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Enhancing the Robustness of Speech Anti-spoofing
Countermeasures through Joint Optimization and Transfer
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and Hiromitsu NISHIZAKI†c), Senior Member

SUMMARY
Currently, research in deepfake speech detection focuses on the gen-

eralization of detection systems towards different spoofing methods, mainly
for noise-free clean speech. However, the performance of speech anti-
spoofing countermeasure (CM) systems often does not work well in more
complicated scenarios, such as those involving noise and reverberation. To
address the problem of enhancing the robustness of CM systems, we pro-
pose a transfer learning-based hybrid approach with Speech Enhancement
front-end and CounterMeasure back-end Joint optimization (SECM-Joint),
investigating its effectiveness in improving robustness against noise and
reverberation. Experimental results show that our SECM-Joint method re-
duces EER by 19.11% to 64.05% relatively in most noisy conditions and
23.23% to 30.67% relatively in reverberant environments compared to a
Conformer-based CM baseline system without pre-training. Additionally,
our dual-path U-Net (DUMENet) further enhances the robustness for real-
world applications. These results demonstrate that the proposed method
effectively enhances the robustness of CM systems in noisy and reverberant
conditions. Codes and experimental data supporting this work are publicly
available at: https://github.com/ikou-austin/SECM-Joint†
key words: speech anti-spoofing, transfer learning, joint optimization

1. Introduction

The emerging Deepfake Speech Detection (DSD) field aims
to develop anti-spoofing countermeasure (CM) systems to
detect synthesized speech, addressing risks to social secu-
rity, political stability, and economic integrity [1]. As shown
in Figure 1, a typical CM system pipeline consists of pre-
processing, feature extraction and classification. If a deep
neural network is employed to obtain learnable features di-
rectly from raw speech waveform input, replacing the sepa-
rate feature extraction and classification processes, the entire
CM system can be regarded as an end-to-end model [1].

In DSD studies based on clean data, various approaches
have been explored, including conventional Gaussian Mix-
ture Model (GMM) [2] and neural network-based (NN-
based) models, such as Light Convolutional Neural Net-
work (LCNN) [3], Deep Residual Network (ResNet) [4],
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Fig. 1 The illustration of typtical pipeline solution for CM systems. For
end-to-end models, feature extraction and classifiers are integrated into one
neural network.

and Graph Neural Networks (GNNs) [5], [6]. GMM has
been widely adopted as a baseline model in a series of com-
petitions, such as ASVspoof 2017 and 2019 [7], [8]. How-
ever, most NN-based models outperform the GMM-based
classifier [1]. In addition, various novel training strategies
have been proposed to further enhance the performance of
the CM system. For instance, Xue et al. [9] proposed a
self-distillation network, where the deeper network guides
shallower networks to better capture fine-grained informa-
tion. Wang et al. [10] introduced the adaptive and hyper-
parameter-free probability-to-similarity gradient (P2SGrad)
into the DSD task. Moreover, several studies have explored
end-to-end approaches as alternatives to separately designed
feature extractors and classifiers. Among them, the spectro-
temporal graph attention network (RawGAT-ST) [14], Au-
dio Anti-Spoofing using Integrated Spectro-Temporal graph
attention networks (AASIST) [15], and the Squeeze-and-
Excitation Rawformer (SE-Rawformer) [16] have shown
promising results.

Although most research have primarily focused on DSD
under clean-speech conditions [3]–[5], [7]–[16], some stud-
ies have focused on enhancing the robustness of DSD tasks
in complex scenarios. For example, the ASVspoof 2021
Challenge logical access (LA) [17] was designed to inves-
tigate DSD under audio channel coding and compression
conditions. Research works [18]–[21] on the robustness
of CM system primarily focuses on the preprocessing and
feature extraction stages of the pipeline. In the preprocess-
ing stage, as illustrated in Figure 2(a), data augmentation
is the most commonly employed technique to enhance the
model’s robustness. For instance, Tak et al. [18] proposed
the RawBoost data augmentation method, which is specifi-
cally designed for telephony scenarios and does not require
additional data sources, thereby effectively improving the ro-
bustness of CM systems against compression artifacts. Wang
et al. [19] introduced techniques such as band trimming,
band-pass filtering, and band extension to determine op-
timal sub-band widths for coding and compression robust
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Fig. 2 (a) represents the training method using data augmentation, (b)
represents the training method that integrates a speech enhancement front-
end with joint optimisation of the fake speech detection system, (c.1) and
(c.2) illustrates two different pre-training strategies, while (d) represents the
SECM-Joint proposed in this work.

DSD tasks. In the feature extraction stage, Hanilçi et al.
[20] compared different feature inputs under various noise
conditions, proposed a feature fusion approach, and demon-
strated that speech enhancement (SE) applied independently
of CM training is ineffective for spoofing detection in noisy
environments. Their findings demonstrate that environmen-
tal noise and reverberation can significantly degrade CM
system performance. Additionally, Fan et al. [22] proposed
a dual-branch knowledge distillation-based synthetic speech
detection method and evaluated its performance under vari-
ous noise conditions using a private dataset.

As shown in Figure 2(b), in our previous work [23],
we introduced a joint optimization framework combining a
SE front-end with an anti-spoofing back-end, demonstrating
improved performance on noisy test data. However, this
approach had several critical limitations. It focused solely
on environmental noise without addressing reverberation ef-
fects. Additionally, the method required training separate
models for each noise type and signal-to-noise ratio (SNR),
while relying on offline-generated noisy datasets for each
condition. Perhaps most importantly, the experimental setup
limited assessment of model generalization under realistic
conditions, constraining its practical applicability. To ad-
dress these limitations, this paper makes several significant
contributions to the field. We systematically evaluate CM
robustness under both noise and reverberation conditions
using on-the-fly data augmentation, enabling a single model
to handle multiple acoustic conditions rather than requiring
separate models for each scenario. We propose a Transfer
Learning-based Speech Enhancement front-end and Coun-
terMeasure back-end Joint optimization (SECM-Joint), as
illustrated in Figure 2(d), which integrates transfer learn-
ing from pre-trained Automatic Speech Recognition (ASR)
Conformer models with our joint optimization framework.
This approach enhances system performance by leveraging
prior knowledge from large-scale speech tasks. Furthermore,
we introduce a Dual-input U-Net-based Masked Feature En-
hancement Network (DUMENet), which uses masked fea-
tures instead of direct speech reconstruction to more effec-
tively handle non-additive acoustic distortions, particularly

reverberation. Our comprehensive experiments across vari-
ous noise types (environmental, babble, and music) at differ-
ent SNRs (0-20dB) and reverberation conditions (RT60 from
0.25s to 1s) demonstrate that SECM-Joint significantly im-
proves CM system robustness. Results show relative Equal
Error Rate (EER) reductions of 19.11% to 64.05% in most
noisy conditions and 23.23% to 30.67% in reverberant envi-
ronments compared to baseline systems without pre-training.
This work bridges an important gap between laboratory DSD
research and practical applications by enhancing CM robust-
ness in adverse acoustic environments, advancing more reli-
able spoofing detection for real-world deployment. The key
contributions of this work are as follows:

• Refining the previously proposed joint optimization
framework by evaluating SE model for spoof detection
under noise and reverberation conditions.

• Proposing SECM-Joint, a transfer learning-based joint
optimization approach that integrates a pre-trained Con-
former model—originally trained on ASR tasks—into
the DSD task, demonstrating that transfer learning from
ASR tasks significantly enhances CM system robust-
ness against noise and reverberation.

• Introducing DUMENet, a dual-input U-Net-based
masked feature enhancement network, which lever-
ages masked features instead of direct reconstruction
FBANK to effectively handle the reverberation.

2. Methodology

To distinguish the authenticity of mixed speech signals with
noise or reverberation, we summarize three training strate-
gies that CM systems can use: data augmentation, speech
enhancement, and utilizing pre-trained models, as shown in
Figure 2(a), (b) and (c).

2.1 Data Augmentation in the Pre-processing

Data augmentation involves adding noise or reverberation to
clean speech data, making the input speech more diverse.
Models trained using data augmentation techniques have
a stronger ability to handle complex speech signals. In
this study, we use the officially provided ASVspoof 2019
LA (19LA) train subset as the clean data, adding noise
or reverberation to obtain the corresponding mixed train-
ing data. According to [24], to obtain simulated reverberant
signals, we usually convolve the clean source speech with the
room impulse response (RIR). When using data augmenta-
tion methods, we perform on-the-fly noise and reverberation
simulation on the input data, making the training samples
more diverse. We ensure that the noise samples used for the
training and test sets are isolated. For details on the imple-
mentation of online data augmentation and the generation of
test datasets, see Chapter 3.

2.2 Speech Enhancement Module

The purpose of SE is to remove noise and reverberation from
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Fig. 3 Model architectrue of proposed SECM-Joint and DUMENet. For experiments without the SE
module, the input feature is fed directly into the back-end spoofing detector.

the mixed speech signal 𝑥(𝑡) and estimate the target clean
speech 𝑠(𝑡). Using the basic Unet model in the temporal-
frequency domain as an example, an SE network applies
the short-time Fourier transform (STFT) to the input wave-
form 𝑥(𝑡), decomposing the complex-valued spectrogram
into magnitude and phase components. Only the magni-
tude is then fed into the Unet enhancement network, which
returns an estimated magnitude spectrogram of the clean
speech. To generate the corresponding clean speech wave-
form, the spectrogram is combined with the mixed phase
and converted back to the time-domain waveform 𝑠𝑖 (𝑡) via
inverse STFT or some hand-crafted vocoder algorithms [22].
This process can be represented as follows:

|𝑋 (𝑡, 𝑓 ) |𝑒 𝑗 𝜙 (𝑡 , 𝑓 ) = STFT(𝑥(𝑡)) (1)
|𝑆𝑖 (𝑡, 𝑓 ) | = Unet( |𝑋 (𝑡, 𝑓 ) |) (2)

𝑠𝑖 (𝑡) = iSTFT( |𝑆𝑖 (𝑡, 𝑓 ) |𝑒 𝑗 𝜙 (𝑡 , 𝑓 ) ) (3)

where 𝑈𝑛𝑒𝑡 (·) is the SE network, |𝑋 (𝑡, 𝑓 ) | is the magnitude
spectrogram, and 𝜙(𝑡, 𝑓 ) is the phase spectrogram. For a
pair of clean and mixed magnitude spectrograms |𝑆(𝑡, 𝑓 ) |
and |𝑋 (𝑡, 𝑓 ) |, only the magnitude |𝑋 (𝑡, 𝑓 ) | is input into SE
model, and the Unet model returns the estimated magnitude
spectrogram |𝑆𝑖 (𝑡, 𝑓 ) |, where 𝑓 represents the frequency bin
index and 𝑡 represents the time frame. The loss function
𝐿𝑚𝑠𝑒 is designed to minimize the mean square error (MSE)
between the clean spectrum and the recovered spectrum,

𝐿𝑚𝑠𝑒 =
1
𝑡 𝑓

∑︁
𝑡

∑︁
𝑓

∥ |𝑆𝑖 (𝑡, 𝑓 ) | − |𝑆(𝑡, 𝑓 ) | ∥2
2 (4)

where | | · | |2 denotes the 𝐿2 norm.
In this paper, we propose DUMENet, as shown in Fig-

ure 3, whose model structure is almost the same as the Unet-
based front-end SE network structure in our previous work
[23]. Inspired by the work of Kim et al. [25] on the joint
training of SE front-ends with speaker embedding extractors
in the automatic speaker verification (ASV) task, we concate-
nates the log Mel-filterbank (FBANK) features of both the

mixed speech and clean speech as the input at every training
minibatch and uses the FBANK features of the clean speech,
concatenated twice, as the targets labels. In contrast to using
only mixed speech as input with clean labels, the dual-feature
approach also optimizes clean speech inputs, ensuring de-
noising without introducing artifacts via redundant clean
speech modifications [25]. Per the Convolution Property
[26], time-domain convolution corresponds to frequency-
domain multiplication: F {𝑥(𝑡) ∗ ℎ(𝑡)} = 𝑋 ( 𝑗𝜔)𝐻 ( 𝑗𝜔),
where 𝑥(𝑡) and ℎ(𝑡) are time-domain signals, ∗ denotes con-
volution, and F {𝑥(𝑡)} = 𝑋 ( 𝑗𝜔) and F {ℎ(𝑡)} = 𝐻 ( 𝑗𝜔)
represent their Fourier transforms.

Unlike our previous work [23], DUMENet does not di-
rectly reconstruct the FBANK features of the clean speech.
Instead, it outputs a feature shape mask. This mask is
element-wise multiplied with the input feature, and the re-
sulting product is compared to the label using the MSE loss
function. This approach aligns with the reverberation simu-
lation principles mentioned in Section 2.1, further enhanc-
ing the performance of the CM system under reverberant
conditions. The loss function 𝐿𝑚𝑠𝑒′ for DUMENet can be
expressed as:

𝐿′
𝑚𝑠𝑒 =

1
𝑇𝑑

∑︁
𝑇

∑︁
𝑑

∥𝑋 (𝑇, 𝑑)M(𝑇, 𝑑)) − 𝑆(𝑇, 𝑑)∥2
2 (5)

where 𝑋 (𝑇, 𝑑) and 𝑆(𝑇, 𝑑) represent the concatenated input
and label FBANK features with a time series length of 𝑇
and a Mel-scale filter bank dimension of 𝑑, respectively. M
denote the output mask of DUMENet.

2.3 Transfer Learning in the Countermeasure Back-end

Unlike Tak et al., who used the large-scale self-supervised
pre-trained model wav2vec2.0 as a front-end feature extrac-
tor for fine-tuning [13]. In this study, we use a pre-trained
Conformer model [27] as the CM back-end. The Conformer
model is trained on ASR tasks and has achieved excellent
results in ASR tasks [28]. ASR pre-training enhances the
generalisation of the CM system, complements front-end
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pre-training, and allows greater flexibility in front-end fea-
ture representations when applied in the back-end.

We employ the multi-scale feature aggregation-
Conformer (MFA-Conformer) framework [29] as the CM
back-end. As shown in Figure 3, this framework concate-
nates the output feature maps of all 𝐿 Conformer blocks to
form a large feature map H′:

H′ = Concat(ℎ1, ℎ2, . . . , ℎ𝐿) (6)

where H′ has dimensions R𝐷×𝑇 , with 𝐷 = 𝑑 × 𝐿.
For the transfer learning process, we load the pre-trained

Conformer [27] encoder parameters from the ASR task into
the corresponding the MFA-Conformer structure. Similar to
Cai et al. [30] leveraging the ASR-pretrained Conformer-
MFA model for ASV tasks, we use MFA to concatenate
the output feature maps from each Conformer block, apply
layer normalization to obtain frame-level high-level repre-
sentations, and input these representations into an attentive
statistics pooling (ASP). layer and a fully connected (FC)
layer to obtain utterance-level spoofing detection embed-
dings. Finally, a linear classifier is attached for fine-tuning.
Similar to training a general DSD network, we fine-tune the
Conformer-based detector using a binary cross-entropy loss
function as given by:

𝐿𝐵𝐶𝐸 =
∑︁
𝑖

−(𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)) (7)

where 𝑦𝑖 ∈ {0, 1} represents the labels and 𝑝𝑖 represents the
classifier’s probability output.

2.4 Joint Optimization of Speech Enhancement Front-end
and Countermeasure Back-end

2.4.1 Audio Anti-spoofing Module

In order to explore whether SE co-optimization after chang-
ing the training strategy is consistent with the findings of
our previous work [23], in addition to the Conformer-based
beck-end mentioned in the previous section, we used the
CM back-end models that were used in our previous stud-
ies: the LCNN [3] and ResNet18 [31]. The Max-Feature-
Map (MFM) [32] operation based on the max-out activation
function is a fundamental part of LCNN, which uses a Bi-
LSTM [33] layer to aggregate corpus-level embeddings. For
ResNet18, it is a lightweight version of ResNet.

2.4.2 Transfer Learning-based Joint Optimization

As shown in Figure 3, the SECM-Joint combines the three
previously mentioned schemes by using on-the-fly data aug-
mentation at the pre-processing stage to increase the diversity
of input speech. The CM back-end network uses a pre-trained
Conformer model based on the ASR task to improve general-
ization performance. In between, we incorporate DUMENet
to jointly optimize with the back-end network during train-
ing. This aims to reduce unknown additional artifacts due to

the inconsistency between independent SE and anti-spoofing
tasks, making the entire CM system more conducive to the
deep embedding of the DSD task. Similar to the joint opti-
mization loss used in our previous work [23], SECM-Joint
also uses MSE loss and CE loss as a combined loss function,
as shown below:

𝐿 = 𝐿𝑐𝑒 + 𝐿′
𝑚𝑠𝑒 (8)

3. Datasets

The detailed statistics of the databases used in this work
are outlined in Table 1. The ASVspoof database is a se-
ries of data from the ASVspoof challenges [7], [8], [17],
[34]. Among them, the 19LA dataset is widely regarded as a
clean, noise-free dataset, and the most widely used datasets
by DSD researchers. For this work, we use 19LA datasets
as the noise-free experimental dataset. Noisy and reverber-
ant datasets are generated based on this dataset. The 19LA
dataset consists mostly of clean data created using utterances
from 107 speakers from the VCTK dataset [35]. These 107
speakers are partitioned into three speaker-disjoint sets for
training, development, and evaluation. The spoofed utter-
ances were generated using four TTS and two VC algorithms
in the training and development sets, while 13 TTS/VC algo-
rithms are used in the evaluation set, 4 of which are partially
known and 7 of which are unknown for training and devel-
opment [8].

3.1 On-the-Fly Data Augmentation During Training

Two different on-the-fly data simulation strategies were used
for data augmentation of noise and reverberation condition
during training to ensure diversity of training data.

1) Additive Noise Augmentation: We selected the MU-
SAN dataset [36] as our noise source, which contains ap-
proximately 60 hours of English real speech, 42 hours and
31 minutes of various music, and about 6 hours of various
machine and environmental noises. We selected only a
few hundred samples from each noise category as the source
noise for training and the rest is used for simulating evalu-
ation data. During the noise addition process, a noise cate-
gory is first randomly selected with equal probability across
three categories, and an instance from the chosen category
is mixed with the clean speech signal at a specified SNR.
The SNR is randomly chosen from a range of 0 to 20 dB.
Following the noise-adding method in [23], we add environ-
mental, music, and babble noise 𝑛(𝑡) to the clean speech 𝑠(𝑡)
to obtain the mixed speech 𝑥(𝑡).

2) Convolutional Reverberation Augmentation: We can
obtain reverberant speech 𝑥𝑟 (𝑡) through the convolution op-
eration 𝑥𝑟 (𝑡) = 𝑠(𝑡) ∗ ℎ(𝑡), by convolving the clean speech
𝑠(𝑡) with the RIR ℎ(𝑡). Luo et al. proposed an RIR simula-
tion tool called FRAM-RIR [37], which efficiently performs
online reverberation augmentation on clean audio. When us-
ing this tool, we modified two parameters: we set the rectan-
gular room dimensions to 3𝑚×3𝑚×2.5𝑚 ∼ 10𝑚×6𝑚×4𝑚,
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Table 1 Dataset Statistics for Training and Development set from 19LA,
and offline generated Evaluation Sets. N-eval refers to the noise evaluation
set, including environmental noise, babble noise, and music noise, with
each dataset divided into 5 subsets at SNRs of 0 dB, 5 dB, 10 dB, 15 dB,
and 20 dB. R-eval refers to the reverberation evaluation set, containing 4
subsets with RT60 values of 0.25 s, 0.5 s, 0.75 s, and 1 s.

Dataset Genuine Fake Duration
train 2,580 22,800 3.68 h
dev. 2,548 22,296 3.66 h
N-eval. (env.) 7,355 ×5 63,882 ×5 9.38 h ×5
N-eval. (babble) 7,355 ×5 63,882 ×5 9.38 h ×5
N-eval. (music) 7,355 ×5 63,882 ×5 9.38 h ×5
R-eval. 7,355 ×4 63,882 ×4 9.38 h ×4

and the reverberation time (RT60) was randomly chosen be-
tween 0.2 to 1.0 s. RT60 is the main room acoustic parameter,
representing the time required for the sound energy in a room
to decrease by 60 dB after the source emission has stopped.
Generally, a larger RT60 indicates stronger reverberation.

To ensure training variability, we applied on-the-fly data
augmentation with 0.7 probability per sample, resulting in
70% augmented and 30% unchanged data per batch.

3.2 Preparation of Evaluation Datasets

To distinguish the effects of noisy and reverberant data on
DSD task, we created two evaluation datasets by adding noise
and reverberation to the 19LA evaluation set offline.

1) Noise Evaluation Datasets: To create the evaluation
sets, we randomly sampled from over 100,000 unseen noise
of the MUSAN corpus, specifically utilizing the portion ex-
cluded from training data. The instances each category were
mixed with clean speech at five SNR levels, 0 dB, 5 dB, 10
dB, 15 dB, and 20 dB, generating 15 evaluation subsets, as
shown in Table 1. These 15 noise evaluation datasets are the
same test data used in our previous study [23].

2) Reverberation Evaluation Datasets: Although the
study by Tom et al. provides about 40,000 simulated RIRs
[38], they roughly categorize rooms into large, medium, and
small sizes. To compare the effects under different reverbera-
tion conditions, we use RT60 as an indicator of reverberation
intensity. When creating reverberation test datasets, we used
the pyroomacoustics† toolkit to generate RIRs offline. Dur-
ing the simulation, we randomly set the room dimensions to
10𝑚 × 8𝑚 × 2.8𝑚 ∼ 15𝑚 × 10𝑚 × 4𝑚, and used 4 different
RT60: 0.25 s, 0.5 s, 0.75 s, and 1 s. Consequently, four re-
verberation evaluation datasets were generated, as presented
in Table 1.

4. Experiments

This section examines whether SE front-end co-optimization
with our modified training protocols consistently enhances
robustness of ResNet18- and LCNN-based CM systems, ex-
tending our prior findings [23]. In [23], we trained separate
models for each noise type and SNR using pre-generated
noise-added data. In contrast, here our experiment trains

†https://github.com/LCAV/pyroomacoustics

only two models per network architecture—one for noisy
conditions and one for reverberant conditions—using on-
the-fly data augmentation to enhance generalization perfor-
mance. Next, we investigated whether employing pre-trained
models alone enhances system robustness. Specifically, we
evaluated the performance of spoofing detection systems uti-
lizing W2V2-AASIST and ASR-Conformer, corresponding
to the two pre-training approaches shown in Figure 2(c),
against noisy and reverberating conditions. Their results
were compared to those of AASIST and Conformer CM sys-
tems without pre-training. Finally, we implemented SECM-
Joint, utilizing the ASR-Conformer pre-trained model as the
back-end of the CM system and jointly optimizing it with
the proposed DUMENet network for the DSD task. This
setup was also designed to evaluate the system’s robustness
against noise and reverberation. Additionally, we visualized
and analyzed the experimental results and conducted abla-
tion studies to further assess the impact of each component.

4.1 Model Parameters and Training Conditions

In the first part of the experiment, the LCNN model,
ResNet18 model, and the U-Net-based SE model adopt the
same configurations as in our previous work [23]. The em-
bedding size of the CM back-end output is set to 256.

In the second part of the experiments, as shown in Fig-
ure 2(c), we evaluated CM systems with pre-training applied
to the front-end feature extractor and transfer learning ap-
plied to the back-end classifier. For the pre-trained front-end
feature extractor approach in Figure 2(c.1), we adopted AA-
SIST, an end-to-end solution proposed by Jung et al. [15],
as the baseline model. This model employs a novel hetero-
geneous stacking graph attention layer that captures artifacts
spanning both temporal and spectral domains using a hetero-
geneous attention mechanism and a stack node. In contrast,
the pre-training method introduced by Tek et al. [13] uses
the pre-trained wav2vec 2.0 XLS-R model as the front-end,
replacing the sinc-layer front-end in AASIST. We refer to
this approach as W2V2-AASIST, which has demonstrated
superior performance across multiple DSD datasets [1]. For
the back-end classifier transfer learning approach shown in
Figure 2(c.2), we employed the encoder model of STT En
Conformer-CTC Small LibriSpeech model (version 1.0.0) ††

as the pre-trained CM back-end, The encoder model follows
the same architecture as that proposed by Gulati et al. [27].
According to the open-source implementation, the convolu-
tional layer in the Conformer-CTC-small-ls model applies
a downsampling rate of 1/4. The encoder consists of 13
million parameters, incorporating 4 attention heads and 16
Conformer blocks. The convolutional feature dimension of
the encoder is set to 176.

Table 2 shows the parameters of the U-net model used
in this work which is the same as our previous work [23].
The total number of blocks is set to 8, with 4 blocks in

††https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo
/models/stt en conformer ctc small ls
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Table 2 The parameters of the U-Net based speech enhancement net-
work. C(k, s, c) denotes the 2D convolution layer while TC(k, s, c)
denotes the 2D transposed convolution layer. SE denotes the Squeeze-and-
Excitation block here [39]. EBx denotes corresponding encoder block 𝑥.

Layer name Layer Structure

Conv. 1 C(7,1,16)

Encoder Block 1


C(3, 1, 16)
C(3, 1, 32)

SE

 × 3

Encoder Block 2


C(3, 2, 32)
C(3, 1, 32)

SE

 × 4

Encoder Block 3


C(3, 2, 64)
C(3, 1, 64)

SE

 × 6

Encoder Block 4


C(3, 1, 128)
C(3, 1, 128)

SE

 × 3

Decoder Block 1 [Concatenate EB4, 𝐶 (3, 1, 32) ]

Decoder Block 2 [Concatenate EB3, 𝑇𝐶 (2, 1, 64) ]

Decoder Block 3 [Concatenate EB2, 𝑇𝐶 (2, 1, 128) ]

Decoder Block 4 [Concatenate EB1, 𝐶 (1, 1, 256) ]

Conv. 2 TC(2 × 1,2 × 1,1)

the encoder and 4 blocks in the decoder. The number of
channels for each layer in the encoder is set to 16, 32, 64, and
128, respectively. Moreover, the U-Net has one convolution
layer and one transposed convolution layer, as mentioned in
Chapter 2.2, the proposed DUMENet model use double input
features and output the feature mask insted of reconstruct the
FBANK features of clean speech.

For feature extraction, except for the AASIST-based
CM system, which directly processes raw waveform inputs,
all other networks utilise FBANK features as inputs. These
features are extracted by applying 80 Mel filters to the spec-
trogram, which is computed using Hamming windows of 64
ms with a hop size of 8 ms. The duration of all input audio is
constrained to 4 seconds, shorter inputs are repeated, while
longer inputs are truncated. For training the CM system, the
learning rate is initially set to 1e-3. We employ a ReduceL-
ROnPlateau learning rate (LR) scheduler, starting with an
initial LR of 0.1. All models are optimised using the Adam
optimiser.

In this study, the EER is used as the evaluation metric,
which is defined as the threshold at which the false alarm rate
(𝑃 𝑓 𝑎) and the miss rate (𝑃𝑚𝑖𝑠𝑠) are equal. A lower EER indi-
cates better model performance. To mitigate the variability
introduced by random initialisation, we conduct experiments
using three different random seeds. Except for the ablation
study, the reported experimental results correspond to the
lowest EER obtained across the three runs.

4.2 Experimental Results

4.2.1 Comparison of the SE Joint Optimization

We first examine whether our revised training strategy pre-
serves the previously observed conclusion that joint opti-
mization with an SE front-end improves the robustness
of ResNet18- and LCNN-based CM systems. Table 3

Table 3 Comparison of the EER% of the ResNet18 and LCNN models
evaluated in noise and reverberation conditions in this experiment with the
results of previous work [23]. AVG denotes the mean EER for different
SNRs and RT60s in a given noise or reverberation evaluation data.

Eval.
dataset SNR

Rsenet18 LCNN Rsenet18[23] LCNN[23]
Online general noise augmentation Offline noise data
no-SE U-net no-SE U-net no-SE U-net no-SE U-net

Babble

20 dB 7.08 5.57 7.12 5.00 6.81 3.89 5.69 3.91
15 dB 9.03 7.80 10.40 7.89 8.63 3.16 8.68 6.10
10 dB 11.83 10.70 13.57 11.82 9.46 7.39 12.33 8.56
5 dB 16.68 15.13 18.21 16.76 9.41 8.02 13.00 6.28
0 dB 24.28 21.46 24.80 23.27 17.47 10.69 17.73 9.30
AVG 13.78 12.13 14.82 12.95 10.36 6.63 11.49 6.83

Music

20 dB 6.84 4.65 5.94 3.68 6.95 4.00 6.45 4.13
15 dB 8.52 5.22 7.80 4.53 8.02 5.37 11.00 6.52
10 dB 10.58 6.57 10.10 6.16 8.42 7.45 10.59 7.09
5 dB 14.19 9.04 13.90 9.16 8.85 5.93 11.21 8.59
0 dB 22.12 14.03 20.69 14.37 15.07 9.99 15.62 9.52
AVG 12.45 7.90 11.69 7.58 9.46 6.55 10.97 7.17

Env.

20 dB 6.7 4.98 6.20 3.86 4.98 3.95 6.56 4.48
15 dB 7.71 5.92 7.11 4.69 6.25 3.59 7.59 5.02
10 dB 9.72 7.00 8.74 6.30 7.20 6.48 10.02 6.79
5 dB 13.19 9.01 11.39 9.14 10.79 6.02 13.00 8.24
0 dB 18.07 13.05 15.53 14.11 16.52 10.41 15.08 10.63
AVG 11.08 7.99 9.79 7.62 9.15 6.09 10.45 7.03

RT60 Online reverberation augmentation - - - -
no-SE U-net no-SE U-net - - - -

Rvb.

0.25 s 6.67 6.47 7.69 6.89 - - - -
0.5 s 8.71 7.87 8.73 8.43 - - - -
0.75 s 10.51 9.11 9.84 9.56 - - - -
1.0 s 12.11 10.02 10.17 10.21 - - - -
AVG 9.50 8.37 9.11 8.77 - - - -

presents the EER results for different models under various
noise and reverberation conditions, comparing our findings
with prior work [23]. Under all three noise conditions, model
performance degrades as the SNR decreases. For the babble
noise, ResNet18 with U-net trained with specific matched
offline noise type and SNR setting achieves the lowest aver-
age EER 6.63%, a 36% (10.36%→6.33%) reduction com-
pared to ResNet18 without U-net. In the on-the-fly noise
augmentation setting, ResNet18 jointly optimized with U-
net attains an average EER of 12.13%, which, while not
as competitive as the matched-noise offline-trained coun-
terpart, still shows an 11.97% (13.78%→12.13%) relative
reduction compared to ResNet18 without U-net. This con-
firms that even under a more generalizable on-the-fly noise
augmentation strategy, joint optimization with U-net consis-
tently improves performance, albeit with a slight degradation
compared to the matched-noise training. A similar trend is
observed in the music noise conditions. When trained on
offline matched-noise data, ResNet18 with U-net reduces
the average EER by 30.76% (9.46%→6.55%) compared to
ResNet18 without U-net. Interestingly, in the on-the-fly
general noise augmentation setting, the relative reduction
reaches 36.55% (12.45%→7.9%), surpassing that of offline
noise training. This suggests that on-the-fly SE allows U-
net to generalize better for denoising music noise, further
validating the effectiveness of joint optimization in diverse
noise scenarios. This conclusion remains consistent for envi-
ronmental noise, reinforcing the robustness of the proposed
approach.

Additionally, we introduce the reverberation augmen-
tation experiments, which reveal a consistent increase in
EER with longer reverberation times. Among all models,
ResNet18 with U-net achieves the best robustness 8.37%
EER. We believe that LCNN’s local bias is well-suited to
the short-term features of additive noise, whereas ResNet’s
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global modeling capacity better addresses the long-term ef-
fects of reverberation and co-optimization with Unet further
enhances ResNet’s ability to handle longer RT60 conditions.
These findings highlight the critical role of U-net in mitigat-
ing the impact of both noise and reverberation, enhancing
model robustness in complex acoustic environments.

4.2.2 Impact of Pretraining and Transfer Learning on CM
System Performance

In the second part of our experiments, we examined how two
pre-trained models enhance the robustness of CM systems
under various noise and reverberation conditions without
data augmentation and enhancement front-end, as shown in
Table 4. By comparing models trained on the clean 19LA
training set, we aimed to assess the impact of pre-training and
transfer learning on robustness. Across all three noise con-
ditions, the introduction of pre-trained models led to a mod-
erate improvement in robustness. However, the improve-
ment was least pronounced under babble noise. This is be-
cause babble noise consists of overlapping real speech, which
severely interferes with the spoofing detection task at low
SNR. Consequently, the performance gains were smaller than
those observed under environmental and music noise con-
ditions. Taking W2V2-AASIST as an example, which em-
ploys Wav2Vec2 as a front-end pre-trained model, the aver-
age EER decreased by 28.79% (24.8%→17.66%) compared
to the AASIST baseline, whereas the reductions for music
and environmental noise were 68.47% (28.16%→8.88%)
and 78.19% (24.07%→5.25%), respectively. Similarly, im-
provements were also observed in the Conformer-based CM
system utilizing ASR transfer learning, although the gains
were not as substantial as those from W2V2-AASIST. In
terms of absolute EER values, the robustness of the ASR
transfer learning-based CM system and the Wav2Vec2 pre-
trained CM system is comparable under babble noise. How-
ever, under the other two noise conditions, the Wav2Vec2
pre-trained CM system demonstrates superior performance.
This can be attributed to the substantial difference in pre-
training data, with Wav2Vec2 being trained on approxi-
mately 436K hours of data, whereas the ASR pre-trained
Conformer model was trained on only 1,000 hours. The
disparity in data volume contributes to the performance dif-
ferences observed in the fine-tuned CM systems.

Under reverberation conditions, the improvements re-
sulting from pre-training varied. The Wav2Vec2-based
model exhibited an average EER reduction of 51.27%
(52.16%→25.42%), whereas the Conformer-based model
showed a reduction of -100.43% (12.84%→25.73%), indi-
cating a significant performance drop. However, at RT60 of
0.25s, Conformer’s model also has 49.08% (8.15%→4.15%)
lower EER after transfer learning. This indicates that the
prior knowledge obtained through ASR transfer learning
does not encompass strong reverberation characteristics,
leading to severe overfitting in the Conformer model un-
der strong reverberation. This might be because the training
data of the ASR conformer does not include high reverber-

Table 4 Comparison of the EER% of CM systems with pre-training
components trained on Clean Training data without noise and rererberation
augmentation. AVG denotes the average EER for different SNRs and RT60s
in a given noise or reverberation evaluation data.

Eval. dataset SNR Conformer ASR-Conformer AASIST W2V2-AASIST

Babble

20 dB 12.09 8.13 7.97 5.67
15 dB 14.45 12.39 12.21 10.28
10 dB 18.05 17.14 23.04 17.23
5 dB 23.37 22.96 36.04 25.33
0 dB 28.79 27.38 44.74 29.8
AVG 19.35 17.60 24.80 17.66

Music

20 dB 15.73 11.68 7.44 1.03
15 dB 20.05 17.85 13.35 2.71
10 dB 26.99 25.00 26.16 6.05
5 dB 32.83 31.22 43.44 12.37
0 dB 37.98 36.34 50.4 22.26
AVG 26.72 24.42 28.16 8.88

Environmental

20 dB 13.09 10.09 9.84 1.28
15 dB 16.52 14.85 13.27 2.3
10 dB 20.63 18.93 22.13 3.59
5 dB 24.62 24.31 33.31 6.98
0 dB 29.06 28.62 41.78 12.12
AVG 20.78 19.36 24.07 5.25
RT60

Reverberation

0.25 s 8.15 4.15 7.37 3.76
0.5 s 11.04 16.22 50.69 20.52
0.75 s 14.19 35.01 73.83 34.72
1.0 s 17.97 47.53 76.76 42.68
AVG 12.84 26.35 52.16 25.42

Output of Unet front-end after co-optimization

Output of Unet front-end after co-optimization

FBANK after adding noise

・spoof
・bona fide

ASR-Conformer w/o SE w/o data augmenation FBANK after adding noise

ASR-Conformer w/o SE w/ data augmenation

ASR-Conformer w/ non-pretrained Unet

ASR-Conformer w/ pretrained Unet (SECM-Joint)

Fig. 4 Visualization of Conformer-based embeddings and features un-
der 10dB environmental noise conditions. (Left) T-SNE plot of output
embeddings from Conformer-based detector. (Right) FBANK of sample
LA E 2965968 as input to the Conformer backend.

ation data. The experimental results in this section indicate
that transfer learning with pre-trained models yields modest
robustness improvements, but the comparison of Tables 4
and 5 reveals that training data augmentation produces sig-
nificantly greater gains, demonstrating its critical role for
constructing a robust CM system.

4.2.3 The Proposed Joint Optimization Method

In this part, we integrated ASR-Conformer transfer learning
with our proposed DUMENet-based SE model for joint op-
timisation. However, as shown in Table 5, directly placing
the SE module before the pre-trained Conformer led to a
decline in CM system robustness across various noise and
reverberation conditions. This is primarily because the Unet-
based SE front-end was randomly initialised at the begin-
ning of training, making it unable to effectively reconstruct
the input FBANK features in the early stages. Since the
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Table 5 EER% of Comformer-based CM system before and after using SECM-Joint strategy. AVG
denotes the average EER for different SNRs and RT60s in a given noise or reverberation evaluation data.
Bold number indicates the best result for a specific noise or reverberation condition.

Eval. dataset SNR
Conformer ASR-Conformer

w/o Aug Noise Aug Noise Aug w/o Aug Noise Aug Noise Aug Noise Aug
w/o Unet w/o Unet w/ Unet w/o Unet w/o Unet w/ Unet w/ Pre-Unet (SECM-Joint)

Babble

20 dB 12.09 7.30 7.37 8.13 5.66 5.93 4.52
15 dB 14.45 8.74 9.20 12.39 8.37 9.61 7.07
10 dB 18.05 10.70 11.12 17.14 11.65 14.41 10.97
5 dB 23.37 13.99 14.41 22.96 16.42 22.22 17.23
0 dB 28.79 18.86 18.87 27.38 22.46 31.12 24.09
AVG 19.35 11.92 12.19 17.60 12.91 16.66 12.78

Music

20 dB 15.73 6.76 5.47 11.68 2.62 3.34 2.43
15 dB 20.05 7.70 6.31 17.85 3.06 3.74 2.82
10 dB 26.99 9.08 7.48 25.00 3.87 4.64 3.67
5 dB 32.83 11.68 10.16 31.22 5.71 6.65 5.45
0 dB 37.98 16.75 14.17 36.34 10.17 11.25 10.4
AVG 26.72 10.39 8.72 24.42 5.09 5.92 4.95

Environmental

20 dB 13.09 6.61 5.67 10.09 2.84 3.28 2.57
15 dB 16.52 7.52 6.27 14.85 3.13 3.66 2.86
10 dB 20.63 8.13 7.18 18.93 3.72 4.24 3.46
5 dB 24.62 9.71 8.65 24.31 4.68 5.14 4.32
0 dB 29.06 12.96 11.15 28.62 6.85 7.45 6.79
AVG 20.78 8.91 7.78 19.36 4.24 4.75 4.00

RT60 w/o Aug Rvb. Aug Rvb. Aug w/o Aug Rvb. Aug Rvb. Aug Rvb. Aug
w/o Unet w/o Unet w/ Unet w/o Unet w/o Unet w/ Unet w/ Pre-Unet (SECM-Joint)

Reverberation

0.25 s 8.15 7.76 8.22 4.15 5.91 5.97 5.38
0.5 s 11.04 9.04 9.44 16.22 7.18 7.37 6.94
0.75 s 14.19 10.39 10.12 35.01 8.14 8.46 7.87
1.0 s 17.97 11.19 10.84 47.53 8.78 9.35 8.43
AVG 12.84 9.60 9.66 26.35 7.50 7.79 7.16

Table 6 EER% of ablation experiments on the proposed DUMENet.

Test Model Babble (SNR) Music (SNR) Environmental (SNR) Reverberation (RT60)
20 dB 15 dB 10 dB 5 dB 0 dB 20 dB 15 dB 10 dB 5 dB 0 dB 20 dB 15 dB 10 dB 5 dB 0 dB 0.25 s 0.5 s 0.75 s 1.0 s

SECM-Joint
DUMENet 4.52 7.07 10.97 17.23 24.09 2.43 2.82 3.67 5.45 10.4 2.57 2.86 3.46 4.32 6.79 5.38 6.94 7.87 8.43

->w/o mask 4.49 7.12 11.31 17.73 24.94 2.61 3.03 3.89 5.81 10.36 2.80 3.01 3.64 4.53 6.85 6.1 7.61 8.55 9.21
->w/o Multi input 5.63 9.18 14.33 22.18 30.07 3.03 3.21 4.23 6.15 10.56 2.99 3.24 3.85 4.79 6.78 5.88 7.98 9.00 9.65

FBANK after adding reverberation

・spoof
・bona fide

ASR-Conformer w/o SE w/o data augmenation

ASR-Conformer w/o SE w/ data augmenation

ASR-Conformer w/ non-pretrained Unet

ASR-Conformer w/ pretrained Unet (SECM-Joint) Output of Unet front-end after co-optimization

Output of Unet front-end after co-optimization

FBANK after adding reverberation

Fig. 5 Visualization of Conformer-based embeddings and features under
RT60 1s reverberation conditions. (Left) T-SNE plot of output embeddings
from Conformer-based detector. (Right) FBANK of sample LA E 2965968
as input to the Conformer backend.

Conformer model had already been pre-trained, its expected
input was structured FBANK features, and the mismatch be-
tween the Unet’s output and the Conformer’s expected input
domain increased the difficulty of training. To address this
issue, we pre-trained the Unet front-end for 200 epochs and
continued to optimize its parameters jointly with the ASR-
Conformer model. The results after pre-training, shown in

the last column of Table 5, indicate that compared to data
augmentation without transfer learning, the average EER re-
ductions for music, environmental noise, and reverberation
were 52.38% (10.39%→4.95%), 55.12% (8.91%→4.00%),
and 25.38% (9.60%→7.16%), respectively. This demon-
strates that the SECM-Joint approach effectively combines
the benefits of pre-trained Conformer models and SE mod-
els, leading to improved robustness against noise and rever-
beration compared to either method alone. However, un-
der babble noise conditions, the average EER increased by
7.23% (11.92%→12.78%), indicating that general-purpose
SE models struggle with babble noise. This is particularly
evident at extremely low SNRs, where the SE model fails
to distinguish between target speech components and back-
ground speech-like noise, ultimately degrading CM system
performance. Based on these findings, we hypothesise that
using a speaker-specific target speaker extraction front-end,
incorporating with speaker embeddings, could mitigate this
issue, which we plan to explore in future research.

Figure 4 and Figure 5 present the T-SNE visu-
alizations of the embeddings produced by the ASR
transfer learning-based Conformer, along with the Unet-
reconstructed FBANK outputs of the LA E 2965968 sam-
ple under four different training conditions, namely SECM-
Joint, ASR-Conformer with non-pretrained Unet, ASR-
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Fig. 6 Comparison of the performance of Unet-based SE model pre-training epochs on SECM-Joint
CM performance. Line traces average EER values of each box plot.

Conformer without SE with data augmenation, and ASR-
Conformer without SE without data augmenation.

From the visual analysis, it can be observed that with-
out pre-training, the Unet model exhibits less distinguishable
embedding distributions in the T-SNE visualization, making
classification more challenging. Compared to the embed-
dings obtained through systems without speech enhancement
frontend but trained with data augmentation alone, the joint
optimization with DUMENet slightly enhances separability.
Additionally, by comparing the Unet-reconstructed FBANK
output with the noise-added LA E 2965968 test sample, we
observe that the noise reduction effect achieved through joint
optimization closely resembles that of the pre-trained Unet.
However, when DUMENet is not pre-trained, the recon-
structed output contains more residual noise artifacts, which
primarily localized at speech onset/offset regions, as high-
lighted by green bounding boxes in Figure 4 and 5.

4.2.4 The DUMENet

In the previous section, we noted that if the Unet model is not
pre-trained, its output becomes misaligned with the expected
input of the ASR-Conformer, leading to the anomalous per-
formance degradation observed earlier. To further investi-
gate this, we conducted experiments to examine the relation-
ship between the number of pre-training epochs of the Unet-
based SE model and the final performance of the SECM-Joint
CM system. The results, presented in Figure 6, indicate that
for the three types of noise conditions, the EER decreases
significantly as the number of Unet pre-training epochs in-
creases. However, under reverberation conditions, the EER
values for 40 and 200 pre-training epochs are nearly identi-
cal. This suggests that since the ASR-Conformer model has
not been trained with reverberant data, it may not be very
sensitive to the level of reverberation in the input FBANK
features. Furthermore, we conducted an ablation study on the
proposed DUMENet model by comparing its performance
with two alternative configurations: one without the mask
mechanism and another that additionally removes the dual-
branch input. The results, summarized in Table 6, demon-
strate that under most conditions, DUMENet outperforms
both modified Unet configurations.

5. Conclusion

In this study, we address the challenge of enhancing the ro-
bustness of speech anti-spoofing countermeasure (CM) sys-

tems under noisy and reverberant conditions by introduc-
ing a transfer learning-based Speech Enhancement Counter
Measure Joint optimization approach, SECM-Joint. Experi-
mental results demonstrate that, except for the high-intensity
babble noise condition, SECM-Joint approach significantly
reduces the Equal Error Rate (EER) across various acoustic
conditions, including music and Environmental noise with
different Signal-to-Noise Ratios (SNRs). Compared to the
Conformer baseline model without pre-training and relying
solely on data augmentation, SECM-Joint achieves an EER
reduction ranging from 19.11% to 64.05% under noisy con-
ditions and from 23.23% to 30.67% under different RT60
reverberation scenarios.

These findings suggest that SECM-Joint and DUMENet
improve the adaptability of CM systems in complex acoustic
environments, making them promising for real-world ap-
plications where robustness to environmental variability is
critical. However, our study was limited to specific noise
types and reverberation levels; future work could explore
a broader range of acoustic conditions and further refine
the SECM-Joint framework. Additionally, we observed that
under babble noise conditions, both bona fide and spoofed
samples retain real speech characteristics, posing a signifi-
cant challenge for spoofing detection. Future research could
investigate this issue in greater depth, for instance, by incor-
porating the SE module with a speaker-specific extraction
module to better address this challenge.
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