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Abstract. Machine sounds exhibit consistent and repetitive patterns in
both the frequency and time domains, which vary significantly across
scales for different machine types. For instance, rotating machines often
show periodic features in short time intervals, while reciprocating ma-
chines exhibit broader patterns spanning the time domain. While prior
studies have leveraged these patterns to improve Anomalous Sound De-
tection (ASD), the variation of patterns across scales remains insuffi-
ciently explored. To address this gap, we introduce a Multi-scale Scan-
ning Network (MSN) designed to capture patterns at multiple scales.
MSN employs kernel boxes of varying sizes to scan audio spectrograms
and integrates a lightweight convolutional network with shared weights
for efficient and scalable feature representation. Experimental evaluations
on the DCASE 2020 and DCASE 2023 Task 2 datasets demonstrate that
MSN achieves state-of-the-art performance, highlighting its effectiveness
in advancing ASD systems.

Keywords: Anomalous sound detection - Multi-scale - Representation
learning

1 Introduction

Machine Anomalous Sound Detection (ASD) aims to differentiate abnormal ma-
chine operating sounds from normal ones. Due to the scarcity of anomalies, ASD
tasks often require models to detect abnormal samples without prior exposure
to them [16, 6]. In recent years, a variety of methods have been developed for the
ASD task. Several generative methods have been found useful, aiming to model
the distribution of the normal data by reconstructing audio spectrograms [22,
23]. However, their strong generalization capability can lead to the unintended
reconstruction of anomalous samples [18,29], resulting in detection failures. To
overcome this limitation, Discriminative Representation Learning (DRL) meth-
ods [8, 35, 27] have gained prominence. These approaches learn robust representa-
tions by classifying audio clips based on supplementary information like machine
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types, and have proven highly effective in recent DCASE challenges. However,
they often require large amounts of annotated data, which can be difficult to
collect or annotate.

To address the challenge of limited training samples in ASD, researchers have
explored data augmentation and fine-tuning strategies to enhance DRL models.
Data augmentation involves generating synthetic samples by introducing anoma-
lies on audio spectrograms [29, 1, 24|, creating fake samples in latent spaces [27,
30], or simulating machine sounds with diverse physical properties through finite
element analysis [37]. Pre-trained generative models like AudioLDM [19] have
also been used to generate machine sounds under varying conditions by trans-
lating operational attributes into textual descriptions [33]. While these methods
diversify training data, poorly designed synthetic samples risk degrading model
performance.

Fine-tuning pre-trained models has emerged as a promising solution for few-
shot ASD tasks. Recent studies demonstrate the effectiveness of contrastive
learning in initializing DRL model weights using in-domain machine data, pro-
viding a robust starting point. A discriminative task is then employed to train the
representation specifically for ASD [10]. Notably, transferring weights pre-trained
on large-scale speech data to ASD yields competitive results after fine-tuning
on machine audio [11]. To better align pre-trained models with the inductive
bias of machine audio, researchers have fine-tuned models like BEATs [2] and
CED [5], originally trained on large-scale datasets such as AudioSet [7]. This ap-
proach significantly enhances ASD task performance, achieving state-of-the-art
(SOTA) results [15,38]. However, the fixed transformer-based architectures of
these methods limit flexibility, posing challenges for adaptation and customiza-
tion in ASD tasks. This limitation is particularly significant given the distinct
spectrogram patterns identified in previous studies, which have proven promising
for anomaly detection [31, 21].

To automate the exploration of these spectrogram patterns, a range of meth-
ods has been proposed. For example, the multi-head self-attention mechanism [25]
has been employed to adaptively filter log-Mel spectrograms [32]. Similarly,
global weighted ranking pooling (GWRP) [17] has been applied to the time
domain of spectrograms [9], adapting to different machine types. Additionally,
squeeze-and-excitation modules and band-wise splitting strategy have been in-
vestigated to capture both temporal and spectral patterns during model train-
ing [36]. The experimental results of all these approaches demonstrate the ef-
fectiveness of incorporating spectrogram pattern analysis into the ASD training
processes.

While several studies have explored automatic feature extraction from ma-
chine spectrograms, few have addressed patterns across multiple scales. To ad-
dress this gap, we propose a Multi-scale Scanning Network (MSN) that utilizes
multiple kernel boxes with different sizes to capture information across the entire
spectrogram. The outputs from all kernel boxes are processed through a shared
ResNet-based network [12], and the resulting features are concatenated into a
unified embedding, which is fed into auxiliary classification layers. By leverag-
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Fig. 1. The overview of our proposed method. K is the number of kernel boxes used. N
is the total number of features scanned by each kernel. F, T and F’ are the dimensions
of the spectrogram and spectrum computed from the input audio clip.

ing this multi-scale approach, our method effectively learns diverse patterns and
enhances the representation of machine sound features. We evaluate our model
on the DCASE 2020 and DCASE 2023 Task 2 benchmarks, demonstrating su-
perior performance with the proposed module. Our implementation is publicly
available on GitHub*.

2 Proposed Method

2.1 Backbone

Our method employs the widely-used dual-path structure as its backbone, as
shown in Figure 1. Each path consists of a sub-network, and their outputs are
concatenated to generate a unified embedding. The sub-network lying below in
the figure processes the utterance-level spectrum, capturing magnitude infor-
mation across the entire frequency range of the spectrogram. The second sub-
network utilizes the magnitude spectrogram, preserving frequency information
over time. This dual-path architecture has demonstrated strong performance in
ASD tasks [27,36,20]. Its effectiveness may stem from the spectrum’s ability
to complement information potentially missing in the spectrogram, while high-
frequency resolution proves essential for certain machine types.

2.2 Spectrogram Encoding

As depicted in the top section of Figure 1, the raw waveform is converted into
an audio spectrogram using the Short Time Fourier Transform (STFT). This
transformation captures both time and frequency information, emphasizing local
variations and characteristics within the audio signal. A modified ResNet [36]
architecture is employed to process the spectrogram, as detailed in Table 1. The

4 Codes available at https://github.com/yucongzh/MSN-Net
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Table 1. Structure of the modified Table 2. Structure of the Convld layers
ResNet block shown in Figure 1. n indi- shown in Figure 1 with the same notations
cates the number of layers or blocks, ¢ is  shown in Table 1. This is used to encode

the number of output channel or dimen-  the utterance-level spectrum.
sion, k is the kernel size and s is the stride.
This is used to encode the audio spectro- Operator n ¢ k s
gram.
Convld 1 128 256 64
Convld 1 128 64 32

Operator n c k S
Nodifed SE Convld 1 128 32 4
Adodine - - - -

Conv2d 1 16 77 (2,2) flatten - - - -
MaxPooling - - (33) (22) Linear 5 128 - -
Modified SE - - - -

ResNet Block 16 (3,3) (1,1) Table 3. Structure of the convolution

Modified SE 1 - - - module for the multi-scale inputs with the
ResNet Block 16 33) (LD same notations shown in Table 1. This
ResNet Block (32, 64, 128, 256) (3,3) (2,2) module convert the multi-scale features
Modified SE 4 - - - into embeddings with the same dimen-
ResNet Block (32, 64, 128, 256) (3,3) (1,1)

MaxPooling - - (h, w) (h, w)

sion.

Operator n ¢ k S

ResNet block 2 (32, 64) (3,3) (2,2)
ResNet block 1 64  (3,3) (1,1)
StatsPool 1 - - -

Linear 1 1024 - -
Linear 1 256 - -

modified ResNet integrates enhanced Squeeze-and-Excitation (SE) [14] modules,
which assign dynamic weights not only across different channels but also along
other dimensions. This design enables the model to effectively capture features
across both the frequency and time axes, improving its representational capacity.

2.3 Spectrum Encoding

As illustrated in the lower section of Figure 1, the raw waveform is transformed
into an utterance-level spectrum using Fast Fourier Transform (FFT). This
approach captures the overall frequency content of the audio signal, ensuring
comprehensive representation of the spectral information. Following established
methods for spectrum encoding [27], the spectrum undergoes processing through
several 1D convolutional layers, followed by fully connected linear layers to de-
rive the final feature representation. The detailed architecture of the spectrum
encoding pathway is outlined in Table 2.

2.4 Multi-scale Scanning Network

In order to capture local features in the spectrogram of machine sounds, we de-
sign small multi-scale kernel boxes that scans the whole spectrogram along time
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and frequency domains, and put those scanned features together for modeling.
The whole pipeline includes multi-scale scanning, and representation learning.

Multi-scale Scanning We employ a collection of kernel boxes with varying di-
mensions, denoted as { Kp, ., }, where h and w represent the height and width of
the kernel boxes, respectively. To simplify implementation, h and w are selected
from powers of 2, ensuring computational efficiency and scalability across varying
spectrogram resolutions. To emphasize frequency patterns, we use rectangular
kernel boxes, with h generally larger than w, to capture frequency-dominant
features while maintaining time-domain granularity, motivated by the observa-
tion that machine sounds often exhibit distinct frequency characteristics Specif-
ically, we define K = 12 kernel boxes {Kp .}, with h € {32,64,128,256} and
w € {16,32,64}. This diversity enables the model to focus on patterns of vary-
ing scales, effectively capturing both fine- and coarse-grained features within the
spectrogram.

For each kernel box, Ny scans are performed along the frequency axis and
Ny scans along the time axis, producing N = Ny x N, features, each with fixed
dimensions (h, w). The scanning process is designed to ensure full coverage of the
spectrogram by employing a calculated hop length, which determines the step
size for sliding the kernel box. The hop length is calculated to balance coverage
and computational efficiency, ensuring that no regions of the spectrogram are
left unexamined while avoiding redundant computations. For kernel boxes of
different scales, the step sizes for frequency (F_step) and time (T step) are
computed as follows. Given an input spectrogram of dimensions (F,7T) and a
kernel box of size (h,w), the step sizes F_step and T _step are defined as:

Fost max (1, LgfihlJ) if Np > 1,
_step =
F—h otherwise.

T st max (1, {%J) if Ny > 1,
_step = ¢
T—w otherwise.

The calculated step sizes dynamically adapt to the spectrogram dimensions and
kernel box configurations, enabling the extraction of features that reflect the un-
derlying spectral structure at each scale. This adaptability is crucial for handling
spectrograms of varying resolutions and ensuring consistent feature extraction
across different datasets. Each kernel box K}« extracts N features from the
input spectrogram. These features are stacked to form an N-channel feature
map of dimensions (N, h,w), as illustrated in Figure 1. The multi-scale struc-
ture allows the model to aggregate features from varying resolutions, enhancing
its ability to capture localized and global patterns.

The output features from each kernel box are subsequently processed by a
lightweight convolutional network. This network is specifically designed to ex-
tract scale-specific information while minimizing computational overhead, en-
suring that the embedding captures essential spectral details without introduc-
ing significant latency. By integrating features from multiple scales, the model
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achieves a comprehensive representation of the input spectrogram, which is crit-
ical for downstream tasks such as classification or anomaly detection.

Representation Learning A lightweight convolutional network integrates out-
puts from multi-scale scanning into a unified embedding, enabling efficient and
scalable feature representation. The network, detailed in Table 3, begins with
an input of size (N, h,w), which is transformed into a lower-dimensional space
through two residual blocks [12]. These blocks preserve critical spatial and con-
textual information while reducing dimensionality, leveraging skip connections
to mitigate gradient vanishing and ensure stable training. A statistical pool-
ing layer then computes channel-wise mean and standard deviation, producing a
compact (256, ) embedding that captures robust, transformation-invariant statis-
tics. If scanning is performed with K multi-scale kernel boxes, K embeddings
are generated, each encapsulating information specific to a distinct scale. These
embeddings are concatenated into a super embedding of size (K x 256, ), which is
refined by linear layers to produce the final spectrogram embedding, as visualized
in Figure 1.

2.5 Anomaly Detection

Anomaly scores are calculated as the minimum cosine distance between proto-
types of normal embeddings from the training dataset and test embeddings. For
both DCASE 2020 and DCASE 2023 datasets, the same method is applied with
different configurations. For DCASE 2020, scores are computed for each ma-
chine ID and type by comparing normal training samples with test samples of
the same ID and type. For DCASE 2023, scores are computed for each machine
type independently. Prototypes for each category are generated using K-Means
clustering. For DCASE 2023, prototypes are created for both source and target
domains, and the minimum cosine distance between the test sample and these
prototypes is selected as the final anomaly score.

3 Experiments

3.1 Datasets

The experiments were conducted using the Task 2 datasets from the DCASE
2020 and DCASE 2023 challenges [16, 6]. Both datasets feature a development
dataset and an evaluation dataset, each containing a training subset with only
normal audio clips and a test subset with both normal and anomalous audio clips.
These datasets are widely recognized in the ASD community, with DCASE 2020
focusing on standard ASD tasks and DCASE 2023 addressing ASD under domain
shifts. The DCASE 2020 dataset includes six machine types, each with multi-
ple machine IDs, while the DCASE 2023 dataset comprises 14 machine types
with data from both source and target domains. The DCASE 2023 dataset also
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Table 4. Model Comparison on the development test dataset of the DCASE 2020 Task
2 dataset. All results (%) are reported in terms of the mean of the AUC and pAUC.
All the models are trained on only the normal machine sounds of the training dataset.
"-" means that the result is not reported in the source paper.

DCASE 2020 Task 2

Pre- Development Dataset
Models —trained‘ Fan Pump Slider T.Car T.Conv Valve Mean
2020 No.1 [§] - 80.65 83.27 93.41 92.72 73.28 94.30 86.27
SC-AdaCos [26] - 82.77 81.81 98.59 94.01 67.56 96.63 89.47
MFN [13] - 83.71 90.82 98.70 91.97 71.29 96.49 88.83
STgram [20] - 91.51 86.85 98.58 91.06 69.09 99.04 89.35
ASD-AFPA [32] - 95.51 90.61 99.04 92.80 70.35 97.27 90.93
FTE-Net [36] - 95.77 94.99 98.74 93.98 65.78 99.62 91.48
Unsuper-TDGCN [28§] - - - - - - - -

CLP-SCF [10] v 95.11 91.18 98.65 93.02 69.00 99.70 91.12
AnoPatch [15] v 86.46 93.10 99.20 96.10 73.20 97.53 90.93

|98.98 95.02 99.59 90.99 69.23 99.81 92.27

Ours

Table 5. Model Comparison on the evaluation test dataset of the DCASE 2020 Task
2 dataset. All results (%) are reported in terms of the mean of the AUC and pAUC.
All the models are trained on only the normal machine sounds of the training dataset.
"_" means that the result is not reported in the source paper.

DCASE 2020 Task 2

Pre- Evaluation Dataset

Models ‘—trained‘ Fan Pump Slider T.Car T.Conv Valve Mean
2020 No.1 [§] - 89.42 87.69 93.68 92.04 82.27 93.51 89.77
SC-AdaCos [26] - 95.42 92.53 93.54 93.96 75.00 97.31 91.30
MFN [13] - 94.72 92.94 97.58 94.31 77.54 94.88 92.00

STgram [20] - - - - - - - -

ASD-AFPA [32] - - - - - - - -
FTE-Net [36] - 99.72 94.78 98.17 94.61 69.50 93.52 91.72
Unsuper-TDGCN |[28§] - 88.08 86.37 98.11 92.25 79.68 99.87 90.73

CLP-SCF [10] v - - - - - - -
AnoPatch [15] v 95.56 94.34 99.77 96.00 83.74 96.26 94.28

Ours |- |99.9296.61 98.74 94.13 70.43 93.41 92.21
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Table 6. Model Comparison on the development test dataset of the DCASE 2023 Task
2 dataset. All results (%) are reported in terms of the Harmonic Mean (H.Mean) of
the AUC and pAUC. All the models are trained on only the normal machine sounds
of the training dataset. "-" means that the result is not reported in the source paper.

DCASE 2023 Task 2

Pre- Development Dataset
Models -trained‘Bearing Fan G.Box Slider T.Car T.Train Valve H.Mean

2023 No.1 [4] - 64.41 76.27 74.78 91.83 51.66 53.17 65.18 68.11

FeatEx [27] - - - - - - - - 66.95
MS-D2AE [3] - - - - - - - - -
FTE-Net [36] - 62.76 73.01 75.97 88.00 53.26 53.56 78.07 67.04
Han et al. [11] v 57.10 62.76 67.52 79.11 63.47 57.35 67.79 64.31
AnoPatch [15] v 70.43 66.65 58.67 81.88 58.78 67.16 53.73 64.24
Zheng et al. [38]| Vv - - - - - - - 65.11

65.43 67.96 71.74 92.37 55.06 58.86 83.02 68.65

Ours ‘ -

Table 7. Model Comparison on the evaluation test dataset of the DCASE 2023 Task
2 dataset. All results (%) are reported in terms of the Harmonic Mean (H.Mean) of
the AUC and pAUC. All the models are trained on only the normal machine sounds
of the training dataset. "-" means that the result is not reported in the source paper.

DCASE 2023 Task 2

Pre- Evaluation Dataset
Models -trained‘B.Saw Grinder Shaker T.Dro T.Nsc T.Tan Vacuum H.Mean
2023 No.1 [4] - 60.97 65.18 63.50 55.71 84.72 60.72 92.27 66.97
FeatEx [27] - - - - - - - - 68.52
MS-D2AE [3] - - - - - - - - 66.54
FTE-Net [36] - 59.81 69.69 82.94 57.31 87.41 67.20 &88.31 71.27
Han et al. [11] v - - - - - - - -
AnoPatch [15] v 69.71 64.1 80.3 64.49 85.04 72.6 92.24 74.23
Zheng et al. [38] v 67.67 71.18 82.87 71.73 95.97 68.52 98.18 77.75

Ours ‘

‘57.()1 72.12 79.10 58.43 86.16 65.38 88.33 70.43
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introduces domain shifts across machine types under varying operating condi-
tions. Unlike DCASE 2021 and DCASE 2022, DCASE 2023 does not provide
specific domain information; only machine attribute labels are disclosed. This
setup better reflects real-world scenarios, where domains are not clearly defined,
increasing the difficulty of the ASD task and emphasizing the need for DRL
models to leverage additional attribute information effectively.

3.2 Evaluation Metrics

The evaluation metrics follow the official DCASE challenges [16, 6]. Three com-
monly used metrics are adopted for evaluating the ASD performance in this
paper: area under the receiver operating characteristic curve (AUC), partial-
AUC (pAUC) and the integrated scores. AUC is divided into source AUC and
target AUC for the data in separate domains for DCASE 2023 challenge. pAUC
is calculated as the AUC over a low false-positive-rate (FPR) range [0, 0.1]. The
integrated score is the mean (for DCASE 2020) or harmonic mean (for DCASE
2023) of AUC and pAUC scores across all machine types, which is the official
score used for ranking.

3.3 Implementation details

We follow the data processing methodology outlined in [36,27]. For the DCASE
2023 Task 2 dataset, audio clips are either repeated or truncated to a fixed
duration of 18 seconds, the maximum length, to handle the variability in clip
lengths across machine types. For the DCASE 2020 Task 2 dataset, the audio
clips are kept in their original form, each lasting 10 seconds. All audio samples are
sampled at 16 kHz. Spectrograms are generated using the Short-Time Fourier
Transform (STFT) with a window size of 1024 and a hop length of 512. The
utterance-level spectrum is derived by applying the Fourier Transform to the
entire signal. The number of classes is based on the combined categories of
machine types and machine IDs (DCASE 2020) or attributes (DCASE 2023). In
our experiments, T step and F_step are configured as 32 and 8, respectively.

For training, we employ the wave-level mixup strategy [34], with the mixup
coefficient drawn from Beta ~ (0.2, 0.2). For non-mixup samples, label smoothing
is applied with a coefficient sampled from Uniform ~ (0,0.5). We use Sub-
cluster Adacos [26] as the loss function. The model is optimized using the ADAM
optimizer with a learning rate of 0.001, a batch size of 64, and trained for 100
epochs on a single NVIDIA GeForce RTX 3090 GPU.

3.4 Baseline Systems

We utilize previous SOTA models as baselines. For both DCASE 2020 and
DCASE 2023, we adopt the top-performing systems from the challenges [8,
4], single models employing DRL training from scratch, and models with pre-
trained weights. Widely recognized methods such as Sub-cluster Adacos (SC-
Adacos) [26] and MobileFaceNet (MFN) [13] are included as strong baselines.
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We also integrate models specializing in analyzing machine sound spectrogram
patterns [27, 32,36, 20, 28, 3]. Additionally, we include results from pre-trained
models, such as those pre-trained on large-scale speech data [11], AudioSet [15,
38|, and normal data from the DCASE 2023 training set [10]. All models are
trained or fine-tuned exclusively on normal machine sounds and evaluated on
test datasets from both development and evaluation phases.

3.5 Comparison between Non-pre-trained Models

For the DCASE 2020 dataset, as shown in Table 4 and Table 5, our method
demonstrates significant improvements over existing approaches. On the devel-
opment dataset, it achieves the highest scores for the fan, pump, and toy car
categories, with a mean score of 92.27, surpassing all SOTA models, including
those with pre-training. On the evaluation dataset, it excels in the fan, pump,
and slider categories, achieving a mean score of 92.21 and outperforming all other
advanced methods without pre-training. Our approach demonstrates consistent
and robust performance across various machine types and IDs, validating its
efficacy in the Anomalous Sound Detection (ASD) task without domain shifts.

For the DCASE 2023 dataset, as presented in Table 6 and Table 7, the per-
formance of all methods declines significantly compared to their results on the
DCASE 2020 dataset, likely due to domain shifts caused by varying operating
conditions. Despite these challenges, our model outperforms all non-pre-trained
methods on most machine types. On the development dataset, our model out-
perform all the other methods on all machine types except for fan and gearbox,
achieving the highest harmonic mean score of 68.65. On the evaluation dataset,
our model’s performance is comparable to the SOTA model’s, and surpass the
performance from the top-ranked teams in the challenge by a large margin. To
obtain an overall result, we calculate the harmonic mean across all the machine
types across the test of both development and evaluation datasets. As a result,
our model outperforms all the other non-pre-trained methods with a harmonic
mean of 69.53. These results demonstrate the robustness of our model under
unknown domain variations.

3.6 Comparison with Pre-trained Models

For the DCASE 2020 dataset, as shown in Table 4 and Table 5, our method
demonstrates significant improvements over existing approaches. On the devel-
opment dataset, it achieves the highest scores for the fan, pump, and toy car
categories, with a mean score of 92.27, surpassing all SOTA models, including
those utilizing pre-training. On the evaluation dataset, our method excels in the
fan, pump, and slider categories, achieving a mean score of 92.21 and outper-
forming all other advanced methods without pre-training. These results validate
the efficacy of our approach in the Anomalous Sound Detection (ASD) task,
showcasing its consistent and robust performance across various machine types
and IDs, even in the absence of domain shifts.



Multi-scale Scanning Network for Machine Anomalous Sound Detection 11

Table 8. Results (%) on DCASE 2023 Task 2 Dataset using different scaling strategy.
These values are the harmonic means of AUC and pAUC across all machine types.

Scales Strategies Dev. Eval. All

no multi-scales  65.02 63.87 64.44
fix T, F multi-scale 67.29 65.33 66.30
fix F, T multi-scale 66.62 63.95 65.26

Ours 68.65 70.43 69.53

For the DCASE 2023 dataset, as presented in Table 6 and Table 7, the
performance of all methods declines significantly compared to their results on
the DCASE 2020 dataset, likely due to domain shifts caused by varying operating
conditions. Despite these challenges, our model outperforms all non-pre-trained
methods across most machine types. On the development dataset, it achieves
the highest harmonic mean score of 68.65, outperforming all other methods on
all machine types except for fan and gearbox. On the evaluation dataset, our
model’s performance is comparable to that of the SOTA pre-trained models and
surpasses the top-ranked teams by a large margin. These results highlight the
robustness of our model in handling unknown domain variations and further
reinforce its effectiveness in the ASD task.

3.7 Pre-trained vs. Non-pre-trained

Table 4 to Table 7 show that adopting a pre-training and fine-tuning strat-
egy can improve the ASD performance. However, compared to non-pre-trained
models, the performance gains from pre-trained ones are not substantial. The
results indicate that models designed to focus on spectrogram pattern analysis
without pre-training can perform competitively well for the ASD task, even out-
performing models pre-trained on speech data. This suggests that pre-training
methods remain under-explored for ASD tasks. In the future, we plan to incor-
porate multi-scale spectrogram pattern analysis into model pre-training, which
may lead to better pre-trained models for ASD tasks.

3.8 Ablation Study

Finally, we conduct ablation studies to discuss the impact of the multi-scale
strategy by comparing it with a version that does not utilize the strategy. As
shown in Table 8, incorporating the multi-scale scanning significantly improves
the model’s performance compared to the version without the multi-scale ap-
proach. This demonstrates the importance of capturing patterns across different
scales for effective machine ASD. Additionally, when the scale is fixed in the fre-
quency domain while varying scales only in the time domain, the performance is
worse than when the scales are varied in the frequency domain and fixed in the
time domain. This suggests that multi-scale variations in the frequency domain
are more critical for learning meaningful patterns. Finally, applying multi-scale
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strategies to both the frequency and time domains yields the best results, which
corresponds to our proposed method.

4 Conclusion

This paper introduces Multi-Scale Network (MSN), a novel DRL approach to
address the challenge of extracting multi-scale spectrogram patterns for ASD.
By employing kernel boxes of varying sizes and leveraging a lightweight con-
volutional network with shared weights, the MSN effectively captures unique
characteristics of machine sounds across different scales. Experimental results
on the DCASE 2020 and DCASE 2023 Task 2 datasets demonstrated that the
proposed method achieves SOTA performance, highlighting its effectiveness, and
potential for the ASD task.

5 Acknowledgements

This research is funded in part by the Science and Technology Program of Suzhou
City (SYC2022051). Many thanks for the computational resource provided by
the Advanced Computing East China Sub-Center.

References

1. Chen, H., Song, Y., Zhuo, Z., Zhou, Y., Li, Y.H., Xue, H., McLoughlin, I.: An
effective anomalous sound detection method based on representation learning with
simulated anomalies. In: Proc. of ICASSP. pp. 1-5 (2023)

2. Chen, S., Wu, Y., Wang, C., Liu, S., Tompkins, D., Chen, Z., Che, W., Yu, X.,
Wei, F.: BEATSs: Audio pre-training with acoustic tokenizers. In: Proc. of ICML.
Proceedings of Machine Learning Research, vol. 202, pp. 5178-5193. PMLR (23-29
Jul 2023)

3. Chen, S., Sun, Y., Wang, J., Wan, M., Liu, M., Li, X.: A multi-scale dual-decoder
autoencoder model for domain-shift machine sound anomaly detection. Digital
Signal Processing 156, 104813 (2025)

4. Chen, S., Wang, J., Wang, J., Xu, Z.: Mdam: Multi-dimensional attention module
for anomalous sound detection. In: Proc. of ICONIP. pp. 48-60 (2023)

5. Dinkel, H., Wang, Y., Yan, Z., Zhang, J., Wang, Y.: Ced: Consistent ensemble
distillation for audio tagging. In: Proc. of ICASSP. pp. 291-295. IEEE (2024)

6. Dohi, K., Imoto, K., Harada, N., Niizumi, D., Koizumi, Y., Nishida, T., Purohit,
H., Tanabe, R., Endo, T., Kawaguchi, Y.: Description and discussion on dcase 2023
challenge task 2: First-shot unsupervised anomalous sound detection for machine
condition monitoring. In: Proc. of DCASE 2023 Workshop (2023)

7. Gemmeke, J.F., Ellis, D.P., Freedman, D., Jansen, A., Lawrence, W., Moore, R.C.,
Plakal, M., Ritter, M.: Audio set: An ontology and human-labeled dataset for audio
events. In: Proc. of ICASSP. pp. 776-780. IEEE (2017)

8. Giri, R., Tenneti, S.V., Cheng, F., Helwani, K., Isik, U., Krishnaswamy, A.: Self-
supervised classification for detecting anomalous sounds. In: Proc. of DCASE 2020
Workshop (2020)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Multi-scale Scanning Network for Machine Anomalous Sound Detection 13

Guan, J., Liu, Y., Zhu, Q., Zheng, T., Han, J., Wang, W.: Time-weighted frequency
domain audio representation with gmm estimator for anomalous sound detection.
In: Proc. of ICASSP. pp. 1-5 (2023)

Guan, J., Xiao, F., Liu, Y., Zhu, Q., Wang, W.: Anomalous sound detection using
audio representation with machine id based contrastive learning pretraining. In:
Proc. of ICASSP. pp. 1-5 (2023)

Han, B., Lv, Z., Jiang, A., Huang, W., Chen, Z., Deng, Y., Ding, J., Lu, C., Zhang,
W.Q., Fan, P., et al.: Exploring large scale pre-trained models for robust machine
anomalous sound detection. In: Proc. of ICASSP. pp. 1326-1330 (2024)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proc. of CVPR. pp. 770-778 (2016)

Hou, Q., Jiang, A., Zhang, W.Q., Fan, P., Liu, J.: Decoupling detectors for scalable
anomaly detection in aiot systems with multiple machines. In: Proc. of GLOBE-
COM. pp. 59375942 (2023)

Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proc. of CVPR.
pp. 7132-7141 (2018)

Jiang, A., Han, B., Lv, Z., Deng, Y., Zhang, W.Q., Chen, X., Qian, Y., Liu, J., Fan,
P.: Anopatch: Towards better consistency in machine anomalous sound detection.
In: Proc. of INTERSPEECH. pp. 107-111 (2024)

Koizumi, Y., Kawaguchi, Y., Imoto, K., Nakamura, T., Nikaido, Y., Tanabe, R.,
Purohit, H., Suefusa, K., Endo, T., Yasuda, M., Harada, N.: Description and dis-
cussion on dcase2020 challenge task2: Unsupervised anomalous sound detection for
machine condition monitoring. In: Proc. of DCASE 2020 Workshop (2020)
Kolesnikov, A., Lampert, C.H.: Seed, expand and constrain: Three principles for
weakly-supervised image segmentation. In: Proc. of ECCV. pp. 695-711 (2016)
Kuroyanagi, 1., Hayashi, T., Takeda, K., Toda, T.: Improvement of serial approach
to anomalous sound detection by incorporating two binary cross-entropies for out-
lier exposure. In: Proc. of EUSIPCO. pp. 294-298 (2022)

Liu, H., Chen, Z., Yuan, Y., Mei, X., Liu, X., Mandic, D., Wang, W., Plumbley,
M.D.: Audioldm: Text-to-audio generation with latent diffusion models. In: Proc.
of ICML (2023)

Liu, Y., Guan, J., Zhu, Q., Wang, W.: Anomalous sound detection using spectral-
temporal information fusion. In: Proc. of ICASSP. pp. 816-820 (2022)

Mai, K.T., Davies, T., Griffin, L.D., Benetos, E.: Explaining the decision of anoma-
lous sound detectors. In: Proc. of DCASE 2022 Workshop (2022)

Rushe, E., Namee, B.M.: Anomaly detection in raw audio using deep autoregressive
networks. In: Proc. of ICASSP. pp. 3597-3601 (2019)

Suefusa, K., Nishida, T., Purohit, H., Tanabe, R., Endo, T., Kawaguchi, Y.:
Anomalous sound detection based on interpolation deep neural network. In: Proc.
of ICASSP. pp. 271-275 (2020)

Tanaka, R., Tamura, S.: Few-shot anomalous sound detection based on anomaly
map estimation using pseudo abnormal data. In: Proc. of ICASSP. pp. 1391-1395
(2024)

Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L., Polosukhin, I.: Attention is all you need. In: Proc. of NIPS. vol. 30
(2017)

Wilkinghoff, K.: Sub-cluster adacos: Learning representations for anomalous sound
detection. In: Proc. of IJCNN. pp. 1-8 (2021)

Wilkinghoff, K.: Self-supervised learning for anomalous sound detection. In: Proc.
of ICASSP. pp. 276-280 (2024)



14

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Y. Zhang et al.

Yan, J., Cheng, Y., Wang, Q., Liu, L., Zhang, W., Jin, B.: Transformer and graph
convolution-based unsupervised detection of machine anomalous sound under do-
main shifts. IEEE Transactions on Emerging Topics in Computational Intelligence
8(4), 2827-2842 (2024)

Zavrtanik, V., Marolt, M., Kristan, M., Sko¢aj, D.: Anomalous sound detection by
feature-level anomaly simulation. In: Proc. of ICASSP. pp. 1466-1470 (2024)
Zeng, X.M., Song, Y., Zhuo, Z., Zhou, Y., Li, Y.H., Xue, H., Dai,
L.R., McLoughlin, I.: Joint generative-contrastive representation learning
for anomalous sound detection. In: Proc. of ICASSP. pp. 1-5 (2023).
https://doi.org/10.1109/ICASSP49357.2023.10095568

Zeng, Y., Liu, H., Xu, L., Zhou, Y., Gan, L.: Robust anomaly sound detection
framework for machine condition monitoring. Tech. rep., DCASE 2022 Challenge
(July 2022)

Zhang, H., Guan, J., Zhu, Q., Xiao, F., Liu, Y.: Anomalous Sound Detection Using
Self-Attention-Based Frequency Pattern Analysis of Machine Sounds. In: Proc. of
INTERSPEECH. pp. 336-340 (2023)

Zhang, H., Zhu, Q., Guan, J., Liu, H., Xiao, F., Tian, J., Mei, X., Liu, X., Wang,
W.: First-shot unsupervised anomalous sound detection with unknown anomalies
estimated by metadata-assisted audio generation. In: Proc. of ICASSP. pp. 1271-
1275 (2024)

Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. In: Proc. of ICLR (2018)

Zhang, Y., Hongbin, S., Wan, Y., Li, M.: Outlier-aware Inlier Model-
ing and Multi-scale Scoring for Anomalous Sound Detection via Mul-
titask Learning. In: Proc. of INTERSPEECH. pp. 5381-5385 (2023).
https://doi.org/10.21437 /Interspeech.2023-572

Zhang, Y., Liu, J., Tian, Y., Liu, H., Li, M.: A dual-path framework with frequency-
and-time excited network for anomalous sound detection. In: Proc. of ICASSP. pp.
1266-1270 (2024). https://doi.org/10.1109/ICASSP48485.2024.10448126

Zhang, 7., Zhang, Y., Li, M.: Data augmentation by finite element analysis for
enhanced machine anomalous sound detection. In: National Conference on Man-
Machine Speech Communication. pp. 102-110 (2023)

Zheng, X., Jiang, A., Han, B., Qian, Y., Fan, P., Liu, J., Zhang, W.Q.: Improv-
ing anomalous sound detection via low-rank adaptation fine-tuning of pre-trained
audio models. In: Proc. of SLT. pp. 969-974 (2024)



