs) of 4.18%, 10.10%,
and 8.15%, respectively. In addition, it can perform robustly in
heavy lip-missing scenarios.

Index Terms—Speaker Diarization, Target-Speaker Voice Ac-
tivity Detection, Audio-Visual Neural Networks

I. INTRODUCTION

IKE documenting events in a diary, speaker diarization

is the task of automatically detecting multiple speakers’
utterance boundaries in conversational data [1]. It aims to split
the audio or multi-modal signals into segments with labeled
identities, solving the problem of “Who-Spoke-When.” As
a front-end technique, it is essential in various downstream
applications (e.g., speech recognition) [2].

In previous studies, speaker diarization research mainly
focuses on audio streams [2]. The conventional method,
also known as the modularized method, utilizes cascaded
modules to partition the audio signal into short segments
and cluster their identities by advanced speaker representa-
tion techniques [3]-[5]. These methods cannot handle over-
lapped speech as each audio segment is supposed to be
speaker-homogeneous. Some studies propose additional post-
processing techniques (e.g., overlapped speech detection [6],
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overlap-aware resegmentation [5], [7]) to compromise this
effect. Then, End-to-End Neural Diarization (EEND) sys-
tems [8]-[11] are proposed to estimate multiple speakers’
speech activities as multi-label classification. The end-to-end
structure of neural networks leads to ease of optimization and
robustness to overlapped speech. Nevertheless, permutation-
invariant training in EEND-based methods causes performance
degradation when the number of speakers increases in long
audios. Although a few studies [12]-[16] have explored the
unsupervised clustering to address this problem, their results
are still unsatisfactory. Recently, TS-VAD approaches [17]-
[20] become attractive, which combine advantages of modu-
larized methods and end-to-end neural networks. As a post-
processing method, the TS-VAD framework requires an initial
diarization system (e.g., modularized method) to extract each
speaker’s acoustic footprint as the speaker profile, solving the
problem of “Who-Spoke” in advance. Then, a neural network-
based model takes speech features and all speaker profiles to
predict their corresponding framewise voice activities, aiming
to address the “When” problem. This two-stage process has
demonstrated excellent performance in popular benchmarks
such as DIHARD-III [21] and VoxSRC21-23 [22]-[24].

However, speaker diarization in complex environments (e.g.,
far-field and highly overlapped speech, a large number of
speakers) is still challenging. Using visual information as
the complementary modality to improve diarization systems
becomes a promising direction. Existing works mainly depend
on constructing cross-modal synergy [25]-[28], clustering
on audio-visual pairs [29], [30], or end-to-end audio-visual
diarization [31], [32], which are basically derived from the
previous audio-only methods. Motivated by the highly accurate
performance in TS-VAD studies, a question arises if it is
feasible to investigate this framework in an audio-visual man-
ner. Although similar works about Active Speaker Detection
(ASD) [33]-[35] also estimate the speaker’s voice activities us-
ing audio-visual signals, they usually work for a single speaker
at once and neglect the modality-missing problems. So far,
there is a lack of an audio-visual diarization framework that
can effectively deal with multi-speaker scenarios where the
visual modality often suffers occlusion, off-screen speakers,
or unreliable detection.

In this article, we propose a novel MIMO-TSVAD frame-
work for audio-visual speaker diarization in modality-missing
scenarios. Let X, and X, denote the audio and video features,
respectively. Eg,; represents the target-speaker embeddings
in classical TS-VAD systems. We additionally define target-
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Fig. 1. Overview of different TS-VAD frameworks. In (a) and (b), 7" and F’ denote the length and dimension of extracted audio features. N and S denote the
number and dimension of speaker embeddings. D indicates the output dimension of the decoder, which can be converted into the length of detected speech
activities by a linear layer. In (c), The multi-modal encoder and multi-task decoder take multiple kinds of input (e.g., audio/video features, target-speaker/lip
embeddings) and support various output methods. For clarity, front-end extractors to obtain audio-visual features are omitted in the plot.

lip embeddings to indicate speaker identities of corresponding
lip tracks, denoted as E;;;,. Depending on the accessibility of
different data during inference, there are four cases , namely
Xa vs. Egpry Xy vs. Eggp, Xg + Xy vs. Egp, X + X, s,
E i + Egip. Our proposed framework can flexibly process
arbitrary cases with state-of-the-art performance and strong
robustness.

Fig. 1 illustrates the progress of our TS-VAD research. The
classical TS-VAD systems [17], [18] can be abstracted into the
encoder-only methods, shown in Fig. la. X, € RT*F is ex-
tracted from input audio by traditional methods (e.g., MFCC,
Fbank) or deep neural networks. Eg,;, € RN*S represents the
given speaker embeddings. Each speaker embedding € RS has
to be repeated 7' times and concatenated with X, producing
a 3-dimensional tensor with the shape of T x N x (F + 5).
Then, encoders (e.g., Bi-LSTM, Transformers) process the
input tensor along the time axis (7') and speaker axis (V).
As shown in Fig. 1b, we introduce the sequence-to-sequence
architecture [19] to factorize the input onto the encoder
and decoder separately. This way, the consumption of input
memory becomes proportional to 7" x F'+ N x S, enabling the
model to process longer audio and more speakers. Moreover,
in the previous encoder-only architecture, the output feature
length (T”) must be equal to the input feature length (7).
In the sequence-to-sequence architecture, adjusting the output
dimension (7") of the last linear layer can be easily imple-
mented. As the model accepts a fixed-length speech chunk
as input when T' is determined, using a larger output length
(T") to predict the fixed-length voice activities can achieve a
higher temporal resolution. In this work, the MIMO-TSVAD
framework is designed based on the sequence-to-sequence
architecture, demonstrated in Fig. 1c. The multi-modal encoder
and multi-task decoder leverage cross-modal and inter-speaker
relationships, which can utilize various types of input data to
obtain different predictions in a Multi-Input and Multi-Output
(MIMO) manner.

This paper extends our previous work that presents the fun-
damental algorithm of Seq2Seq-TSVAD [19]. Also, a simple
version based on lip information has been initially described
in our technical report [36] for the Multi-Modal Information

based Speech Processing (MISP) 2022 Challenge [37]. The
new contributions from this paper are summarized as follows.

o Unified: The MIMO-TSVAD framework achieves state-
of-the-art performance in the audio-based, video-based,
and audio-visual speaker diarization tasks.

e Flexible: The proposed framework is jointly designed
with an effective multi-stage training strategy. The inte-
grated model can handle various kinds of input features
and speaker profiles.

e Robust: The proposed framework is jointly designed with
an effective multi-stage inference strategy to robustly
utilize audio-visual data in modality-missing scenarios.

II. RELATED WORKS
A. Modularized Speaker Diarization

The modularized speaker diarization works in a cascaded
pipeline. First, a Voice Activity Detection (VAD) [38] module
detects active speech in the audio. Next, speech regions are
divided into multiple short segments through speech segmenta-
tion, such as Speaker Change Detection (SCD) [39] or uniform
segmentation [40]. After extracting speaker representations
(e.g., i-vectors [41], x-vectors [42]) from those segments,
a scoring metric (e.g., cosine distance, probabilistic linear
discriminate analysis [43]) measures the pairwise embedding
similarities. These segments are finally grouped into differ-
ent identities by clustering algorithms such as K-Means [3],
Agglomerative Hierarchical Clustering (AHC) [40], Spectral
Clustering [44], [45], and so on.

The clustering module of the modularized method can flex-
ibly estimate the number of speakers in long audio. However,
it typically assumes that each audio segment contains only
one speaker. To address this problem, overlapped speech de-
tection [6] and overlap-aware resegmentation [5], [7] can im-
prove the performance by assigning multiple speaker labels to
overlapped regions. Speech separation also has been adopted
in offline [46]-[48] and online [49] diarization systems.

B. End-to-End Neural Diarization

The EEND framework [8], [9] formulates the diarization
problem as a multi-label classification task, relying on the



permutation-invariant training to predict all speakers’ voice ac-
tivities simultaneously. The initial EEND models have a fixed
number of output speakers limited by the network architecture.
Although the Encoder-Decoder based Attractor (EDA) [10],
[11] enables EEND-based methods to process audio with
a variable number of speakers, the maximum number of
speakers is empirically bounded by the training data. To make
the number of output speakers flexible and unlimited, EEND-
vector clustering (EEND-VC) [12]-[14] integrates end-to-end
and clustering approaches, which deploys an EEND model
for shortly divided audio blocks and then matches the inter-
block speaker labels by clustering on speaker embeddings.
In addition, EEND-GLA [15], [16] calculates local attractors
from each short block and finds the speaker correspondence
based on similarities between inter-block attractors. As its
training only requires relative speaker labels within the record-
ing, EEND-GLA is practical for adapting models on in-the-
wild datasets without globally unique speaker labels.

Also, several studies promote the EEND-based systems to
online inference [16], [50], [51] or improve them in terms
of advanced neural network architecture [52]-[55], objec-
tive function design [56], [57], unsupervised/semi-supervised
learning [58]-[60], and so on.

C. Target-Speaker Voice Activity Detection

The background of TS-VAD can be traced back to the
personal VAD [61], which utilizes a given acoustic footprint
as the speaker profile to retrieve his or her personalized voice
activities. However, the personal VAD only accepts a single
speaker at once and ignores the inter-speaker modeling in a
conversation. Thus, TS-VAD is designed to process multiple
speaker profiles and predict their voice activities simultane-
ously.

The initial TS-VAD [17] takes speech features (e.g., MFCC)
and i-vectors of each speaker as the input, where the output
number of speakers is fixed. He et al. [62] modify the model
to cope with a flexible number of speakers by determining
the maximum number of speakers and outputting null speech
activities for zero-padded speaker profiles. Later, LSTM [63]
and Transformer [20] modules are implemented along the
speaker dimension of models to handle a variable number of
speakers. On the other hand, the i-vectors used in TS-VAD
are relatively domain-dependent, restricting the system per-
formance on multi-scenario datasets [64]. This finding paves
the way for exploring more discriminative speaker embeddings
like x-vectors as an alternative. Wang et al. [18] first replace
the front-end of TS-VAD with a pre-trained module tailored
for extracting frame-level x-vectors. This modification shows
superior robustness and generalization than a simple swap of
i-vectors for x-vectors in early attempt [17].

Furthermore, the TS-VAD framework has been investigated
for multi-channel signal [65], vision-guided system [36], and
online inference [66], [67]. Integrating features of both TS-
VAD and EEND methods into an entire system has also
become a popular trend [20], [55], [68], [69].

D. Audio-Visual Speaker Diarization

As facial attributes and lip movements have been proven
to be highly related to speech [70], most early audio-visual
speaker diarization methods leverage multi-modal cues by
modeling the correspondence between speech signals and
talking faces [25], [26]. Also, sound source localization using
microphone arrays can establish another cross-modal relation-
ship by mapping the speech direction onto the captured image
plane [27], [28]. However, it is sometimes hard to perfectly
enroll talking faces or lip movements with related speech
segments. Off-screen speakers whose faces are not captured
can lead to face detection failure. This “enroll first, diarize
later” paradigm may fail in modality-missing scenarios.

Recently, Xu et al. [29] create the AVA Audio-Visual
Diarization (AVA-AVD) database containing diverse movie
clips and a multi-stage audio-visual speaker diarization sys-
tem. The proposed method first utilizes VAD module to find
speaking segments in the audio, then applies the ASD [34]
module to locate a face for each speaking segment. The paired
audio-visual inputs are jointly scored to cluster the speaking
segments into different identities. Subsequently, Wuerkaixi et
al. [30] introduce the lip movement to learn a Dynamic Vision-
guided Speaker Embedding (DyViSE) instead of the still facial
feature, achieving new state-of-the-art performance on these
real-world videos.

In addition, the MISP 2022 [37] database is presented for
Chinese Home-TV scenarios. It has over 100 hours of audio-
visual signals synchronously captured by different devices,
nearly 3.5 times larger than the AVA-AVD [29]. The MISP
2022 Challenge has been successfully held based on this
database. Meanwhile, an End-to-End Audio-Visual Speaker
Diarization (AVSD) [31] is presented as a competitive baseline
method that predicts speech probabilities using audio features
and each speaker’s lip video. In the AVSD system, available
lip videos decide the number and order of output speakers.
This way is highly effective when the camera captures all
speakers ideally. In contrast, it cannot deal with the out-of-
screen speakers.

Apparently, the primary ideas of most existing audio-
visual speaker diarization methods originate from the previous
audio-based methods. Observing the success of TS-VAD in
audio-only speaker diarization and its lack of audio-visual
research, this paper further extends the concept of our previous
Seq2Seq-TSVAD [19] to build a unified, flexible, and robust
framework for audio-visual speaker diarization.

III. MULTI-INPUT MULTI-OUTPUT TARGET-SPEAKER
VOICE ACTIVITY DETECTION

A. Architecture

Fig. 2 demonstrates our proposed MIMO-TSVAD frame-
work, consisting of three parts: the extractor, the encoder, and
the decoder.

1) Audio Extractor: The ResNet-34 [71] is adopted as the
audio front-end extractor. The audio signal is first transformed
into log Mel-filterbank energies for the model to output a
feature map € RC*T1xH1 where C, Ty, and H; denote the
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Fig. 2. The MIMO-TSVAD framework. (a) Extractor: Front-end modules extract audio features X, and video features X, from the input data. (b): Encoder:
Conformer-based modules leverage multi-modal information to generate the updated audio-visual features X, and X,. (c) Decoder: Multi-task decoding
modules predict voice activities based on different speaker profiles, including target-speaker embeddings Eg g, target-lip embeddings E;;;,, or both. Green,
blue, and yellow depict sub-components for processing audio, visual, and audio-visual modalities. For clarity, layer normalization and residual connection of
each self-attention, cross-attention, and feedforward layer are omitted in the plot.

number of channels, temporal length, and width. Then, we im-
plement the segmental statistical pooling (SSP) [18] method to
aggregate channel-wise features and obtain the audio features
X, € RT1xF1 where F) is the output dimension of the SSP
layer. This process can be viewed as a neural network-based
feature extraction that transforms raw audio signals into frame-
level representations.

2) Video Extractor: The ResNetl18-3D [72] is adopted as
the video front-end extractor. A few modifications are em-
ployed based on its standard implementation in PytorchVideo!.
First, the stem layer is set to the convolutional kernel size of 7,
stride of 2, and output channels of 32 without the pooling layer.
The stride of pooling and convolutional layers in the residual
blocks is set to (1,2,2) without the temporal downsampling.
Finally, a spatial global average pooling layer is placed at
the tail. The model transforms a lip video with the length of
T5 and resolution of H x W into frame-level representations
X, € RT2xF2 where F, represents the feature dimension.

3) Encoder: We utilize Conformer-based [73] encoder to
model long-term and cross-modal relationships between the
extracted audio-visual representations. The layout of the de-
signed multi-modal encoder is shown in Fig. 2b, which is
mainly stacked by three types of basic modules: the feedfor-
ward neural networks, self-attention layers, and convolutional
blocks. Inspired by the Mixture of Modality Experts (MoME)
in vision-language models [74], the weights of feedforward
and convolutional modules are modality-dependent, and shared
self-attention layers exchange cross-modal information.

In a TSVAD-like system, the input order of speaker profiles
determines the output order of voice activities. Unlike the
mixed audio signals, different lip videos are naturally separate
tracks to provide features as well as the role of speaker profiles.
Hence, we utilize a set of learnable target-lip embeddings to
indicate the relative identities of input IV lip tracks, denoted
as By, € RN*D | Each element € RP in E,;, is repeated to

Ihttps://github.com/facebookresearch/pytorchvideo

the length of 75 and added with sinusoidal encodings [75],
resulting in the positional embeddings P" € RT2*P for the
n-th video. The final positional embeddings for all video
features can be concatenated as P, € RN-T2)xD Meanwhile,
learnable modality-type embeddings E,,q € RP are initial-
ized to differentiate the audio features from video features.
Similarly, E,,q is repeated to the length of 7} and added
with sinusoidal encodings, resulting in the final positional
embeddings P, € RT**P for audio features. Two modality-
dependent linear layers map the extracted audio-visual features
to the encoder dimension D. Then, the encoder takes the
sum of audio-visual features and corresponding positional
embeddings as the input. The encoded audio-visual features
are denoted as X, and X, implying cross-modal information.

4) Decoder: In the Seq2Seq-TSVAD [19], the presented
Speaker-Wise Decoder (SW-D) estimates target-speaker voice
activities by processing encoded audio features and cross-
speaker relationships simultaneously. We further extend its
multi-task abilities for inference with different kinds of speaker
profiles. As shown in Fig. 2c, the multi-task speaker-wise
decoder involves three output branches. The audio-based out-
put (green-colored) performs as same as the previous audio-
only TS-VAD, utilizing target-speaker embeddings E,; as
speaker profiles to estimate multiple voice activities from the
encoded audio features Xa. The video-based output (blue-
colored) utilizes the newly introduced target-lip embeddings
E;;p to serve as speaker profiles, detecting voice activities
from the encoded video features X,. The mixed output
(yellow-colored) directly fuses intermediate features of the
two modalities by cross-attention mechanism, achieving better
usage of their complementary information.

The input of each decoder branch is initialized by zero em-
beddings € RN*P and updated step by step in the subsequent
blocks, where N denotes the number of candidate speakers and
D represents the decoder dimension. The self-attention layer is
adopted to exchange inter-speaker relationships. For the audio-
based and video-based branches, E,p, and E;;, go through
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multi-layer perception (MLP) modules to align the feature
dimension with the decoder dimension D and concatenate with
the original queries in respective branch. The adopted MLP
module consists of two linear layers with in-between layer nor-
malization and ReLLU activation. Meanwhile, we concatenate
keys from X, and X, with corresponding positional embed-
dings P, and P,. This way, all key-query calculations in the
cross-attention layer can incorporate positional and speaker-
related information as the auxiliary feature. Additionally, let
Fi € RN*P and Y € RN*P denote the intermediate features
of audio-based and video-based branches in the i-th decoder
block, respectively. Then, they are concatenated to produce
the audio-visual features X,, € RN*2XD_ For the mixed
branch, it takes the second (modality) dimension of Xm, as
the sequence axis to perform the cross-attention operation.
This way, two modalities are dynamically fused into the
mixed branch. Finally, a linear projection layer with sigmoid
activation transforms the decoder embeddings into posterior
probabilities of the estimated voice activities. The output
dimension 7" of the linear projection controls the temporal
resolution of system prediction. For example, if the chunk
length of input audio-visual data is fixed at L.ppk seconds.
The prediction for this duration will be evenly divided into 7"’
frames. Each frame-level output indicates whether the target
speaker is speaking during the corresponding time interval.
In this case, the temporal resolution can be calculated as
Lehunk /T, representing the unit duration of each frame-level
prediction. By adjusting the linear projection layer, 7’ can be
easily set as several multiples of 73 or T5. Given N speakers,
the predictions from the audio-based, video-based, and mixed
output are represented as Yaug, Yoid, and Yo € RNXT
respectively.

It is worth noting that the original version of SW-D in
Seq2Seq-TSVAD [19] also introduces target-speaker and posi-
tional embeddings into the self-attention layers. This operation
is found to be unnecessary in this work as the decoder still
works well after removing it.

B. Multi-Stage Training

To process multiple input and output types in a unified
framework, we design a multi-stage training strategy to opti-
mize the model progressively, as shown in Fig. 3. Meanwhile,
we introduce two categories of modality masking techniques
during training, which enable the model to process audio-
only, video-only, or audio-visual signals flexibly. The training
process can be described as follows.

[] Allow to attend
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Fig. 4. Different attention masks in the encoder. The first 7% tokens of the
input feature sequence are the audio features. The rest N - T tokens are video
features extracted from IV lip tracks.

e Stage 1: We copy and freeze the parameters of the pre-
trained speaker embedding model to initialize the audio
front-end extractor. Only audio and video-based output
branches are adopted to train on fully simulated data.

e Stage 2: The audio front-end model is unfrozen. Training
data for model adaption on the specific dataset is added
at a given ratio.

e Stage 3: All pre-trained parameters are frozen. The mixed
output branch is initialized and trained separately.

o Stage 4: Finally, all parameters are unfrozen to be fine-
tuned jointly.

1) Model-Level Modality Masking: In training stages 1-
2, the mixed output branch in the decoder is not initialized.
Cross-modal information is only exchanged by self-attention
layers in the encoder. Hence, we implement different attention
masks to adapt the model to different input features. Fig. 4
demonstrates four possible cases, reflecting that the informa-
tion can be bidirectional, one-way, or prohibited from flowing
between two modalities. During training, one of the masks
is randomly selected. During inference, the attention mask is
generated according to the existence of each modality. In other
words, tokens should only attend to the existing modalities. To
decouple two output branches to avoid learning shortcuts from
matched target-speaker and target-lip embeddings, the speaker
order of Ey;;, should be shuffled independently from the E,y.
As Ey;, represents the relative identities, shuffling E;;;, can be
done equivalently by shuffling the input order of lip tracks in
practice. Ground truth labels for different output branches must
be re-assigned based on their shuffled results.

Given an audio-visual recording with N existing speakers,
except target-lip embeddings E;;, as learnable parameters
built in the model, the other inputs involve audio signal A,
target-speaker embeddings {e,, | 1 <n < N}, and lip tracks



{1, | 1 <n < N}. Each e, and 1,, represents the n-th speaker
embedding and lip track, respectively. The ground truth labels
for voice lactivities can be denoted as a binary matrix Y &
(0,)™*T", where Y (n,t) represents the speaking existence
of the n-th speaker at time ¢. The audio-based output Yaud
and video-based output Y ,iq are modeled with our proposed
MIMO-TSVAD as follows:

E = sh, ({e, |1 <n < N}), (1)
L=shs({l,]1<n<N}), (2)
Y auds Yoia = MIMO_TSVAD (A, E,L), (3)

where shy (-) and shq (-) represent two independent operations
for shuffling speaker-orders (n) in E and L, respectively. The
audio-based output loss L4 and video-based output loss L4
are described as:

Laua = BCE (sh1 (), Yaua) . )
Loia = BOE (sh2 (Y), Yoia) 5)

where ground truth labels Y are re-assigned based on the same
shuffling operations. BCE (y, ) measures the binary cross-
entropy between the target y and predicted g. This way, the
trained encoder can handle different input features.

2) Data-Level Modality Masking: In training stages 3-4,
the mixed output branch in the decoder is additionally intro-
duced to combine the audio-based and video-based output,
which requires that speaker orders of E,,; and Ej;, are
consistent. However, in realistic scenarios, it is difficult for
each speaker to obtain perfectly paired target-speaker embed-
ding and lip movement all the time. Hence, we implement
different data masks to adapt the model to uncertain speaker
profiles. During training, each speaker has a probability of 0.5
to conduct data masking. Once the n-th speaker is selected,
either the speaker embedding e, or lip track 1, will be
masked by zeros. Let N[;Z’“ ={an | an € {0,1},1 <n < N}
and Mg;‘,i € (0, 1)NXT record the masking states of target-
speaker embeddings. If the n-th speaker embedding is masked,
an € ML and MZ% (n,:) will be set to zeros. Similarly,
the masking states of lip tracks are denoted as My =
{ba [ by € {0,1},1 <n < N} and Mg € (0,1)" If the
n-th lip track is masked, b, € M}Z, and My*(n,:) will be
set to zeros. In this situation, the proposed model output can
be obtained as follows:

E' =sh({a, xe, |1<n< N}, (6)
L' =sh({b, x1,|1<n <N}, 0
Y tuds Yoia» Yinie = MIMO_TSVAD (A, E/,L'),  (8)

where sh () represents the consistent speaker-order shuffling
operation. Each input e,, and 1,, will be retained or zeroed by
multiplying by the a,, € {0,1} and b,, € {0,1}. The audio-
based and video-based output losses are modified as follows:

aud = aud

' BCE(sh(Mg;;,gAY)f’ ) )

Lo = BCE (sh(Mf AY), ¥00) . (10)

where A denotes the element-wise logical AND operation.
Ground truth labels Y are not only re-assigned by speaker-
order shuffling but also filtered by the masking states. Then,
the mixed output loss £/ . is written by:

miz

iz = BCE (sh((Még v M7s) AY), ¥, ), (1)
where V denotes the element-wise logical OR operation.

Since the masking probability is independent for all speak-
ers, speaker embeddings or lip tracks of multiple speakers may
be masked at a time. Because for the same speaker, we can
only randomly mask either the speaker embedding or lip track
simultaneously. If the n-th speaker is masked among all N
inputs, the model still generates an output of shape N x T”.
As long as one of the e, or 1, is available, the mixed output
branch of the proposed model can work properly for the n-th
speaker. This way, the trained decoder can be compatible with
uncertain speaker profiles.

To summarize, the first two stages utilize the model-level
modality masking to address different input features (e.g.,
audio-only, video-only, or audio-visual), which are optimized
by the total diarization loss of Lgyuq + Lyq- Meanwhile, it
prevents the model from receiving many zero-masked fea-
tures caused by the data-level modality masking in early
training. The last two stages utilize the data-level modality
masking to solve uncertain inference conditions with modality-
mismatched speaker profiles (e.g., target-speaker embeddings,
target-lip embeddings, or mixed), which are optimized by the
total diarization loss of £/ ,+L!.,+L! . . Finally, the trained
model can flexibly deal with varying accessibilities of audio-
visual data.

C. Multi-Stage Inference

Given the synchronized audio-visual data, the algorithm
aims to find all speaker identities and localize their speak-
ing regions automatically. To adequately utilize audio-visual
data in modality-missing scenarios, we design a multi-stage
inference strategy to predict voice activities iteratively.

1) Prior Steps: Following the commonly used paradigm
in previous TS-VAD methods [17]-[20], a modularized di-
arization system is necessary to obtain an initial result. Each
detected speaker’s non-overlapped speech segments are aggre-
gated to extract the target embedding, initializing the MIMO-
TSVAD model to conduct audio-based speaker diarization.

For the video signals, we extract each speaker’s lip track as
the same as our previous works [36], [76]. The RetinaFace [77]
detector is deployed to localize face images with five-point
facial landmarks in each video frame. As a talking face is
assumed not to move dramatically in a short time window,
the K-Means algorithm in Scikit-Learn toolkit [78] utilizes
coordinates of detected faces to cluster the same person in
adjacent frames. After obtaining each speaker’s face track,
we crop the lip region of interest (Lip-Rol) based on an
empirical setting reported in the CAS-VSR-W 1k [79] database
for large-scale lip reading tasks. Let p;, p2, and pg represent
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Fig. 5. Multi-stage inference process. The MIMO-TSVAD model is weight-shared in all stages. (a) The MIMO-TSVAD model is a typical audio-based system
in inference stage 1. (b) The MIMO-TSVAD decoder is based on the video-based output. When the encoder takes video-only input, it operates in inference
stage 2. Otherwise, it operates in inference stage 3 if the audio input is also available. (c) The speaker alignment module finds off-screen speaker embedding
to build the new set of mixed speaker profiles. Then, the MIMO-TSVAD model operates in inference stage 4 to take audio-visual input and mixed output. In
this example, the first speaker embedding is not successfully extracted because his non-overlapped speech duration is too short. Also, the last speaker’s lip
track is undetected, but the speaker alignment module replenishes his speaker embedding (pink-colored).

coordinates of the nose tip, left mouth corner, and right mouth
corner. The Lip-Rol bounding box is defined as:

p2 +Ps3

5 12)

Lcenters Ycenter =

width = min{3.2 x dyn,2 x mazx {dmn, dpaps}}, (13)

where d;n denotes the Euclidean distance between the nose
tip and the center of the mouth, d,2,3 denotes the Euclidean
distance between pg and pgz. Furthermore, undetected frames
of each lip track will be padded by zeros, guaranteeing audio-
visual synchronization. As this work mainly focuses on the
TS-VAD research, we adopt this simple detection and tracking
method to extract multiple speakers’ lip tracks.

2) Diarization: The MIMO-TSVAD framework requires at
least two input parts: features and speaker profiles. The fea-
tures (e.g., audio, video, or audio-visual data) imply rich voice
activity information in conversations. The speaker profiles
(e.g., target-speaker embeddings, target-lip embeddings) are
the reference to separate individual speakers’ corresponding
voice activities from the provided features. As mentioned in
Section I, the MIMO-TSVAD framework supports four cases
according to the accessibility of different input data, which
can be described as a multi-stage inference process.

Stage 1: The model takes audio features X, and target-
speaker embeddings E,, which is an audio-only system.
Stage 2: The model takes video features X, and target-lip
embeddings E;;,, which is a video-only system.

Stage 3: The model takes audio-visual features X, + X,
and target-lip embeddings E;;;,. The only difference with
the stage 2 is using auxiliary audio features.

Stage 4: The model takes audio-visual features X, + X,
and the mix of target-speaker and target-lip embeddings
Espr + Eyp. Each speaker’s target speech activities can
be extracted if at least one kind of speaker profile exists.

Fig. 5 illustrates the overall inference process for an audio-
visual recording. First, the audio signal undergoes the mod-
ularized diarization system to obtain initial speaker profiles.

Then, the inference stage I of MIMO-TSVAD predicts voice
activities based on the audio-based output. This method en-
sures an audio-based solution is still available even if all visual
information is lost. For lip tracks extracted from the video
signal, the inference stage 2 of MIMO-TSVAD predicts voice
activities based on the video-based output. If the audio signal
is fed as an auxiliary feature, this stage becomes the inference
stage 3. The inference stages 2-3 of MIMO-TSVAD directly
utilizes the input lip videos to serve as speaker profiles, which
does not require an additional module like the modularized
method in inference stage I. However, a critical problem is
that they can not detect the existence of completely off-screen
speakers. To solve the problem, a Speaker Alignment (SA)
module is deployed to find the undetected off-screen speaker
embeddings. We first extract speaker embeddings based on the
predicted voice activities from the inference stage 1 and stage
3, respectively. By pairwise similarity measurement between
two embedding sets, the Hungarian algorithm [80] is employed
to obtain matching relationships with the highest cosine scores.
The off-screen speaker embeddings from the audio-based
output can be discovered if they are not successfully matched
with a pairwise similarity score higher than the pre-set speaker
verification threshold. Then, the matched speaker embeddings
are averaged, and the unmatched off-screen speaker embed-
dings are replenished. Finally, each available speaker profile
can be unimodal or bimodal. The inference stage 4 of MIMO-
TSVAD predicts voice activities based on the mixed output,
tackling complex modality-missing situations.

During the whole inference, the pre-trained MIMO-TSVAD
model is able to adopt shared weights for conducting dif-
ferent inference stages flexibly. All available data can be
fully exploited to boost the final diarization performance,
whether viewed from the aspects of audio-visual features or
complementary speaker profiles.



IV. EXPERIMENTAL SETTINGS
A. Datasets

The proposed MIMO-TSVAD framework is a multi-modal
extension of our previous work [19], which supports audio-
based, video-based, and audio-visual speaker diarization. We
first verify its advantages on the VoxConverse [81] and
DIHARD-III [82] datasets for audio-based speaker diarization.
The VoxConverse dataset is an in-the-wild dataset with 20.29
hours of development set and 43.53 hours of test set collected
from YouTube. We select the first 172 recordings (80%)
of the original development set for training MIMO-TSVAD
models. The last 44 recordings (20%) remain for validation.
The DIHARD-III dataset is a multi-domain dataset with 34.15
hours of development set and 33.01 hours of evaluation
set, including 11 complex scenarios (e.g., interview, clinical,
restaurant). We select the first 203 recordings (80%) of the
original development set for training MIMO-TSVAD models.
The last 51 recordings (20%) remain for validation.

In addition, the MISP 2022 [37] dataset is adopted for
audio-visual speaker diarization. The MISP 2022 dataset tar-
gets the Chinese home-TV scenario with 106.09 hours of
training set, 2.6 hours of development set, and 3.12 hours
of evaluation set. Audio-visual signals are synchronously
captured by different devices. The single-channel microphone
records the near-field (< 0.5m) audio. The 2-channel micro-
phone array and high-definition camera capture the middle-
field (1 — 1.5m) data. The 6-channel microphone array and
wide-angle camera capture the far-field (3 — 5m) data. Also,
we utilize the NARA-WPE 2 and SETK 3 toolkits to do
dereverberation and MVDR-based beamforming for the multi-
channel audio signals, augmenting the diversity of training
data. Under the MISP challenge rules, all fields can be used
in model training and validation. Only far-field data is allowed
for evaluation.

We also create the simulated audio-visual dataset to benefit
neural networks from large-scale training data. The Vox-
Celeb2 [83] dataset is adopted as the source audio corpus,
which covers thousands of unique speaker identities. As the
video contents of the VoxCeleb2 dataset are not available
for downloading nowadays, we utilize the MISP 2022 [37]
dataset as a supplementary video corpus. Although the audio
and video signals are not semantically consistent regarding
the dialogue content, the combination is still feasible because
speaker diarization primarily focuses on recognizing speaker
identities and voice activities rather than the speech content.
During training, each simulated data is generated in an on-
the-fly manner as follows.

o Step I: A speaker label is randomly selected from the
audio corpus. The single-speaker utterance is created
by alternately concatenating his or her source speech
and silent (zero-padded) segments, where each segment
length is sampled from a uniform distribution of 0-4
seconds.

o Step 2: We cut the video corpus into active (speech) and
inactive (silent) lip tracks. An active lip track is randomly

Zhttps://github.com/fgnt/nara_wpe
3https://github.com/funcwj/setk

selected and cropped into the same duration for each
speech segment created in the first step. An inactive lip
track is randomly selected and cropped into the same
duration for each silent segment. Then, the extracted lip
tracks are concatenated in the same order as the audio,
creating the corresponding single-speaker lip track.

o Step 3: For each simulation, audio-visual data of 1-4
speakers can be obtained by repeating the above steps.
All single-speaker utterances are averaged as the mixed
audio. No additional operations are required for the lip
tracks, as they are already separate. The average overlap
ratio of simulated data is estimated to be around 30%.

B. Network Configuration

1) Speaker Embedding Extraction: The ResNet-34 is uti-
lized as the pattern extractor, where residual blocks have
widths (number of channels) of {64,128,256,512} with a
total downsampling factor of 8. After adding the statistical
pooling [42] layer, a linear projection layer outputs the 256-
dim speaker embedding. The ArcFace (s = 32, m = 0.2) [84]
is used as the classifier. The model trained on the Vox-
Celeb2 [83] dataset achieves an equal error rate (EER) of
0.814% on the Vox-O [85] trial. Other training details are
the same as [86]. The pre-trained model is used for speaker
embedding extraction in the subsequent MIMO-TSVAD sys-
tem. Also, the Speaker Alignment (SA) module employs the
pre-trained speaker verification threshold of 0.3479 during
inference.

2) MIMO-TSVAD: The audio front-end ResNet-34 is ini-
tialized by the pre-trained speaker embedding model. We
replace the original statistical pooling (SP) with SSP [18]
layer to achieve frame-level feature extraction. The video
front-end ResNetl8-3D has residual blocks with widths of
{32,64,128,256} to output 256-dim frame-level features,
which are randomly initialized. The back-end encoder-decoder
modules have 6 blocks sharing the same settings: 512-dim
attentions with 8 heads and 1024-dim feed-forward layers
with a dropout rate of 0.1. The kernel size of convolutions in
Conformer blocks is 15, and the other implementation details
are the same as [73].

C. Training and Inference Details

All training data is split into fixed-length chunks by sliding
window and normalized with a mean of 0 and a standard
deviation of 1. The chunk length can be set to different values
(e.g., 8 seconds, 16 seconds, 32 seconds). As the model only
accepts a fixed-length chunk as input, the chunk lengths used
for training and inference should always be consistent, but the
chunk shift can vary flexibly. The subsequent experimental
results investigate the impacts of different chunk lengths and
shifts. Then, the input acoustic features are 80-dim log Mel-
filterbank energies with a frame length of 25 ms and a
frameshift of 10 ms. The input lip videos are transformed into
grayscale with a resolution of 88 x 88 and frames per second
(FPS) of 25. Assume that the maximum number of speaker
profiles (speaker capacity) is set to C'. When speakers in a
recording cannot reach C', empty speaker profiles are padded



TABLE I
PERFORMANCE OF DIFFERENT MIMO-TSVAD MODELS ON THE VOXCONVERSE TEST SET (COLLAR = 250 MS). THE DIARIZATION ERROR RATE (DER)
IS THE SUM OF MISS (MI), FALSE ALARM (FA), AND SPEAKER CONFUSION (SC) RATES.

i VAD SPK Chunk 1-10 SPKs (%) 10+ SPKs (%) Total (%)

Resolution  Capacity  Length/Shift =/ ™0 ™ "5 DR M1 FA SC DER MI FA SC DER
s 10 243 148 110 501 280 1024 344 1648 251 327 158 736
S2  80ms 20 85/ 8s 199 135 105 439 210 252 357 819 201 159 156 5.16
S3 30 205 129 100 434 220 174 356 750 208 138 152 498
s4 10 227 148 100 475 273 1008 336 1617 236 324 149  7.09
S5 10ms 20 85/ 8s 193 132 102 427 212 241 353 806 197 154 154 505
s6 30 202 134 101 437 217 172 360 749 205 142 155  5.02
7 165 / 165 205 120 096 421 226 182 348 756 209 133 148 490
S8 10ms 30 325/ 32s 204 116 091 411 235 167 334 736 210 126 140 476
9 64s / 64s 187 115 086 388 226 166 315 707 194 126 133 453
S10 165 / 2s 195 1.02 085 38 222 139 328 689 201 110 135 446
S11 10ms 30 325/ 2s 195 099 079 373 228 126 315 669 201 105 127 433
s12 64s / 2s 185 102 074 361 221 130 296 647 192 107 119 4.8

by zeros or speakers not appearing in the current chunk. This TABLE II

padding method aligns the dimension of batched training data
and forces the model to distinguish valid and invalid speaker
profiles. Meanwhile, all the input speaker profiles should be
shuffled to make the model invariant to speaker order.

We implement the BCE loss and Adam optimizer to train the
neural network. As described in Section III-B, the first training
stage starts with a linear learning rate warm-up from O to /e-4
in 2,000 iterations. From the second training stage, real data
from the VoxConverse [81] and DIHARD-III [82] datasets is
added to the simulated data at a ratio of 0.2. For experiments
on the MISP 2022 [37] dataset, this ratio is adjusted to 0.5,
which follows our previous challenge setting [36] to mitigate
the large domain gap between simulated data (English) and test
set (Chinese). In the last finetuning stage, the learning rate is
decayed to le-5. Additive noise from Musan [87] and rever-
beration from RIRs [88] are applied for audio augmentation.
For video augmentation, input lip videos undergo each item
of the following procedures with a probability of 0.5: rotation
with an angle range [5, 20]; horizontal flipping; cropping with
the scale range [0.8, 1]; transformation of contrast, brightness,
and saturation in the range [—25,25]. The training process
takes around 200k iterations with a batch size of 32 on 8 x
NVIDIA RTX-3090 GPUs.

The inference process follows the Section III-C. The prior
steps extract lip tracks and target embeddings of speakers with
non-overlapped speech longer than 2 seconds. If the speakers
are less than speaker capacity C, empty speaker profiles are
padded by zeros. Otherwise, the excess speaker profiles are
inferred in the next group. We split test data into chunks
to feed each MIMO-TSVAD inference stage. The predictions
are stitched chunk by chunk. For the far-field recordings in
the MISP 2022 dataset, we directly average the predictions
from all dereverberated channels. Lastly, reference VAD can
revise the diarization results if the specific evaluation metric
allows. The timestamps marked as active speech will assign a
positive label to the speaker with the highest predicted score.
The predictions at non-speech timestamps will be zeroed. All
experiments are repeated three times to report the mean values.

COMPARISONS OF MIMO-TSVAD MODELS WITH OTHERS ON THE
VOXCONVERSE TEST SET (COLLAR = 250 MS).

Method DER (%)
ByteDance [89] T 5.17
DKU-DukeECE [23] 4.94
Microsoft [20] 4.57
PET-TSVAD [90] 4.35
pyannote.audio [91] ¢ 4.00
LSTM-SC [18] 6.33
VBx [5] 5.62
AHC [23] 5.35

+ MIMO-TSVAD (S12 in Table I) * 4.18

T VoxSRC-21 2nd-ranked result with 3-system fusion. The 1st-ranked
team dose does not report the DER for this set.

 VoxSRC-22 1st-ranked result with 4-system fusion.

¥ VoxSRC-23 2nd-ranked result with WavLM [92] model.

* participates in the VoxSRC-23 1st-ranked winning (fusion) system.

V. RESULTS AND DISCUSSIONS
A. Evaluation of Audio-based Diarization

When only loading audio-related modules (green-colored in
Fig. 2), the inference stage I of MIMO-TSVAD is equivalent
to the basic Seq2Seq-TSVAD [19]. Using the pre-trained
speaker embedding model, we implement the AHC [23],
LSTM-SC [18], and VBx [5] as modularized diarization
methods to extract initial speaker profiles. The related hyper-
parameters are tuned on the development sets of VoxCon-
verse [81] and DIHARD-III [82] datasets, respectively.

For the VoxConverse dataset, the AHC obtains a Diarization
Error Rate (DER) of 5.35% on the test set with a tolerance
collar of 250 ms, better than the VBx (5.62%) and LSTM-SC
(6.33%). Thus, Table I illustrates the performance of different
MIMO-TSVAD models initialized by the AHC result. Two
types of VAD resolutions (duration per frame-level prediction)
are provided as coarse (80 ms) and precise (10 ms) options,
which can be implemented easily by adjusting the dimension
of the model output. As the dataset has up to 21 speakers in a
single recording, we choose the speaker capacity (maximum
speaker embeddings) of 10, 20, and 30 to cover insufficient,



TABLE III
PERFORMANCE OF DIFFERENT MIMO-TSVAD MODELS ON THE DIHARD-III EVALUATION SET (REFERENCE VAD). THE DIARIZATION ERROR RATE
(DER) IS THE SUM OF MISS (MI), FALSE ALARM (FA), AND SPEAKER CONFUSION (SC) RATES.

p VAD SPK Chunk 1-5 SPKs (%) 5+ SPKs (%) Total (%)

Resolution  Capacity  Length/Shift — — ), ™0 ™ g™ "pgr M1  FA SC DER MI FA SC DER
Sl 5 458 317 321 1096 1092 280 956 2328 547 311 410 12.68
S2  80ms 10 8s / 8s 461 308 317 1086 1058 2.58 923 2239 545 301 403 1249
3 20 460 319 314 1093 1070 247 9.04 2221 545 309 397 12.5]
4 5 380 239 330 949 10.17 274 987 2278 469 244 422 1135
S5 10ms 10 8s / 8s 376 239 322 937 1029 202 940 2171 468 234 409 1111
S6 20 394 223 319 936 1049 183 919 2151 486 218 404 1108
7 165 / 165 364 242 307 913 1021 188 883 2092 456 235 388 1079
S8 10ms 20 32s / 32s 355 239 287 881 999 188 886 2073 445 231 371 1047
9 64s / Gds 349 263 289 901 957 225 891 2073 434 258 373 1065
S10 165 / 25 360 223 288 871 1032 159 835 2026 454 214 365 1033
SI1 10ms 20 325/ 2s 351 223 272 846 1015 156 843 20.14 444 214 352  10.10
S12 64s / 2s 347 244 274 865 976 176 838 1990 435 235 353 1023

suitable, and sufficient capacities, respectively. Systems S1-3 TABLE IV

reveal that total DERs reduce obviously from 7.36% to 4.98%
when the speaker capacity increases from 10 to 30. The gain
mainly comes from the subset of recordings with over 10
speakers. Systems S4-6 show that the precise resolution (10
ms) slightly improves over a coarse resolution (80 ms), except
System S6. It is speculated that the tolerance collar makes the
evaluation insensitive to utterance boundaries. Based on the
VAD resolution of 10 ms and speaker capacity of 30, Systems
S7-9 increase the chunk length of model training to decrease
total DERs from 4.90% to 4.53%. Systems S10-12 utilize a
2-second chunk shift for inference. Beyond simply stitching
chunk-wise predictions, overlapped regions are averaged as
score-level fusion. It can be seen that dense inference can
further decrease the lowest total DER to 4.18%. Table II
compares our proposed method with the current state-of-the-
art results. Our best performance significantly outperforms
previous ones, especially for some multi-system fusion results
in early VoxSRC challenges. Notably, System S12 participates
in the latest VoxSRC-23 winning system [24]. Although the
pyannote.audio [91] team achieves a DER of 4.00% based on
large-scale data and unsupervised WavLM models, it does not
beat our winning system on the VoxSRC-23 challenge set.

For the DIHARD-III dataset, reference VAD is provided
according to the challenge’s track 1 rules. The LSTM-SC
obtains the 15.40% DER on the evaluation set, better than the
VBx (16.58%) and AHC (16.77%). Thus, Table III illustrates
the performance of different MIMO-TSVAD models initialized
by the LSTM-SC result. Since the number of speakers in each
recording is up to 9, we explore the speaker capacity of 5,
10, and 20. The experimental results show similar conclusions
to Table I, which means the precise VAD resolution, larger
speaker capacity, longer chunk length, and dense inference
can usually enhance the diarization performance. Nevertheless,
two phenomena should be mentioned. First, the benefits of
precise VAD resolution are more significant than the maximum
speaker capacity here. As the DIHARD-III dataset is annotated
at 10 ms and evaluated without the tolerance collar, its results
are more likely affected by the temporal precision of estimated

COMPARISONS OF MIMO-TSVAD MODELS WITH OTHERS ON THE
DIHARD-IIT EVALUATION SET (REFERENCE VAD).

Method DER (%)
Hitachi-JHU [93] 11.58
USTC-NELSLIP [21] f 11.30
Wang et al. [64] 11.30
ANSD-MA-MSE [94] 11.12
AHC [23] 16.77
VBx [5] 16.58
LSTM-SC [18] 15.40

+ MIMO-TSVAD (S11 in Table III) 10.10

T DIHARD-III 2nd-ranked result with 5-system fusion.
I DIHARD-III Ist-ranked result with 5-system fusion.

speech activities. Second, the diarization performance saturates
when the chunk length grows to 32 seconds in System S8
and S11, which reveals that the performance cannot be further
improved easily. Finally, System 11 achieves the lowest total
DER of 10.10%. Table IV compares our proposed method
with the current state-of-the-art results. Our best performance
demonstrates superiority over existing approaches.

Notably, the DER results of MIMO-TSVAD models in
Tables I and III differ slightly from those reported in the
original Seq2Seq-TSVAD paper [19]. A clarification of the
inference configurations is provided as follows.

o First, for the VoxConverse dataset, this work does not
apply any post-processing based on estimated VAD infor-
mation, whereas [19] revises TS-VAD predictions using
results from a separate diarization system. In this case, we
observed that a finer-grained inference strategy, achieved
by adjusting chunk lengths and chunk shifts, already leads
to significant DER improvements. As a result, the best-
performing MIMO-TSVAD model achieves competitive
accuracy without requiring additional VAD-based refine-
ment.

o Second, for the DIHARD-III dataset, [19] directly reports
the best DER under a specific configuration (chunk length
= 16 s, VAD resolution = 10 ms, speaker capacity =



TABLE V
PERFORMANCE OF DIFFERENT MIMO-TSVAD MODELS ON THE MISP 2022 EVALUATION SET (REFERENCE VAD). THE DIARIZATION ERROR RATE
(DER) IS THE SUM OF MISS (MI), FALSE ALARM (FA), AND SPEAKER CONFUSION (SC) RATES.

ID  Inference Input Output MI (%) FA (%) SC (%) DER (%)
Audio Video Audio-visual Audio-based Video-based Mixed

S1  Stage 1 v v 7.85 2.01 13.49 23.35

S2  Stage 2 v v 7.36 3.31 4.34 15.01

S3  Stage 3 v v 4.77 2.10 3.19 10.06
Stage 1 v v 8.25 2.85 14.75 25.85
Stage 2 v v 9.89 1.53 5.16 16.58

S4 * Stage 3 v v 4.60 2.48 3.31 10.39
Stage 4 w/o SA V v v 3.84 2.69 2.25 8.78
Stage 4 w/ SA V v v 3.84 2.68 222 8.74
Stage 1 v v 9.05 1.98 12.95 23.98
Stage 2 v v 7.45 2.74 422 14.41

S5  Stage 3 v v 4.65 2.43 3.08 10.16
Stage 4 w/o SA V v v 3.97 2.55 1.68 8.20
Stage 4 w/ SA V v v 3.93 2.56 1.66 8.15

* indicates the model trained without the proposed multi-stage training strategy.

V denotes the abbreviation of speaker alignment.

20). In contrast, this work systematically explores a wide TABLE VI

range of inference setups to gain a deeper understanding
of their impact on performance.

o Third, the reported DERSs in this work are averaged over
three independent runs to mitigate randomness, whereas
[19] reports single-run outcomes. These differences may
account for the observed variations in DER.

B. Evaluation of Video-based and Audio-Visual Diarization

When loading all modules in Fig. 2, the MIMO-TSVAD
can conduct various inference stages flexibly. Limited by the
large GPU memory consumption of multi-modal data, we only
train the models under the VAD resolution of 10 ms, speaker
capacity of 6, chunk length of 8 seconds, and chunk shift of
2 seconds. Also, we utilize the first channel of far-field audio
in the MISP 2022 training set to tune the AHC [23], LSTM-
SC [18], and VBx [5], respectively.

For the MISP 2022 evaluation set, reference VAD is pro-
vided according to the challenge’s track 1 rules. The LSTM-
SC obtains the 29.30% DER, better than the AHC (30.02%)
and VBx (33.37%). Thus, Table V illustrates the performance
of different MIMO-TSVAD models initialized by the LSTM-
SC result. To investigate the potential of audio-based, video-
based, and mixed output methods, Systems S1-3 are individ-
vally trained for each inference stage. Experimental results
show that the video-based System 2 obtains 15.01% DER,
surpassing the audio-based System 1 with 23.35% DER. The
improvement mostly comes from the speaker confusion (SC)
error decreasing from 13.49% to 4.34%. Visual modality
demonstrates a significant advantage in determining speaker
identities as it does not suffer from the issue of overlapping
speakers. Then, System 3 decreases the DER to 10.06% by
introducing auxiliary audio information. About 3/4 improve-
ment (3.8% of 4.95% DER) is contributed by miss (MI) and
false alarm (FA) rates. Compared with video signals of a

COMPARISONS OF MIMO-TSVAD MODELS WITH OTHERS ON THE MISP
2022 EVALUATION SET (REFERENCE VAD).

Method DER (%)
E2E-AVSD (Official Baseline) [31] 13.88
NPU-FlySpeech [32] ¢ 10.90
SITU [95] b 10.82
WHU-Alibaba [36] © 8.82
VBx [5] 33.37
AHC [23] 30.02
LSTM-SC [18] 29.30

+ MIMO-TSVAD (S5 in Table V) 8.15

a,b, ¢ denote the 3rd-, 2nd-, and 1st-ranked submissions to the audio-
visual diarization track of MISP 2022 Challenge, respectively.

limited 25 FPS, it can be seen that the audio modality can bring
higher temporal precision for predicted utterance boundaries.

However, the independent training of Systems S1-3 is not
cost-effective. Accordingly, we propose a multi-stage training
strategy to obtain an integrated model for all inference stages.
Once trained, the model supports all the functionalities of
Systems S1-3 and unlocks the new mixed output method. We
first train System S4 starting from the last stage described
in Section III-B. Without the multi-stage design, experimental
results show that although the inference stages 1-3 of System 4
degrade considerably compared with the counterpart Systems
1-3, the inference stage 4 still reduces the DER to 8.74% by
adopting the advanced mixed output method. Then, we train
System S5 with the presented multi-stage training strategy
as shown in Fig. 3. It can be seen that the performance
degradation of inference stages 1-3 is alleviated obviously.
Meanwhile, its inference stage 4 reaches the lowest DER of
8.15%. As no dramatic modality-missing problem exists in
the MISP 2022 dataset, the benefits of adopting the Speaker
Alignment (SA) module are not noteworthy here but are thor-
oughly investigated in the next section. Furthermore, Table VI



100 Stage 1 (Audio-only)
—e— Stage 2
—e— Stage 3

Stage 4 w/o SA

—e— Stage 4 w/ SA

1004 Stage 1 (Audio-only)
—e— Stage 2
—e— Stage 3

Stage 4 w/o SA

—e— Stage 4 w/ SA

90 904

80 80
70 704

60 60

DER (%)
DER (%)

50 50

40 40+
30 304
20

10

9.78

8.15

100+ Stage 1 (Audio-only)
—e— Stage 2
—e— Stage 3

Stage 4 w/o SA

—e— Stage 4 w/ SA

90

804

704

60

DER (%)

50
404

30

2450 2349

22. 2261 2

2313 5
2230 y Tos
1889 18.81

16.19

1348 9,3,

%15 931

00 01 02 03 04 05 06 0.7 08 09 10
Lip-Rol Miss Rate (%)

(a) Partially Off-screen

00 01 02 03 04 05 06 0.7 08 09 1.0
Lip-Rol Miss Rate (%)

(b) Completely Off-screen

00 01 02 03 04 05 06 0.7 08 09 1.0
Lip-Rol Miss Rate (%)

(c) Hybrid

Fig. 6. DERs (%) of MIMO-TSVAD models on the simulated MISP 2022 evaluation sets with different Lip-Rol miss rates. Each value is the average
performance on three copies of the independent simulation, where the red-shaded bands indicate the maximum-minimum intervals.

compares our proposed method with the current state-of-the-
art results. The MIMO-TSVAD method updates our previous
system [36] that has won the audio-visual diarization track of
the MISP 2022 Challenge.

C. Evaluatioin of Robustness to Lip-Missing Scenarios

A speaker’s lip track may not always be available in real
scenarios. To explore the impact of lip-missing problems
on the MIMO-TSVAD framework, we newly simulate test
data based on the original MISP 2022 evaluation set. Three
lip-missing scenarios are created using zeros to randomly
mask the Lip-Rol for simulating off-screen data, described as
follows.

o Partially Off-screen: Each speaker’s Lip-Rols are re-
moved during a period. The total number of speakers in
the video remains unchanged.

o Completely Off-screen: The Lip-Rols of some selected
speakers are entirely removed. Fewer speakers exist in
the video.

o Hybrid: Both situations above may happen.

Fig. 6 demonstrates how the performance of the MIMO-
TSVAD system (S5 in Table V) changes under different lip-
missing scenarios and degrees. Since the inference stages 2-3
entirely rely on the video-based output, their DERs increase
almost linearly as the Lip-Rol miss rates rise in all scenarios.
Notably, the inference stage 4 without speaker alignment per-
forms differently in different lip-missing scenarios. In Fig. 6a,
it utilizes the mixed output method to keep considerable
robustness as long as each speaker’s few Lip-Rol segments
can successfully extract the paired speaker embedding. Once
the Lip-Rol miss rate reaches 100%, the system directly
fails. In Fig. 6b, its DERs also increase rapidly with the
Lip-Rol miss rate increases because all the missed Lip-Rol
comes from completely off-screen speakers whose speaker
embeddings cannot be enrolled by the video-based output of
the previous stage. In Fig. 6c, its DER curve combines the
characteristics in Fig. 6a and Fig. 6b. The inference stage
4 without speaker alignment may recall partially off-screen

TABLE VII
COMPUTING EFFICIENCY OF MIMO-TSVAD MODELS FOR EACH
8-SECOND INPUT DATA IN DIFFERENT INFERENCE STAGES, REGARDING
THE NUMBER OF PARAMETERS, FLOATING-POINT OPERATIONS (FLOPS),
GPU MEMORY, AND INFERENCE TIME.

Stage Params (M) FLOPs (G) Memory (MB) Time (s)
1 76.56 151.80 494.49 0.0279
2 64.11 515.60 943.60 0.0499
3 85.78 667.01 1040.50 0.0617
4 153.72 669.16 1313.22 0.0797

speakers’ voice activities but is useless for completely off-
screen speakers. Lastly, using the speaker alignment module
dramatically improves the robustness of inference stage 4.
With the help of undetected speaker embeddings, the mixed
output method can work stably in different cases.

In general, our proposed MIMO-TSVAD framework ex-
hibits strong robustness to complex lip-missing scenarios. With
the Lip-Rol missing rate varying from 0 to 100%, it transits
from an audio-visual to an audio-only system, maintaining the
DER within a satisfactory range.

D. Computing Efficiency

Table VII illustrates the computing efficiency of MIMO-
TSVAD models trained in Table V. For each 8-second input
data, several metrics for the different inference stages are
presented as follows. First, the number of parameters for
each stage is an essential indicator. Second, Floating-Point
Operations (FLOPs) are used to measure the computational
complexity. Then, we count the required GPU memory and the
average time for inferring each input chunk, which is tested
on the NVIDIA RTX-3090 GPU. Starting from the second
stage, the use of visual modality significantly increases the
computational load. The more multi-modal information the
model uses, the greater the computational load is required.
Improving the computing efficiency of multi-modal speaker
diarization systems is still challenging.



VI. CONCLUSIONS

This paper proposes a novel MIMO-TSVAD framework to
tackle speaker diarization under complicated audio-visual data
accessibilities. The model with jointly designed multi-stage
training and inference strategies is compatible with different
scenarios in a unified framework. Experimental results show
that the MIMO-TSVAD framework performs well for audio-
based, video-based, and audio-visual speaker diarization. It
obtains new state-of-the-art DERs of 4.18% on the Vox-
Converse [81] test set, 10.10% on the DIHARD-III [82]
evaluation set, and 8.15% on the MISP 2022 [37] evaluation
set, respectively. Furthermore, the MIMO-TSVAD framework
demonstrates strong robustness against lip-missing problems.
In simulated scenarios with varying lip-missing degrees, it
guarantees that the DERs of the audio-visual system are
always no worse than the audio-only system. In the future, we
will further improve the current approach regarding advanced
lip extraction and clustering methods, better use of multi-
channel audio, etc.
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