
1

Sequence-to-Sequence Neural Diarization with
Automatic Speaker Detection and Representation

Ming Cheng, Yuke Lin, Ming Li, Senior Member, IEEE

Abstract—This paper proposes a novel Sequence-to-Sequence
Neural Diarization (S2SND) framework to perform online and
offline speaker diarization. It is developed from the sequence-
to-sequence architecture of our previous target-speaker voice
activity detection system and then evolves into a new diarization
paradigm by addressing two critical problems. 1) Speaker Detec-
tion: The proposed approach can utilize partially given speaker
embeddings to discover the unknown speaker and predict the
target voice activities in the audio signal. It does not require
a prior diarization system for speaker enrollment in advance.
2) Speaker Representation: The proposed approach can adopt
the predicted voice activities as reference information to extract
speaker embeddings from the audio signal simultaneously. The
representation space of speaker embedding is jointly learned
within the whole diarization network without using an extra
speaker embedding model. During inference, the S2SND frame-
work can process long audio recordings blockwise. The detec-
tion module utilizes the previously obtained speaker-embedding
buffer to predict both enrolled and unknown speakers’ voice
activities for each coming audio block. Next, the speaker-
embedding buffer is updated according to the predictions of the
representation module. Assuming that up to one new speaker
may appear in a small block shift, our model iteratively predicts
the results of each block and extracts target embeddings for
the subsequent blocks until the signal ends. Finally, the last
speaker-embedding buffer can re-score the entire audio, achieving
highly accurate diarization performance as an offline system.
Experimental results show that our proposed S2SND framework
achieves new state-of-the-art diarization error rates (DERs) for
online inference on the DIHARD-II (24.41%) and DIHARD-
III (17.12%) evaluation sets without using oracle voice activity
detection. At the same time, it also refreshes the state-of-the-
art performance for offline inference on these benchmarks, with
DERs of 21.95% and 15.13%, respectively.

Index Terms—Speaker Diarization, Online Speaker Diariza-
tion, Sequence-to-Sequence Neural Diarization

I. INTRODUCTION

SPEAKER diarization aims to split the conversational audio
signal into segments with labeled identities, solving the

problem of “Who-Spoke-When” [1]. It is the core front-end
speech processing technique in various downstream tasks like
multi-speaker speech recognition, etc [2].

Early speaker diarization studies have widely investigated
the cascaded methods that process audio signals through
a series of independent modules [3]–[9]. Later, End-to-End
Neural Diarization (EEND) methods [10]–[13] are proposed
to estimate multiple speakers’ voice activities as multi-label

Ming Cheng, Yuke Lin and Ming Li are with the School of Computer
Science, Wuhan University, Wuhan 430072, China, and also with Suzhou
Municipal Key Laboratory of Multimodal Intelligent Systems, Digital Inno-
vation Research Center, Duke Kunshan University, Kunshan 215316, China.

Corresponding author: Ming Li, E-mail: ming.li369@dukekunshan.edu.cn

classification, where the end-to-end model architecture can
be directly optimized by the permutation-invariant training
(PIT) [14]. Also, Target-Speaker Voice Activity Detection
(TSVAD) approaches [9], [15], [16] combine the advantages
of cascaded methods and end-to-end neural networks. A typ-
ical TSVAD-based system requires a prior diarization system
(e.g., the cascaded method) to extract each speaker’s acoustic
footprint as the speaker enrollment. Then, a neural network-
based module predicts all speakers’ corresponding voice ac-
tivities. This two-stage framework demonstrates promising
performance in popular benchmarks such as DIHARD-III [17]
and VoxSRC21-23 [18]–[21].

However, the diarization systems mentioned above are na-
tively designed to process pre-recorded audio offline, which
means they cannot satisfy scenarios with low latency demand
(e.g., real-time meeting transcription) [1]. For online speaker
diarization, cascaded methods must modify all the built-in
components to be capable of online inference, especially
the inherent clustering algorithms [22], [23]. Online EEND
systems are implemented by only replacing the network archi-
tecture [24] or using a buffer to trace the previous input-output
pairs [25]–[27]. However, the speaker permutation problem is
prone to be affected by the increasing number of speakers in
long-form audios, which remains a challenge that has yet to be
fully addressed. Although the recent FS-EEND [28] method
can determine the speaker permutation according to their
appearance order in online scenarios, the error accumulation
with inference time may become a new issue. As the post-
processing approach, TSVAD models natively process the
audio signals blockwise except for acquiring pre-extracted
speaker embeddings from the initial stage. Therefore, online
TSVAD methods [29], [30] are proposed to enable self-
generated speaker embeddings during blockwise inference.
However, these existing methods must be integrated with
another online VAD system to help detect the presence of
new speakers. The practical use of them is relatively difficult.

Fig. 1 illustrates the progress of our speaker diarization
research. In our previous work [16], the Sequence-to-Sequence
Target-Speaker Voice Activity Detection (Seq2Seq-TSVAD)
framework has been proposed for offline-only speaker diariza-
tion. It mainly consists of three modules, shown in Fig. 1a.
First, the extractor obtains frame-level speaker embedding
features from the raw audio. Next, the encoder processes
long-term dependencies between frame-level features for the
speaker diarization task. Finally, the decoder takes multiple
speaker embeddings as reference information to predict the
target-speaker voice activities, which has a one-to-one cor-
respondence between the input order of speaker embeddings

2

Encoder

Audio

Extractor

Decoder

Predicted Voice Activities

Speaker Embeddings
(Pre-Extracted)

(a) Seq2Seq-TSVAD (offline-only) [16]

Encoder

Audio

Extractor

Det. Decoder

Predicted Voice Activities

Speaker Embeddings
(Online-Buffered)

Rep. Decoder

Pseudo-Speaker
Embedding

Voice Activities
(Online-Predicted)

Extracted Speaker Embeddings

(b) S2SND (online/offline)
Fig. 1. Overview of our speaker diarization frameworks from offline-only to online/offline scenarios: (a) Previous Sequence-to-Sequence Target-Speaker
Voice Activity Detection (Seq2Seq-TSVAD) framework; (b) Newly proposed Sequence-to-Sequence Neural Diarization (S2SND) framework. Det. and Rep.
denote the abbreviations of detection and representation, respectively. The red parts indicate the new modules added in the S2SND model compared to the
Seq2Seq-TSVAD model.

and the output order of voice activities. As a classical TSVAD-
based method, the input speaker embeddings for the Seq2Seq-
TSVAD model should be extracted by a prior diarization
system, which restricts it from being an online system.

To tackle the above problem, this paper proposes a novel
Sequence-to-Sequence Neural Diarization (S2SND) frame-
work compatible with online and offline inference, shown
in Fig. 1b. The S2SND framework is still built upon the
sequence-to-sequence architecture, with some improvements.
First, The detection decoder works similarly to the single
decoder in Fig. 1a. Differently, we introduce a pseudo-speaker
embedding to represent the unknown speaker without pre-
extracted embedding, which is a kind of masked speaker
prediction technique described in Sec. III-B1. Second, we
add a new representation decoder to take multiple target-
speaker voice activities as reference information to predict
speaker embeddings, which is a kind of target-voice speaker
embedding extraction technique described in Sec. III-B2. In
this way, the S2SND framework can adopt partial speaker
embeddings to predict complete voice activities and then
extract the missed speaker embedding simultaneously. By
traversing the input audio signal, the S2SND model can predict
target-speaker voice activities of each coming audio block
in real-time operation and progressively gather new speaker
embeddings for the subsequent blocks. After the first-pass
diarization, the collected speaker embeddings can also be used
to re-decode the entire audio as an offline system.

Our proposed S2SND framework does not need unsuper-
vised clustering or permutation-invariant training, making it
fundamentally different from previous diarization systems.
Therefore, we name it a new neural diarization approach. The
contributions are summarized below.

1) We propose a novel masked speaker prediction method.
One of the input speaker embeddings may be randomly
erased during training. Then, the model learns to asso-
ciate the output of the masked speaker with a learnable
pseudo-speaker embedding, solving the one-to-one map-
ping problem between input speaker embeddings and
output voice activities.

2) We propose a novel target-voice speaker embedding

extraction method. In contrast to the previous TSVAD
method, it utilizes the predicted voice activities as refer-
ence information to extract target embeddings from the
input audio further. The embedding space of speaker
detection and representation is jointly learned.

3) A simple but effective knowledge distillation strategy
is developed to explore the potential of our proposed
method when meeting large-scale data. We evaluate our
approach on several widely-used datasets, outperforming
previous state-of-the-art results in various online and
offline evaluation settings.

4) The designed framework combines characteristics of
both EEND and TSVAD methods. It is not only
clustering-free and PIT-free, but also can utilize the end-
to-end neural network to discover possible unknown
speakers. Meanwhile, the use of target embeddings
maintains recognized speaker identities consistent across
different blocks in long audio, which is usually the
advantage of TSVAD-based methods.

II. RELATED WORKS

A. Offline Diarization

The cascaded speaker diarization consists of several compo-
nents. 1) Voice Activity Detection (VAD) [31] removes non-
speech regions from the audio. 2) Speech regions are divided
into shorter segments [32], [33]. 3) Speaker embeddings
(e.g., i-vectors [34], x-vectors [35]) are extracted from the
speech segments and clustered into different identities by K-
Means [6], AHC [33], SC [7], or others. 4) Post-processing
techniques for overlapped speech regions can be optionally
implemented [36], [37]. The number of output speakers is
determined by the clustering algorithms.

End-to-End Neural Diarization (EEND) [10], [11] pre-
dicts multiple speakers’ voice activities by formulating the
diarization problem as a multi-label classification task. The
original EEND models have a fixed number of output speak-
ers restricted by their network architecture. Although using
Encoder-Decoder based Attractor (EDA) [12], [13] can infer
the variable number of speakers. In practice, the number of
output speakers is still capped by the training data [38]. To

3

solve this problem, integrating the end-to-end and clustering
approach is a promising direction. For example, EEND-vector
clustering (EEND-VC) [39]–[41] deploys an EEND model
for shortly divided audio blocks and addresses the inter-
block speaker permutation ambiguity by clustering of speaker
embeddings. EEND-GLA [27], [42] computes local attractors
for each short block and determines speaker correspondence
based on similarities between inter-block attractors. Also,
several extensions of EEND are proposed from the aspects of
network architecture [43]–[45], objective function design [46],
[47], self/semi-supervised learning [48], [49], and so on.

Target-Speaker Voice Activity Detection (TSVAD) [15] is
also effective. It relies on a prior diarization system to extract
each speaker’s acoustic footprint (i-vector) as enrollment.
Then, the TSVAD model uses speech features (e.g., MFCC)
and extracted i-vectors to output target speaker voice activities
according to the enrollment order. Later, He et al. [50] adapt
the model to handle a variable number of speakers by setting
a maximum speaker limit and producing null voice activities
for zero-padded ones. Sequential models (e.g., LSTM [51] and
Transformer [52]) are implemented on the speaker dimension
of model input to manage a variable number of speakers.
To explore more discriminative speaker embeddings as an
alternative to i-vector, Wang et al. [9] replace the front-end
of the TSVAD model with a pre-trained extractor tailored for
frame-level x-vectors. This modification demonstrates superior
performance than a simple swap of i-vectors for x-vectors
in early attempt [15]. Furthermore, the TSVAD framework
has been investigated in various aspects (e.g., multi-channel
signal [53], multi-modal system [54]–[56], joint inference with
ASR [57], generative approach [58]).

In addition, several studies have explored using voice ac-
tivity information to guide speaker embedding extraction for
the downstream tasks, including both clustering-based and
TSVAD-based diarization systems [59], [60]. However, these
methods treat embedding extraction as a separate stage without
jointly optimizing it with diarization objectives. Also, they are
inherently designed for offline inference and thus cannot be
directly extended to low-latency online scenarios.

B. Online Diarization
In an online scenario, the diarization system must make

continual decisions on each audio frame while the conversation
continues. This paradigm is crucial for low-latency applica-
tions such as real-time conversation transcription.

To extend cascaded methods to online inference, all built-in
modules (e.g., voice activity detection, speech segmentation,
speaker embedding extraction) must be executed in real time.
Several techniques (e.g., UIS-RNN [61], UIS-RNN-SML [62])
replace the speech segmentation and speaker clustering with
supervised neural networks. As the most critical component,
online speaker clustering attracts much research interest, e.g.,
modified clustering [22], [63], PLDA-scoring [64], and clus-
tering guided embedding extractor training [65]. However,
their time complexity will increase with the number of speech
segments, resulting in inadequate performance for long audio.

The extension of end-to-end approaches to online diariza-
tion are broadly divided into two directions. The first is to

train models that can convey information during block-wise or
frame-wise inference to address the speaker permutation ambi-
guity. For instance, BW-EDA-EEND [24] adopts Transformer-
XL [66] with recursive hidden states to take block-wise
inputs, where the hidden states obtained from the previous
blocks are used to generate attractors of the current block.
Liang et al. [28] propose the frame-wise online EEND (FS-
EEND) to adaptively update speaker attractors frame by frame,
which has a lower inference latency. In this direction, online
diarization models are easily optimized in a fully end-to-
end manner. However, independent network architectures are
required rather than offline diarization models. If both offline
and online diarization models are needed, the deployment costs
will be largely increased. The second direction is to modify
offline models for online inference. Speaker-tracing buffer
(STB) [25], [26] is proposed to maintain the preceding results
of EEND models during online inference. It makes the order
of output speakers consistent without changing the network
architecture. On top of this direction, EEND-GLA [27], [42]
further integrates local and global attractors with STB for
online inference, achieving state-of-the-art performance on
multiple datasets. It is reported that STB can minimize the
inference latency using a small block size and outperform BW-
EDA-EEND [26], [27]. Nonetheless, this approach demands
extra computations because every past frame in the buffer must
be re-computed for each new block.

On the success of offline TSVAD methods [17]–[20], di-
verting the TSVAD framework for online inference is also
a promising direction. In offline scenarios, TSVAD methods
usually serve as post-processing to refine cascaded diarization
results [15]. After obtaining target-speaker embedding from
the initial stage, TSVAD models process audio signals block-
wise. This property implies that TSVAD models are naturally
adapted to online inference if target-speaker embeddings are
acquired in real time. Therefore, Wang et al. [29] firstly
present the online TSVAD framework and then adapt it to
multi-channel data [30]. Chen et al. [67] design a dictionary
learning module across different frequency bands in multi-
channel data to reduce the inference cost. Nevertheless, two
problems prevent existing online TSVAD methods [29], [30],
[67] from practical use. 1) They assume the input audio
to contain at least one active speaker at all times. During
inference, unenrolled speakers are determined once the models
do not detect any active voice activity using enrolled speaker
embeddings. Thus, an additional VAD module is required to
remove all the silent regions in the input audio. The VAD
errors might severely impact the final system output. This kind
of bypass approach does not fundamentally solve the problem
of new speaker detection. 2) They utilize local speaker labels
within each recording to optimize target embedding extraction,
where the power of global speaker modeling is not fully
exploited. In contrast, current advanced speaker verification
techniques are mainly based on unique speaker identities over
the whole training set [68].

Notably, the concepts of TSVAD and EEND families
are becoming closer. In early TSVAD systems [9], [15],
[16], speaker embeddings are typically acoustic footprints
extracted by speaker verification models (e.g., i-vectors [34],

4

Input Audio

Extractor

Encoder

Voice Activities

Embedding
Matrix

Det. Decoder Rep. Decoder

Table Lookup & Padding

Speaker Embeddings

Speaker Embeddings as
Auxiliary Queries

Voice Activities as
Auxiliary Queries

BCE Loss

ArcFace Loss

Fig. 2. The Sequence-to-Sequence Neural Diarization (S2SND) framework. Det. and Rep. denote the abbreviations of detection and representation, respectively.

x-vectors [35]). Then, works of [29], [30] turn to generate
speaker embeddings within TSVAD models. On the other
hand, the attractors used in EEND systems [12], [13] are
also a kind of local speaker embeddings within each audio
block. Recent studies of [27], [28] begin to constrain the
speaker similarity of attractors across different audio blocks.
Obviously, using a set of embedding vectors to represent
speaker identities has been widely adopted with different ter-
minologies. Therefore, in this work, we aim to take advantage
of both EEND and TSVAD methods to propose the new
S2SND framework, achieving state-of-the-art performance on
various multi-scenario datasets.

III. SEQUENCE-TO-SEQUENCE NEURAL DIARIZATION

A. Architecture

The proposed S2SND framework takes the sequence-to-
sequence architecture used in our previous offline method [16]
with several modifications, shown in Fig. 2.

1) Extractor: The ResNet-based [69] model is adopted as
the front-end extractor. The audio signal is firstly transformed
into log Mel-filterbank energies. Then, it is fed into the
extractor with segmental statistical pooling (SSP) [9] to obtain
frame-level speaker embeddings X ∈ RT×F, where T and F
denote the length and dimension of extracted feature sequence.
An additional linear layer is employed to align the output
dimension F with the input dimension of subsequent encoder
and decoder modules, omitted to plot for clarity. This process
converts raw audio signals into a sequence of neural network-
based features.

2) Encoder: The Conformer-based [70] model is employed
as the encoder to process the frame-level speaker embeddings.
The input feature sequence is firstly added with sinusoidal
positional encodings [71] and then fed into the encoder to
obtain output feature sequence Z ∈ RT×D, where D is the
attention dimension used in the encoder. This process further
takes long-term dependencies between frame-level speaker
embeddings for the diarization task.

3) Decoder: The decoder block retains the main layout of
the original Speaker-wise Decoder (SW-D) [16] with a few
changes, shown in Fig. 3. There are four parts of the input.
First, the feature embeddings come from the extractor output
X or encoder output Z. Second, the positional embeddings
are the same as those used in the encoder. Third, as a decoder
module is usually composed of several basic decoder blocks
stacked together, the input decoder embeddings at the first
block are initialized by zeros and then processed by the
following blocks. After the last output block, a simple linear
transformation is adopted to obtain the desirable output di-
mension. Lastly, the auxiliary queries play the role of reference
information in multi-speaker tasks, which can be either target-
speaker embeddings or voice activities. The detailed design of
the decoder block is described below.

• The cross-attention layer is placed before the self-
attention layer. As the input embeddings of the first
decoder block are initialized as zeros, there is no useful
information for the self-attention layer at first.

• We define Fq(·) and Fk(·) to denote the fusion operations
for input queries and keys, respectively. Let N denote
the preset maximum number of speakers that the model
can handle simultaneously. Xdec ∈ RN×D and Qaux ∈
RN×D′

represent the decoder embeddings and auxiliary
queries, respectively. The Fq(·) operation is described as:

Q = Xdec + LinearRD′→RD(Qaux)/
√
D, (1)

where the linear transformation is deployed to align the
dimension of queries and keys with the weight factor
1/
√
D. Similarly, let Xfea ∈ RT×D and Kpos ∈ RT×D′

represent the feature embeddings and positional embed-
dings with the length of T . The Fk(·) operation is
described as:

K = Xfea + LinearRD′→RD(Kpos)/
√
D. (2)

The fused queries Q and keys K are fed into the cross-
attention layer with a Pre-LayerNorm method. Compared

5

with the previous concatenation fusion, this additive fu-
sion is more straightforward without expanding the output
dimension of queries and keys.

• If the input auxiliary queries are speaker embeddings,
they must be L2-normalized to lie in a hypersphere. Oth-
erwise, if the input auxiliary queries are voice activities,
they do not need to undergo any normalization.

Based on the same structure of the decoder block, we
introduce two decoders responsible for different functions.
Let E ∈ RN×S denote the given speaker embeddings with
the number of N and the dimension of S. The ground
truth of their target voice activities is denoted as a binary
matrix Y ∈ {0, 1}N×T′

, where yn,t′ represents the speaking
existence of the n-th speaker at time t′. The detection decoder
utilizes encoder output Z as feature embeddings and speaker
embeddings E as auxiliary queries to obtain the predicted
voice activities Ŷ ∈ {0, 1}N×T′

. In contrast, the representation
decoder utilizes extractor output X as feature embeddings
and voice activities Y as auxiliary queries to obtain the
extracted speaker embeddings Ê ∈ RN×S. Two decoders
perform inverse tasks to predict target-speaker voice activities
and extract speaker embeddings simultaneously.

B. Training Process

The ground truth of Y is obtained from the adopted dataset
during training. However, E is not directly available because
the embedding space must be learned by neural networks.
To overcome this problem, we adopt a learnable embedding
matrix Eall ∈ RNall×S as the target embeddings of all speakers
in the training data. Nall and S represent the total number
of speakers and embedding dimension, respectively. Each
row vector denotes one specific speaker embedding, which is
randomly initialized as a unit vector with a magnitude (norm)
of 1. Given n ≤ Nall, the n-th target-speaker embedding in
the training data is obtained by Eall(n, :). Meanwhile, the n-
th speaker label in the training data is denoted by a Nall-
dim one-hot vector with zeros everywhere except its n-th
value will be 1. During training, given an input audio block
with Nloc speaker labels Sloc ∈ (0, 1)

Nloc×Nall , the input
speaker embeddings for the detection decoder are obtained
by Sloc · Eall ∈ RNloc×S, which is a simple table look-up
operation using matrix multiplication. Also, Eall is used as
the training objectives of output speaker embeddings from the
representation decoder. We propose the following approaches
to jointly optimize Eall with the whole diarization model.

1) Masked speaker prediction: The masked language mod-
eling (MLM) technique has been validated in natural language
processing [72], conducted by randomly masking some words
in the input text and then training the model to predict the
masked words. Similarly, we introduce a masked speaker
prediction method into speaker diarization. During training,
one of the input speaker embeddings for each audio block will
be randomly masked. The model learns to identify whether
there is a person speaking in the audio block but without the
given speaker embedding. To achieve this goal, two padding
strategies are implemented.

LN & Cross-Attention
V K Q

FFN

Decoder Emb.

Feature
Emb.

Positional
Emb.

Auxiliary
Queries

Decoder Emb. (Next Block)

Fk Fq

LN & Self-Attention
V K Q

L2-Norm

Fig. 3. The structure of the modified Speaker-wise Decoder. For clarity, the
residual connections between attention layers are omitted from the plot. The
abbreviation of LN refers to the layer normalization applied before the QKV
inputs for attention modules.

The first strategy is to pad the input speaker embeddings E
using a learnable pseudo-speaker embedding epse ∈ RS, where
epse is initialized with zeros and optimized during training. For
each training data, a probability is 0.5 that one existing speaker
label sn ∈ S will be randomly selected as the masked one.
Accordingly, the speaker embedding en will be removed from
E and the ground-truth of target voice activities yn ∈ Y will
be re-assigned to the output of pseudo-speaker embedding.
In this way, the model is trained to utilize the pseudo-speaker
embedding to capture any unenrolled speaker’s voice activities.

The second strategy is to pad the input speaker embeddings
E using a learnable non-speech embedding enon ∈ RS, where
enon is initialized with zeros and optimized during training.
We define speaker capacity as the maximum number of speak-
ers (embeddings) that the model can process simultaneously.
By setting the speaker capacity to a relatively large value
N , the pseudo-speaker embedding epse accounts for one, and
there are also Nloc existing speaker embeddings. As usually
(Nloc + 1) ≪ N , the left N − Nloc − 1 vacancies will be
randomly filled up with 50% non-speech embeddings and 50%
speaker embeddings from who are not appearing in the current
audio block. Accordingly, their ground-truth voice activities
are silent. In this way, the input dimension of a mini-batched
training data is aligned, and the model is trained to distinguish
valid and invalid speaker embeddings for the given audio block
and how to assign target voice activities to the corresponding
speakers.

Finally, the output Ŷ from the detection decoder is opti-
mized to minimize its binary cross-entropy (BCE) loss with

6

Speaker-Embedding
Buffer

Det. Decoder

Pseudo-Speaker
Embedding

Rep. Decoder

Extractor

Encoder

Elapsed Time

Input
Audio Block

stitch

Left
Context

Output
Voice Activity

Elapsed Time

Current Chunk

Right
Context

Current Chunk

Voice Activity Speaker Embedding update

Fig. 4. The inference diagram of the Sequence-to-Sequence Neural Diarization (S2SND) framework. Det. and Rep. denote the abbreviations of detection and
representation, respectively.

Y, which is described as follows:

Lbce = − 1

N × T ′

N∑
n=1

T ′∑
t′=1

[yn,t′ log(ŷn,t′)+

(1− yn,t′) log(1− ŷn,t′)] ,

(3)

where ŷn,t′ = Ŷ(n, t′) is the predicted speaking probability
of the n-th speaker at time t′. And yn,t′ = Y(n, t′) is its
ground-truth label.

2) Target-voice speaker embedding extraction: As speaker
embeddings can be used as reference information to extract
target speaker voice activities, why can’t voice activities be
used as reference information to extract target speaker em-
beddings from multi-talker audio signals? Although a voice
activity pattern may be the same between two speakers in a
short window, it is not a big issue because the single-speaker
speech usually occupies most of the time in real conversational
data. Following this idea, we propose the target-voice speaker
embedding extraction method, an inverse function of target-
speaker voice activity detection.

The ArcFace [73] loss is employed between Ê and the
embedding matrix Eall, which is described as follows:

Larc =
1

N

N∑
n=1

− log
eα·cos(θn+m)

eα·cos(θn+m) +
∑Nall

i=1,i̸=ϕ(n) e
α·cos θi

.

(4)

In this formula, n is the local speaker index for the current
model output within the maximum speaker capacity, where
1 ≤ n ≤ N . Let ϕ(n) denote the mapping from the
local speaker index n to its corresponding global speaker
index within all training data, where 1 ≤ ϕ(n) ≤ Nall.
In code implementation, ϕ could be easily recorded when
preparing training data. Then, θn is the angle between the n-th
extracted speaker embedding ên ∈ Ê and its target embedding
eϕ(n) ∈ Eall. θi is the angle between the n-th extracted speaker
embedding ên ∈ Ê and its non-target embedding ei ∈ Eall,
where 1 ≤ i ≤ Nall and i ̸= ϕ(n) controls that θi is only
implemented on negative pairs in contrastive learning. α and

m are the re-scale factor and additive angular margin penalty,
respectively.

The total training loss is the sum of Lbce in Eq. 3 and Larc

in Eq. 4. Using a learnable embedding matrix as the bridge
between the built-in decoders, the embedding space of speaker
detection and representation is jointly optimized in an end-to-
end manner.

C. Inferring Process

Fig. 4 demonstrates the inference diagram of our proposed
S2SND framework. Once the training is finished, the embed-
ding matrix will no longer be needed. Instead, a speaker-
embedding buffer is initialized as an empty dictionary to
store speaker embeddings extracted during inference. Then,
the model processes the input audio block by block and
progressively updates the speaker-embedding buffer.

1) Data preparation: The input audio is cut into blocks of
fixed length L, where L should be identical to the preset during
training. To reduce the latency of model output, we introduce
a smaller unit: chunk. As shown in the left part of Fig. 4, each
input audio block contains three regions: left context, current
chunk, and right context. The chunk length is set to Lchunk,
representing the period corresponding to each inference step.
The left and right context lengths are set to Lleft and Lright,
respectively. A sliding window method is applied to move the
current chunk on the audio stream with the chunk shift equal to
the chunk length. For each inference, the model takes the input
audio block containing the current chunk and its contexts as
long as L = Lleft+Lchunk+Lright. The absence of left context
is padded with zeros at the beginning of the inference until the
acquired audio signal is available to compose an entire block.
Furthermore, since acquiring the right context needs to await
an extra period, the algorithmic latency of model inference
should be the sum of Lchunk and Lright.

Assume that speaker capacity is set to N during training and
Nloc identities are currently enrolled in the speaker-embedding
buffer. The input speaker embeddings for the detection decoder
consist of three different sources. The first part is always

7

kept for the pseudo-speaker embedding epse ∈ RS. The
second part consists of the target embeddings enrolled in
the current speaker-embedding buffer, denoted as Ebuf =
[e1 e2 · · · eNloc

]
⊤ ∈ RNloc×S. The third part is padded by

the non-speech embedding enon ∈ RS with the number of
N − Nloc − 1, denoted as Enon = [enon enon · · · enon]

⊤ ∈
R(N−Nloc−1)×S. Overall, the total input speaker embeddings
are concatenated by E =

[
epse E⊤

buf E
⊤
non

]⊤ ∈ RN×S.
Therefore, the dimension of input speaker embeddings during
inference is consistent with the preset during training.

2) Decoding Procedure: The first decoding stage takes
the given speaker embeddings as reference information to
predict multiple speakers’ voice activities from the detection
decoder. As the input order of speaker embeddings deter-
mines the output order of target voice activities, the pre-
dicted target-speaker voice activities also have three parts. Let
T ′ indicate the number of timestamps in a given speaker’s
prediction. The first part is ŷpse ∈ RT′

, which represnets
the predicted result corresponding to the pseudo-speaker em-
bedding epse. The second part is made of the predicted
results corresponding to the buffered embeddings Ebuf , de-
noted as Ŷbuf = [ŷ1 ŷ2 · · · ŷNloc

]
⊤ ∈ RNloc×T′

. The
third part is padded by the predicted results corresponding
to the non-speech embeddings Enon, denoted as Ŷnon =
[ŷnon ŷnon · · · ŷnon]

⊤ ∈ R(N−Nloc−1)×T′
. Overall, the total

predicted target-speaker voice activities are concatenated by

Ŷ =
[
ŷpse Ŷ⊤

buf Ŷ
⊤
non

]⊤
∈ RN×T′

. Furthermore, Ŷnon are
invalid results because they belong to padded contents to
maintain the fixed dimension of predicted target-speaker voice
activities.

The second decoding stage takes the predicted voice ac-
tivities as reference information to extract multiple speak-
ers’ embeddings from the representation decoder. Similarly,
the input order of voice activities determines the output
order of target speaker embeddings. First, êpse ∈ RS

represents the extracted result corresponding to ŷpse. Sec-
ond, Êbuf = [ê1 ê2 · · · êNloc

]
⊤ ∈ RNloc×S denotes the

extracted results corresponding to Ŷbuf . Third, Ênon =
[ênon ênon · · · ênon]

⊤ ∈ R(N−Nloc−1)×S denotes the ex-
tracted results corresponding to Ŷnon. Overall, the total ex-
tracted target-speaker embeddings are concatenated by three

parts, denoted as Ê =
[
êpse Ê⊤

buf Ê
⊤
non

]⊤
∈ RN×S.

Furthermore, let ŷ = [y1, y2, . . . , yT ′] indicates the pre-
dicted voice activities of a given speaker in Ŷ, we define
the operation W : RT′ → R,W(ŷ) =

∑T ′

t′=1,t′ /∈Overlap ŷt′

to count the non-overlapped speaking time in the given ŷ. As
the quality of embedding extraction may be easily affected by
each speaker’s active speaking time and overlapping status, the
longer single-speaking time for each speaker usually results
in better embedding extraction, which can be used as an
additional embedding weight. Applying the function W to
each predicted target-speaker voice activity in Ŷ, the weight
of each extracted target-speaker embedding is calculated one
by one. First, ŵpse ∈ R represents the weight corresponding
to êpse. Second, ŵbuf = [ŵ1, ŵ2, . . . , ŵNloc

]⊤ ∈ RNloc

denotes the weights corresponding to Êbuf . Third, ŵnon =

Speaker-Embd
Buffer:

Voice
Activity:

Spk 1:

Spk 2:

Spk 3:

[]

[

[

]

]

None

Spk 1

Spk 2

Spk 3

Speaker
Embd:

Fig. 5. Updating strategy of the speaker-embedding buffer.

[ŵnon, ŵnon, . . . , ŵnon]
⊤ ∈ RN−Nloc−1 denotes the weights

corresponding to Ênon. Overall, the total weights of extracted
target-speaker embeddings are concatenated by three parts,
denoted as ŵ =

[
ŵpse ŵ⊤

buf ŵ
⊤
non

]⊤ ∈ RN.

We adopt two thresholds denoted as τ1 and τ2, respectively.
If ŵpse > τ1, it means that an unenrolled speaker is detected
and the extracted embedding is qualified to be reserved. The
results of ŷpse and êpse will be assigned a new speaker label.
Otherwise, ŷpse and êpse will be discarded as invalid results.
Also, each ên ∈ Êbuf represents the extracted target-speaker
embedding corresponding to the target-speaker voice activity
ŷn, where 1 ≤ n ≤ Nloc. If ŵn > τ2, the results of ŷn

and ên will be reserved. Otherwise, ên will be discarded
to prevent the unreliable speaker embedding from polluting
the buffer. However, ŷn can still be adopted because it is
predicted by target-speaker embeddings buffered previously.
Lastly, valid results of the predicted voice activities will be
stitched onto their preceding predictions in the elapsed time.
It must be noticed that only the output region belonging to the
current chunk is adopted as new predictions in every inference,
which ensures the temporal causality of online inference. Valid
results of the extracted speaker embeddings are updated in the
speaker-embedding buffer to infer the next audio block.

3) Buffer Updating: Fig. 5 illustrates the updating strategies
for selecting and buffering target-speaker embeddings at the
end of each inference. In this example, both ŵ1 and ŵ2

exceed the preset threshold for reserving, but ŵ3 is discarded.
In the dictionary-based speaker-embedding buffer, the keys
represent the enrolled speaker labels, and the corresponding
values contain lists of embedding-weight pairs, respectively.
Each reserved speaker embedding and its weight are appended
into the buffer according to the key of the speaker label.
When inferring the next audio block, each speaker’s target
embedding for model input will be the weighted average of
all the buffered results. To formally describe this procedure,
let

{
ê1n, ê

2
n, . . . , ê

Kn
n

}
and

{
ŵ1

n, ŵ
2
n, . . . , ŵ

Kn
n

}
denote the

embeddings and weights of the n-th speaker in the buffer,
where Kn is the number of embeddings. The aggregation of

8

Algorithm 1 Pseudocode of online inference in the Python-like style.

"""
- Extractor(), Encoder(), Det_Decoder(), Rep_Decoder(): neural network modules in S2SND models
- W(): calculating embedding weight
Inputs
- blocks: a sequence of input audio blocks
- e_pse/e_non: pseudo-speaker/non-speech embedding
- tau_1/tau_2: threshold for pseudo-speaker/enrolled-speaker embedding weight
- lc/lr: number of output VAD frames belonging to the current chunk / right context
- N: speaker capacity
- S: embedding dimension
Outputs
- dia_result: predicted target-speaker voice activities
- emb_buffer: extracted speaker embeddings
"""

dia_result = {} # initial diarization result
emb_buffer = {} # initial speaker-embedding buffer
num_frames = 0 # number of predicted VAD frames

for audio_block in blocks: # load the next audio block
emb_list = [e_pse] # initialize input speaker embedding list & put pseudo-speaker embedding
spk_list = [len(emb_buffer)+1] # initialize input speaker labels & create new speaker label

for spk_id in emb_buffer.keys(): # obtain each enrolled target-speaker embedding
e_sum = torch.zeros(S) # embedding vector, shape: S
w_sum = 0 # embedding weight, scalar
for e_i, w_i in emb_buffer[spk_id]:

e_sum += w_i*e_i
w_sum += w_i

emb_list.append(e_sum/w_sum) # append weighted speaker embedding
spk_list.append(spk_id) # append speaker label

while len(emb_list) < N: # pad input embeddings to tensor with the length of N
emb_list.append(e_non)

emb_tensor = torch.stack(emb_list)

X = Extractor(audio_block) # forward extractor, output shape: T x F
X_hat = Encoder(X) # forward encoder, output shape: T x D
Y_hat = Det_Decoder(X_hat, emb_tensor) # forward detection decoder, output shape: N x T’
E_hat = Rep_Decoder(X, Y_hat) # forward representation decoder, output shape: N x S

y_pse = Y_hat[0] # predicted pseudo-speaker voice activity, shape: T’
e_pse = E_hat[0] # extracted pseudo-speaker embedding, shape: S
w_pse = W(y_pse) # embedding weight: scalar
if w_pse > tau_1:

elapsed_y = torch.zeros(num_frames) # create the elapsed result as zeros
current_y = y_pse[-(lc+lr):-lr] # cut the current chunk result from the block output
new_id = spk_list[0] # get speaker id
dia_result[new_id] = torch.cat(elapsed_y, current_y) # store diarization result
emb_buffer[new_id] = [(e_pse, w_pse)] # store embedding-weight pair

for n in range(1, len(S)):
y_n = Y_hat[n] # predicted enrolled voice activity, shape: T’
e_n = E_hat[n] # extracted enrolled embedding, shape: S
w_n = W(y_n) # embedding weight, scalar
spk_id = spk_list[n] # get speaker id
dia_result[spk_id] = torch.cat(dia_result[spk_id], y_n[-(lc+lr):-lr]) # stitch diarization result
if w_n > tau_2:

emb_buffer[spk_id].append((e_n, w_n)) # append embedding-weight pair

num_frames += lc # update

target-speaker embedding is calculated as follows:

ēn =

∑Kn

k=1(ŵ
k
n · êkn)∑Kn

k=1 ŵ
k
n

. (5)

Algorithm 1 summarizes the pseudocode of online inference
in a Python-like style. A live audio signal is fed into the
proposed model by a sliding window approach. The neural
network detects if a new speaker appears in each coming
audio block by itself, eliminating the use of any prior system
(e.g., the cascaded diarization). Then, it finishes the target-
speaker voice activity detection and embedding extraction for
the following audio blocks. In such blockwise processing, the

predictions are output immediately as an online diarization
system.

In addition, our proposed framework can achieve better
performance through a rescoring mechanism. After the online
inference, the speaker-embedding buffer will collect all target-
speaker embeddings from the full audio recording. If interme-
diate features of the extractor and encoder are cached during
the first-pass inference, the final speaker-embedding buffer can
be used to fastly re-decode the audio, which acts as an offline
diarization system. Beneficial to the co-designed training and
inferring techniques, our proposed framework adapts to both
online and offline inference modes.

9

IV. EXPERIMENTAL SETTINGS

A. Datasets

To train the S2SND models with numerous speaker iden-
tities, we introduce two speaker corpora for data simulation.
The first corpus is the widely-used VoxCeleb2 [74] with over
1 million utterances for 6,112 identities. The second corpus
is the recently released VoxBlink2 [75] with approximately
10 million utterances for 111,284 identities. We employ the
FSMN-VAD module in FunASR [76] toolkit to remove non-
speech regions from the raw audio, purifying the data as
much as possible. Then, the simulated data is generated in
an on-the-fly manner during training. First, the single-speaker
utterance is independently created by alternately concatenating
the source speech and silent (zero-padded) segments, where
each segment length is randomly sampled from a uniform dis-
tribution of 0-4 seconds. Second, we randomly mix utterances
of 1-3 speakers from the corpora, which follows the same
implementation in our previous works [16], [55].

The models pretrained by simulated data are further adapted
and evaluated on real multi-domain datasets: DIHARD-II [77]
and DIHARD-III [78], respectively. The DIHARD-II dataset
includes 11 conversational scenarios (e.g., interview, clinical,
restaurant), with 23.81 hours of development set and 22.49
hours of evaluation set. We select the first 153 recordings
(80%) of the original development set for model adaptation,
namely the dev153 set. The last 39 recordings (20%) remain
for validation, namely the dev39 set. The DIHARD-III dataset
is the next edition of the DIHARD-II dataset in a series of
speaker diarization challenges, with 34.15 hours of develop-
ment set and 33.01 hours of evaluation set. Similarly, we select
the first 203 recordings (80%) of the original development
set for model adaptation, namely the dev203 set. The last 51
recordings (20%) remain for validation, namely the dev51 set.
The statistics of both simulated and real datasets are described
in Table I.

B. Network Configurations

1) Pretrained extractor: As the pretrained front-end ex-
tractor can effectively facilitate the model to learn the iden-
tity information in target-speaker embeddings, we pretrain
three speaker embedding extractors with similar network
architecture but different model sizes and training data.
The first two extractors are both based on the ResNet-34
model, while their residual blocks have respective channels
of {32, 64, 128, 256} and {64, 128, 256, 512}, namely the
ResNet34-32ch and ResNet34-64ch. After adding the global
statistical pooling (GSP) [35] and linear projection layer with
the output dimension of 256, these two extractors are trained
on the VoxCeleb2 [74] dataset by the ArcFace (α = 32,m =
0.2) [73] classifier. We also introduce the third ResNet-152
model trained on the VoxBlink2 [75] dataset to explore the
potential of large model size and training data. The ResNet34-
32ch, ResNet34-64ch, and ResNet-152 models have 5.45M,
21.53M, and 58.14M parameters, respectively. Accordingly,
they obtain 1.17%, 0.81%, and 0.34% equal error rates (EERs)
on the Vox-O [79] trial.

TABLE I
STATISTICS OF DATASETS USED IN OUR EXPERIMENTS. THE OVERLAP
RATIOS OF SIMULATED DATA ARE ESTIMATED ON 250,000 RANDOMLY

GENERATED SAMPLES.

Dataset Split Num.
Speakers

Num.
Recordings

Overlap
Ratio

On-the-fly Simulation

sim1spk 1 - 0.00%
sim2spk 2 - 28.01%
sim3spk 3 - 39.66%

total 1-3 - 22.56%

DIHARD-II [77]
dev153 1-10 153 9.78%
dev39 1-9 39 9.73%
eval 1-9 194 8.90%

DIHARD-III [78] dev203 1-10 203 10.83%
dev51 1-8 51 10.37%
eval 1-9 259 9.37%

2) S2SND model: For the entire S2SND model, we propose
two versions with different numbers of parameters. The first is
named S2SND-Small. Its extractor is based on the ResNet34-
32ch model. The following encoder and decoder adopt 256-
dim attentions with 8 heads and 512-dim feedforward layers.
The second is named S2SND-Medium. Its extractor is based
on the ResNet34-64ch model. The encoder and decoder are
changed to 384-dim attentions with 8 heads and 768-dim feed-
forward layers. The other configurations for the two models
are identical. All encoders and decoders have 4 blocks. The
kernel size of convolutions in Conformer blocks is set to 15. In
total, the parameters in the S2SND-Small and S2SND-Medium
models are 16.56M and 45.96M, respectively. Because the
number of parameters of the ResNet-152 extractor is too large,
even twice that of the ResNet34-64ch extractor, the heavy
parameters will take too much time to do the experiments
and bring high demand for computing cost during real-time
inference. We only use the ResNet-152 extractor as the teacher
model of knowledge distillation [80] to improve the current
models described in the following paragraph.

C. Training and Inferring Details

1) Training details: All training audio is split into fixed-
length blocks and normalized with a mean of 0 and a standard
deviation of 1. Specifically, the block length in this work is set
to 8 seconds. The input acoustic features are 80-dim log Mel-
filterbank energies with a frame length of 25 ms and a shift
of 10 ms. Also, we apply the additive noise from Musan [81]
and reverberation from RIRs [82] as audio augmentation. As
suggested by our previous findings [16], [55], the temporal
resolution (duration per frame-level prediction) of system
output is directly set to 10 ms for precise option. The speaker
capacity N is adopted as 30, a relatively large number that can
adequately cover the maximum number of speakers in most
datasets.

When the number of speakers in a given audio block cannot
reach N , absent positions will be padded as described in
Sec. III-B1. Lastly, all the input target-speaker embeddings
are randomly shuffled to make the model invariant to speaker
order. Accordingly, the ground truth labels for target-speaker

10

voice activity detection and embedding extraction must also
be re-assigned based on their shuffled results. Then, the whole
model is optimized by AdamW [83] optimizer with the binary
cross entropy (BCE) loss and ArcFace (α = 32,m = 0.2) [73]
loss depicted in Fig. 2. Using 8 × NVIDIA RTX-3090 GPUs
with a batch size of 16, we investigate two multi-stage training
strategies as follows.

The first training strategy follows our previous work [16],
containing three different stages starting from the pretrained
extractor. In each stage, the model will be validated every 500
steps. The checkpoint with the lowest diarization error rate on
the adopted validation set will be used for the next stage.

• Stage 1: We copy and freeze the weights of a pretrained
speaker embedding model to initialize the front-end ex-
tractor. Only simulated data is used to train the back-end
modules for 100,000 steps with a learning rate of 1e-4.

• Stage 2: The front-end extractor is unfrozen. The whole
S2SND model is adapted by 80% of the simulated data
and 20% of the real data from the specific dataset, taking
around 75,000 steps.

• Stage 3: The learning rate is decayed to 1e-5 for fine-
tuning the whole S2SND model, taking around 50,000
steps.

In this work, we also explore the second kind of training
strategy based on knowledge distillation, shown in Fig. 6.
The pretrained ResNet-152 model is employed as the teacher
extractor. The original input audio will be copied to feed
the student and teacher extractors during training. Let X =
[x1, . . . ,xT] ∈ RT×F denote the output of the student
extractor, where T is the time axis and F is the feature
axis. Comparatively, the output of the teacher extractor is
represented as X′ = [x′

1, . . . ,x
′
T] ∈ RT×F. Then, we employ

a frame-wise cosine similarity loss between two extractors,
which is described as:

Ldistill = 1− 1

T

T∑
t=1

xt · x′
t

∥xt∥ · ∥x′
t∥
, (6)

where xt and x′
t ∈ RF represent the frame-level speaker em-

bedding extracted by the student and teacher extractors at time
t, respectively. By minimizing Ldistill, the representation space
of X is forced to align with X′, which means the knowledge
in the larger teacher extractor transfers into the smaller student
extractor. Later, X and X′ are fed into the shared encoder and
decoder modules as same as the regular training framework
described in Sec. III-B. The original ground-truth labels are
also copied to supervise the two output branches.

During distillation, the total training loss is the sum of Lbce

in Eq. 3, Larc in Eq. 4, and Ldistill in Eq. 6. There are also
three training stages, similar to the pretraining strategy.

• Stage 1: We initialize the weights of the student extractor
from scratch and freeze the pretrained teacher extractor.
Only simulated data is used to train the student extractor
and shared encoder-decoder modules for 100,000 steps
with a learning rate of 1e-4.

• Stage 2: The teacher extractor is unfrozen. All weights in
Fig. 6, including the student extractor, teacher extractor,
and shared encoder-decoder modules, are adapted by 80%

Input 1

Extractor
(Student)

Encoder & Decoder (Shared Weight)

Extractor
(Teacher)

Output 2Output 1

Input 2

BCE/ArcFace
Loss

BCE/ArcFace
Loss

Cosine Similarity
Loss

Ground Truth

Fig. 6. Illustration of the training strategy based on knowledge distillation.

of the simulated data and 20% of the real data from the
specific dataset, taking around 75,000 steps.

• Stage 3: The learning rate is decayed to 1e-5 for finetun-
ing based on Stage 2, taking around 50,000 steps.

2) Inferring details: The inferring process follows the
Sec. III-C. The thresholds τ1 and τ2 are determined using grid
search on the validation set of the specific dataset. By adjusting
the proportion of the current chunk and its contexts in the
input audio block, the online diarization system can be flexibly
inferred at different latencies. The algorithmic latency is the
sum of chunk length Lchunk and right-context length Lright. As
the shift of the sliding window is equal to the chunk length,
a smaller Lchunk can decrease the system latency but bring
intensive computing. The right context represents the use of
future information. A larger Lright may result in more accurate
prediction but increase the system latency. The impacts of
different settings are investigated in the experimental results.

D. Evaluation Metric

The diarization error rate (DER) is used as the evaluation
metric without collar tolerance. The S2SND models are tested
on evaluation sets of DIHARD-II [77] and DIHARD-III [78]
datasets. For a fair comparison, the Oracle VAD informa-
tion can revise the diarization results as a post-processing
approach [13] if sometimes the evaluation condition allows.

V. RESULTS

A. Evaluation of S2SND Models

Table II illustrates the performance of our proposed S2SND
models with different training and inferring conditions. The
effects of model size, simulation corpus, training strategy, and
various combinations of chunk and right-context lengths are
shown step by step. Browsing the DER results on DIHARD-II
and DIHARD-III datasets, several consequences are found as
follows.

11

TABLE II
PERFORMANCE OF S2SND MODELS ON DIHARD-II AND DIHARD-III EVALUATION SETS WITH VARIOUS TRAINING AND INFERRING CONDITIONS.

THE DIARIZATION ERROR RATES (DERS) ARE REPORTED WITHOUT ORACLE VAD AND COLLAR TOLERANCE.

ID Model
Size

Simulation
Corpus

Training
Strategy

Chunk
Length

Right-Context
Length

Algorithmic
Latency

DIHARD-II Eval DIHARD-III Eval

Online
DER (%)

Offline
DER (%)

Online
DER (%)

Offline
DER (%)

S1

Small VoxCeleb2 Pretraining

0.48s - 0.48s 27.79 23.74 20.55 16.28
S2 0.48s 0.16s 0.64s 26.11 23.85 18.53 16.33
S3 0.64s - 0.64s 27.54 24.07 19.72 16.36
S4 0.64s 0.16s 0.80s 25.79 23.52 18.33 16.33

S5

Small VoxBlink2 Pretraining

0.48s - 0.48s 27.39 22.80 20.45 16.51
S6 0.48s 0.16s 0.64s 25.72 22.97 18.44 16.38
S7 0.64s - 0.64s 26.93 23.05 19.55 16.32
S8 0.64s 0.16s 0.80s 25.70 23.17 18.36 16.45

S9

Small VoxBlink2 Distillation

0.48s - 0.48s 27.87 23.88 21.33 17.70
S10 0.48s 0.16s 0.64s 26.71 24.36 19.42 17.51
S11 0.64s - 0.64s 27.58 24.28 20.67 17.57
S12 0.64s 0.16s 0.80s 26.21 24.29 19.23 17.57

S13

Medium VoxCeleb2 Pretraining

0.48s - 0.48s 27.57 23.78 20.61 16.81
S14 0.48s 0.16s 0.64s 25.57 23.61 18.82 16.97
S15 0.64s - 0.64s 27.00 23.83 20.08 16.83
S16 0.64s 0.16s 0.80s 25.78 23.89 18.43 16.79

S17

Medium VoxBlink2 Pretraining

0.48s - 0.48s 27.79 24.09 20.13 16.04
S18 0.48s 0.16s 0.64s 26.02 23.86 18.10 15.77
S19 0.64s - 0.64s 27.10 23.77 19.30 15.83
S20 0.64s 0.16s 0.80s 25.55 23.59 17.99 15.93

S21

Medium VoxBlink2 Distillation

0.48s - 0.48s 26.13 21.95 19.11 15.14
S22 0.48s 0.16s 0.64s 24.41 22.17 17.33 15.30
S23 0.64s - 0.64s 25.44 22.07 18.46 15.13
S24 0.64s 0.16s 0.80s 24.48 22.26 17.12 15.23

The lowest online and offline DERs of each model size are highlighted by the gray background.

1) Across all experimental groups, under the same condi-
tions (e.g., model size, simulation corpus, and training
strategy), the longer chunk and right-context lengths can
generally result in lower online DERs. Especially, using
right-context information means that future information
is exploited when predicting each chunk, which leads
to a more significant impact. On the other hand, al-
though the chunk length has less influence on the DERs,
adjusting it can help maintain the algorithmic latency
constant while increasing the right-context length. For
instance, S2 has lower online DERs than S3, even though
their total latencies are equal. These phenomena are also
shown in all the other experimental groups. To avoid
too large system latency during online inference, the
chunk and right-context lengths used in our experiments
are selected to be relatively small and close values.
Furthermore, the longer chunk and right-context lengths
do not exhibit apparent advantages in offline DERs.
The rescoring mechanism updates the diarization output
over the whole recording, which already takes global
information. Its offline performance is insensitive to the
context length of the first-pass online inference.

2) Comparing S1-4, S5-8, and S9-12, we evaluate the small
model with different simulation corpora and training
strategies. It can be seen that the VoxBlink2 corpus
containing larger speaker identities (111k+) does not
result in significant and consistent improvement over
VoxCeleb2 (6k+). Also, the training strategy of knowl-

edge distillation slightly downgrades the performance
compared to the pretraining strategy. It is speculated that
the small model with few parameters cannot fully exploit
the large simulation corpus and knowledge distillation.

3) Comparing S13-16, S17-20 and S21-24, we evaluate
the medium model with different simulation corpora
and training strategies again. In this case, the combi-
nation of VoxBlink2 corpus and knowledge distillation
demonstrates overwhelming advantages over others. All
the lowest DERs for medium model on two datasets
are obtained in S21-24. When increasing the number
of model parameters, the newly introduced distillation
strategy can successfully empower the usage of large
speaker identities in the simulation corpus.

Overall, for the S2SND-Small model, the best online DERs
on DIHARD-II and DIHARD-III datasets are 25.70% and
18.33%, and the best offline DERs on the two datasets are
22.80% and 16.28%, respectively. For the S2SND-Medium
model, the best online DERs on DIHARD-II and DIHARD-
III datasets are 24.41% and 17.12%, and the best offline DERs
on two datasets are 21.95% and 15.13%, respectively. To
summarize, the combination of a small simulation corpus and
pretraining strategy is the better choice for the small model.
When a large simulation corpus is available, adopting the
medium model and distillation strategy can achieve better DER
performance.

12

TABLE III
COMPARISONS OF S2SND MODELS WITH OTHERS ON THE DIHARD-II

EVALUATION SET.

Method Latency (s) DER (%)

Online
EEND-EDA + FW-STB [26] 1.00 36.00
EEND-EDA + Improved FW-STB [27] 1.00 33.37
Overlap-aware Speaker Embeddings [63] 1.00 35.10
EEND-GLA-Small + BW-STB [27] 1.00 31.47
EEND-GLA-Large + BW-STB [27] 1.00 30.24
S2SND-Small (S8 in Table II) 0.80 25.70
S2SND-Medium (S22 in Table II) 0.64 24.41

Online (with oracle voice activity detection)
UIS-RNN-SML [62] 1.00 27.30
EEND-EDA + FW-STB [26] 1.00 25.80
EEND-EDA + Improved FW-STB [27] 1.00 24.67
Core Samples Selection [84] 1.00 23.10
EEND-GLA-Small + BW-STB [27] 1.00 23.26
EEND-GLA-Large + BW-STB [27] 1.00 21.92
NAVER System [85] 0.50 21.60
S2SND-Small (S8 in Table II) + Oracle VAD 0.80 18.07
S2SND-Medium (S22 in Table II) + Oracle VAD 0.64 18.65

Offline
EEND-EDA [13] 29.57

+ Iterative Inference+ [13] 28.52
EEND-GLA-Small [27] 29.31
EEND-GLA-Large [27] 28.33
BUT System [36] † 27.11

+ EEND Post-Processing [86] 26.88
AED-EEND [87] 25.92

+ Embedding Enhancer [87] 24.64
S2SND-Small (S5 in Table II) 22.80
S2SND-Medium (S21 in Table II) 21.95

Offline (with oracle voice activity detection)
EEND-EDA [13] 20.54

+ Iterative Inference+ [13] 20.24
VBx [8] 18.55
BUT System [36] † 18.42
S2SND-Small (S5 in Table II) + Oracle VAD 15.84
S2SND-Medium (S21 in Table II) + Oracle VAD 15.34

† Winning system on Track 1&2 of the DIHARD-II Challenge.

B. Comparison with Other Existing Methods

We select the lowest online and offline DERs for each
model size on DIHARD-II and DIHARD-III datasets as the
representative results, highlighted by the gray background in
Table II. To fairly compare with some existing methods, the
corresponding results of post-processing by Oracle VAD [13]
are also provided.

Table III compares our proposed methods with the previous
state-of-the-art results on the DIHARD-II dataset. In the online
scenario, our proposed methods obtain the lowest DERs of
18.07% and 24.41% with and without Oracle VAD, respec-
tively. Regarding algorithmic latency, our proposed methods
still have a significant advantage over others when Oracle VAD
is not used. In the offline scenario, our proposed methods
obtain the lowest DERs of 15.34% and 21.95% with and
without Oracle VAD, respectively. Generally, our best results
significantly outperform previous state-of-the-art systems in
all scenarios. Notably, our best online DER (24.41%) is even
lower than the previous best offline system (24.64%) [87]
and the winning system (27.11%) [36] of the DIHARD-II
Challenge.

Table IV compares our proposed methods with the previous

TABLE IV
COMPARISONS OF S2SND MODELS WITH OTHERS ON THE DIHARD-III

EVALUATION SET.

Method Latency (s) DER (%)

Online
Overlap-aware Speaker Embeddings [63] 1.00 27.60
EEND-EDA + Improved FW-STB [27] 1.00 25.09
EEND-GLA-Small + BW-STB [27] 1.00 22.00
EEND-GLA-Large + BW-STB [27] 1.00 20.73
ResNet-based OTS-VAD [30] 0.80 19.07
S2SND-Small (S4 in Table II) 0.80 18.33
S2SND-Medium (S24 in Table II) 0.80 17.12

Online (with oracle voice activity detection)
Zhang et al. [23] 0.50 19.57
Core Samples Selection [84] 1.00 19.30
NAVER System [85] 0.50 19.05
EEND-EDA + Improved FW-STB [27] 1.00 18.58
EEND-GLA-Small + BW-STB [27] 1.00 15.82
EEND-GLA-Large + BW-STB [27] 1.00 14.70
ResNet-based OTS-VAD [30] 0.80 13.31
S2SND-Small (S4 in Table II) + Oracle VAD 0.80 13.07
S2SND-Medium (S24 in Table II) + Oracle VAD 0.80 11.88

Offline
EEND-EDA [13] 21.55

+ Iterative Inference+ [13] 20.69
Pyannote.audio v3.1 [88] 21.30
DiaPer [45] 20.30
EEND-GLA-Small [27] 20.23
EEND-GLA-Large [27] 19.49
VBx + Overlap-aware Resegmentation [37] 19.30
USTC-NELSLIP System [17] † 16.78
ANSD-MA-MSE [60] 16.76
EEND-M2F [89] 16.07
S2SND-Small (S1 in Table II) 16.28
S2SND-Medium (S23 in Table II) 15.13

Offline (with oracle voice activity detection)
EEND-EDA [13] 14.91
+ Iterative Inference+ [13] 14.42
Hitachi-JHU System [90] 11.58
USTC-NELSLIP System [17] † 11.30
ANSD-MA-MSE [60] 11.12
Seq2Seq-TSVAD [16] 10.77
MIMO-TSVAD [55] 10.10
S2SND-Small (S1 in Table II) + Oracle VAD 11.13
S2SND-Medium (S23 in Table II) + Oracle VAD 10.37

† Winning (fusion) system on Track 1&2 of the DIHARD-III Challenge.

state-of-the-art results on the DIHARD-III dataset. In the
online scenario, our proposed methods obtain the lowest DERs
of 11.88% and 17.12% with and without Oracle VAD, respec-
tively. In the offline scenario, our proposed methods obtain
the lowest DERs of 10.37% and 15.13% with and without
Oracle VAD, respectively. Except for the offline result with
Oracle VAD, our best results significantly outperform previous
state-of-the-art systems in all other scenarios. Nevertheless, the
DER (10.10%) of MIMO-TSVAD [55] comes from our earlier
study designed for offline scenarios, which adopts the audio
block of 32 seconds to provide extended context but is not
suitable for online inference. Last but not least, our best online
DER (17.12%) is very close to the previous best offline system
(16.07%) [89] and the winning fusion system (16.78%) [17]
of the DIHARD-III Challenge.

C. Investigation of Speaker Counting Ability

The previous speaker diarization systems mainly utilize
unsupervised clustering [6]–[9], permutation-invariant train-

13

0 1 2 3 4 5 6 7 8 9>=10
Predicted (#SPKs)

0
1
2
3
4
5
6
7
8
9

>=10

Re
fe
re
nc
e
(#
SP
Ks
)

7

1

7

104

18

6

5

4

4

1

35

6

4

1

2

14

3

6

1

1

3

4

2

4

3

1

1

2

1

2

1

1

2 2

Accuracy = 0.5135

(a) Pyannote.audio v3.1 [88]

0 1 2 3 4 5 6 7 8 9>=10
Predicted (#SPKs)

0
1
2
3
4
5
6
7
8
9

>=10

Re
fe
re
nc
e
(#
SP
Ks
)

14

9

5

5

3

3

2

1

142

12

1

2

1

8

8

4

1

1

1

1

2

5

1

1

2

3

3

1

1

1

1

3

1

1

2

2

1

2 2

Accuracy = 0.6911

(b) VBx [8]

0 1 2 3 4 5 6 7 8 9>=10
Predicted (#SPKs)

0
1
2
3
4
5
6
7
8
9

>=10

Re
fe
re
nc
e
(#
SP
Ks
)

13

4

1

1

1

155

20

7

4

1

4

1

1

6

7

7

1

4

2

4

7

1

4

1

1

1

Accuracy = 0.6873

(c) DiaPer [45]

0 1 2 3 4 5 6 7 8 9>=10
Predicted (#SPKs)

0
1
2
3
4
5
6
7
8
9

>=10

Re
fe
re
nc
e
(#
SP
Ks
)

14 1

154

10

2

2

4

14

3

1

2

1

1

3

9

1

3

4

3

2

3

3

1

3

2

1

2

2

1

1

1

3

2

Accuracy = 0.7954

(d) S2SND-Small (Offline)
Fig. 7. Confusion matrices for speaker counting on the DIHARD-III evaluation set. The Pyannote.audio v3.1, VBx, and DiaPer results are provided by their
respective authors. For our trained S2SND-Small model, the same settings as S4 in Table II are adopted. Oracle VAD is not used. Accuracy is calculated as
the number of recordings in which all speakers are correctly predicted, divided by the total number of recordings.

ing [10]–[13], or their combination to determine the unknown
number of speakers in the input audio. In our proposed S2SND
framework, speakers are detected by traversing the entire
audio using the masked speaker prediction mechanism, which
is clustering-free. Also, it only adds one unknown speaker
each time to avoid the increasing complexity problem of the
permutation-invariant training.

Fig. 7 depicts the confusion matrices for speaker counting
obtained by different methods on the DIHARD-III evaluation
set. Due to space limitations, only offline performances with-
out Oracle VAD are shown. We select three representative
systems from different technical routes for comparison. The
first Pyannote.audio v3.1 [88] is a hybrid method of super-
vised end-to-end diarization and unsupervised clustering. The
second VBx [8] is a well-known clustering-based diarization
method, where the shown performance is reproduced as the
baseline in the third EEND-based method (DiaPer [45]). As
a result, the S2SND-Small model exhibits the more balanced
predictions with the highest accuracy of 79.54%, proving the
speaker counting ability of our proposed S2SND framework.

D. Computing Efficiency

Table V illustrates the computing efficiency of the S2SND
models. First, the total number of model parameters is an
essential measurement. Second, as mentioned in Sec IV-C2,
the chunk length (Lchunk) determines the shift of the slid-
ing window in our settings. Given the amount of floating-
point operations for processing each window as ∆flops, the
Floating-Point Operations Per Second (FLOPS) is calculated
as ∆flops/Lchunk. A smaller chunk length (window shift)
means more windows must be processed per unit time, leading
to more FLOPS because of more intensive computing. On the
contrary, a larger chunk length (window shift) is more com-
putationally economical, but the system latency will increase.
Third, the Real-time Factor (RTF) is calculated as the time to
process each recording divided by the recording length, where
all tests are based on the computer with Intel(R) Xeon(R) E5-
2660 CPU @ 2.60GHz and NVIDIA RTX-3090 GPU.

When using GPU inference, the maximum RTF of 0.22 is
adequate for real-time applications. Also, when using CPU
inference, the maximum RTF of 0.60 is not an excellent

TABLE V
COMPUTING EFFICIENCY REGARDING THE NUMBER OF PARAMETERS,

FLOATING-POINT OPERATIONS PER SECOND (FLOPS), AND REAL-TIME
FACTOR (RTF).

Model Params
(M)

FLOPS
(G)

RTF-
GPU

RTF-
CPU

S2SND-Small
Lchunk = 0.48s 16.56 78.83 0.19 0.34
Lchunk = 0.64s 16.56 59.12 0.14 0.21

S2SND-Medium
Lchunk = 0.48s 45.96 308.89 0.22 0.60
Lchunk = 0.64s 45.96 231.67 0.15 0.39

performance, but it is less than 1, which means the system
operation is still in real-time. Our calculations of RTFs include
all the time the speaker diarization system runs, not only
the neural network inference but also the actual data I/O,
signal preprocessing, buffer update, etc. Therefore, the RTFs
tested on the CPU are not much larger than that of the GPU,
especially for the small model size. From the perspective of
computing efficiency, our proposed S2SND models are not
outstanding. Nevertheless, they achieve promising diarization
performance (as shown in Tables III and IV) with improved
speaker counting performance (as shown in Fig. 7). In our
future work, we will further improve the computational effi-
ciency.

Furthermore, comparing computing efficiency depends on
various measurement criteria and hardware platforms. For
instance, EEND-GLA-Small [27] has only 6.4M parameters.
However, it additionally relies on clustering of relative speaker
embeddings, which has O(n3) time complexity but cannot
be counted into FLOPS on the GPU device. OTS-VAD [30]
employs an external VAD module to remove silent regions
from the original audio signal. The preprocessing time (e.g.,
VAD) is not involved in the RTFs reported by the authors. It is
hard to compare different studies in those aspects fairly. Thus,
this paper does not list the computing efficiency comparisons
with other methods.

14

VI. CONCLUSIONS

This paper proposes a novel Sequence-to-Sequence Neural
Diarization (S2SND) framework to tackle online and offline
speaker diarization in a unified model. The S2SND models
can automatically detect and represent an unknown number
of speakers in the input audio signal using the well-designed
training and inferring process. Experimental results show that
the proposed S2SND framework obtains new state-of-the-
art DERs across all online and offline inference scenarios.
Nevertheless, the proposed models also have limitations. The
large model size and computing cost still present challenges
for real-time inference on edge devices without GPUs. In the
future, we will further improve the current approach regarding
both precision and speed, prompting speaker diarization to
wide industrial applications.

ACKNOWLEDGMENTS

This research is funded in part by the National Natural
Science Foundation of China (62171207), Yangtze River Delta
Science and Technology Innovation Community Joint Re-
search Project (2024CSJGG01100), Science and Technology
Program of Suzhou City (SYC2022051) and Guangdong Sci-
ence and Technology Plan (2023A1111120012). Many thanks
for the computational resource provided by the Advanced
Computing East China Sub-Center.

REFERENCES

[1] T. J. Park, N. Kanda, D. Dimitriadis, K. J. Han, S. Watanabe, and
S. Narayanan, “A review of speaker diarization: Recent advances with
deep learning,” Computer Speech & Language, vol. 72, p. 101317, 2022.

[2] N. Kanda, Y. Gaur, X. Wang, Z. Meng, Z. Chen, T. Zhou, and
T. Yoshioka, “Joint speaker counting, speech recognition, and speaker
identification for overlapped speech of any number of speakers,” in Proc.
INTERSPEECH, 2020, pp. 36–40.

[3] S. H. Shum, N. Dehak, R. Dehak, and J. R. Glass, “Unsupervised
methods for speaker diarization: An integrated and iterative approach,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 21,
no. 10, pp. 2015–2028, 2013.

[4] M. Senoussaoui, P. Kenny, T. Stafylakis, and P. Dumouchel, “A study of
the cosine distance-based mean shift for telephone speech diarization,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 22, no. 1, pp. 217–227, 2014.

[5] G. Sell and D. Garcia-Romero, “Speaker diarization with plda i-vector
scoring and unsupervised calibration,” in Proc. SLT, 2014, pp. 413–417.

[6] Q. Wang, C. Downey, L. Wan, P. A. Mansfield, and I. L. Moreno,
“Speaker diarization with lstm,” in Proc. ICASSP, 2018, pp. 5239–5243.

[7] Q. Lin, R. Yin, M. Li, H. Bredin, and C. Barras, “Lstm based similarity
measurement with spectral clustering for speaker diarization,” in Proc.
INTERSPEECH, 2019, pp. 366–370.

[8] F. Landini, J. Profant, M. Diez, and L. Burget, “Bayesian hmm clustering
of x-vector sequences (vbx) in speaker diarization: Theory, implemen-
tation and analysis on standard tasks,” Computer Speech & Language,
vol. 71, p. 101254, 2022.

[9] W. Wang, Q. Lin, D. Cai, and M. Li, “Similarity measurement of
segment-level speaker embeddings in speaker diarization,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 30, pp.
2645–2658, 2022.

[10] Y. Fujita, N. Kanda, S. Horiguchi, K. Nagamatsu, and S. Watanabe,
“End-to-end neural speaker diarization with permutation-free objec-
tives,” in Proc. INTERSPEECH, 2019, pp. 4300–4304.

[11] Y. Fujita, N. Kanda, S. Horiguchi, Y. Xue, K. Nagamatsu, and S. Watan-
abe, “End-to-end neural speaker diarization with self-attention,” in Proc.
ASRU, 2019, pp. 296–303.

[12] S. Horiguchi, Y. Fujita, S. Watanabe, Y. Xue, and K. Nagamatsu, “End-
to-end speaker diarization for an unknown number of speakers with
encoder-decoder based attractors,” in Proc. INTERSPEECH, 2020, pp.
269–273.

[13] S. Horiguchi, Y. Fujita, S. Watanabe, Y. Xue, and P. Garcı́a, “Encoder-
decoder based attractors for end-to-end neural diarization,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 30, pp.
1493–1507, 2022.

[14] M. Kolbæk, D. Yu, Z.-H. Tan, and J. Jensen, “Multitalker speech
separation with utterance-level permutation invariant training of deep
recurrent neural networks,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 25, no. 10, pp. 1901–1913, 2017.

[15] I. Medennikov, M. Korenevsky, T. Prisyach, Y. Khokhlov, M. Ko-
renevskaya, I. Sorokin, T. Timofeeva, A. Mitrofanov, A. Andrusenko,
I. Podluzhny, A. Laptev, and A. Romanenko, “Target-speaker voice
activity detection: A novel approach for multi-speaker diarization in a
dinner party scenario,” in Proc. INTERSPEECH, 2020, pp. 274–278.

[16] M. Cheng, W. Wang, Y. Zhang, X. Qin, and M. Li, “Target-speaker
voice activity detection via sequence-to-sequence prediction,” in Proc.
ICASSP, 2023, pp. 1–5.

[17] Y. Wang, M. He, S. Niu, L. Sun, T. Gao, X. Fang, J. Pan, J. Du, and C.-
H. Lee, “Ustc-nelslip system description for dihard-iii challenge,” arXiv
preprint arXiv:2103.10661, 2021.

[18] W. Wang, D. Cai, Q. Lin, L. Yang, J. Wang, J. Wang, and M. Li, “The
dku-dukeece-lenovo system for the diarization task of the 2021 voxceleb
speaker recognition challenge,” arXiv preprint arXiv:2109.02002, 2021.

[19] W. Wang, X. Qin, M. Cheng, Y. Zhang, K. Wang, and M. Li, “The
dku-dukeece diarization system for the voxceleb speaker recognition
challenge 2022,” arXiv preprint arXiv:2210.01677, 2022.

[20] M. Cheng, W. Wang, X. Qin, Y. Lin, N. Jiang, G. Zhao, and M. Li,
“The dku-msxf diarization system for the voxceleb speaker recognition
challenge 2023,” in Proc. NCMMSC, J. Jia, Z. Ling, X. Chen, Y. Li,
and Z. Zhang, Eds. Springer Nature Singapore, 2024, pp. 330–337.

[21] J. Huh, J. S. Chung, A. Nagrani, A. Brown, J.-w. Jung, D. Garcia-
Romero, and A. Zisserman, “The voxceleb speaker recognition chal-
lenge: A retrospective,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 32, pp. 3850–3866, 2024.

[22] D. Dimitriadis and P. Fousek, “Developing on-line speaker diarization
system,” in Proc. INTERSPEECH, 2017, pp. 2739–2743.

[23] Y. Zhang, Q. Lin, W. Wang, L. Yang, X. Wang, J. Wang, and M. Li,
“Low-latency online speaker diarization with graph-based label genera-
tion,” in Proc. Odyssey, 2022, pp. 162–169.

[24] E. Han, C. Lee, and A. Stolcke, “Bw-eda-eend: streaming end-to-end
neural speaker diarization for a variable number of speakers,” in Proc.
ICASSP, 2021, pp. 7193–7197.

[25] Y. Xue, S. Horiguchi, Y. Fujita, S. Watanabe, P. Garcı́a, and K. Naga-
matsu, “Online end-to-end neural diarization with speaker-tracing
buffer,” in Proc. SLT, 2021, pp. 841–848.

[26] Y. Xue, S. Horiguchi, Y. Fujita, Y. Takashima, S. Watanabe, L. P. G.
Perera, and K. Nagamatsu, “Online streaming end-to-end neural diariza-
tion handling overlapping speech and flexible numbers of speakers,” in
Proc. INTERSPEECH, 2021, pp. 3116–3120.

[27] S. Horiguchi, S. Watanabe, P. Garcı́a, Y. Takashima, and Y. Kawaguchi,
“Online neural diarization of unlimited numbers of speakers using global
and local attractors,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 31, pp. 706–720, 2023.

[28] D. Liang, N. Shao, and X. Li, “Frame-wise streaming end-to-end speaker
diarization with non-autoregressive self-attention-based attractors,” in
Proc. ICASSP, 2024, pp. 10 521–10 525.

[29] W. Wang, M. Li, and Q. Lin, “Online target speaker voice activity
detection for speaker diarization,” in Proc. INTERSPEECH, 2022, pp.
1441–1445.

[30] W. Wang and M. Li, “Online neural speaker diarization with target
speaker tracking,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 2024.

[31] S.-Y. Chang, B. Li, G. Simko, T. N. Sainath, A. Tripathi, A. van den
Oord, and O. Vinyals, “Temporal modeling using dilated convolution and
gating for voice-activity-detection,” in Proc. ICASSP, 2018, pp. 5549–
5553.

[32] M. Hrúz and Z. Zajı́c, “Convolutional neural network for speaker change
detection in telephone speaker diarization system,” in Proc. ICASSP,
2017, pp. 4945–4949.

[33] G. Sell, D. Snyder, A. McCree, D. Garcia-Romero, J. Villalba, M. Ma-
ciejewski, V. Manohar, N. Dehak, D. Povey, S. Watanabe, and S. Khu-
danpur, “Diarization is hard: Some experiences and lessons learned for
the jhu team in the inaugural dihard challenge,” in Proc. INTERSPEECH,
2018, pp. 2808–2812.

[34] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-
end factor analysis for speaker verification,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 19, no. 4, pp. 788–798,
2011.

15

[35] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur,
“X-vectors: Robust dnn embeddings for speaker recognition,” in Proc.
ICASSP, 2018, pp. 5329–5333.

[36] F. Landini, S. Wang, M. Diez, L. Burget, P. Matějka, K. Žmolı́ková,
L. Mošner, A. Silnova, O. Plchot, O. Novotný, H. Zeinali, and J. Rohdin,
“But system for the second dihard speech diarization challenge,” in Proc.
ICASSP, 2020, pp. 6529–6533.

[37] H. Bredin and A. Laurent, “End-to-end speaker segmentation for
overlap-aware resegmentation,” in Proc. INTERSPEECH, 2021, pp.
3111–3115.

[38] Y. Takashima, Y. Fujita, S. Watanabe, S. Horiguchi, P. Garcı́a, and
K. Nagamatsu, “End-to-end speaker diarization conditioned on speech
activity and overlap detection,” in Proc. SLT, 2021, pp. 849–856.

[39] K. Kinoshita, M. Delcroix, and N. Tawara, “Integrating end-to-end
neural and clustering-based diarization: Getting the best of both worlds,”
in Proc. ICASSP, 2021, pp. 7198–7202.

[40] ——, “Advances in integration of end-to-end neural and clustering-based
diarization for real conversational speech,” in Proc. INTERSPEECH,
2021, pp. 3565–3569.

[41] K. Kinoshita, M. Delcroix, and T. Iwata, “Tight integration of neural-
and clustering-based diarization through deep unfolding of infinite
gaussian mixture model,” in Proc. ICASSP, 2022, pp. 8382–8386.

[42] S. Horiguchi, S. Watanabe, P. Garcı́a, Y. Xue, Y. Takashima, and
Y. Kawaguchi, “Towards neural diarization for unlimited numbers of
speakers using global and local attractors,” in Proc. ASRU, 2021, pp.
98–105.

[43] M. Rybicka, J. Villalba, N. Dehak, and K. Kowalczyk, “End-to-end neu-
ral speaker diarization with an iterative refinement of non-autoregressive
attention-based attractors,” in Proc. INTERSPEECH, 2022, pp. 5090–
5094.

[44] Y. Fujita, T. Komatsu, R. Scheibler, Y. Kida, and T. Ogawa, “Neural
diarization with non-autoregressive intermediate attractors,” in Proc.
ICASSP, 2023, pp. 1–5.

[45] F. Landini, M. Diez, T. Stafylakis, and L. Burget, “Diaper: End-
to-end neural diarization with perceiver-based attractors,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 32, pp.
3450–3465, 2024.

[46] Y.-R. Jeoung, J.-Y. Yang, J.-H. Choi, and J.-H. Chang, “Improving
transformer-based end-to-end speaker diarization by assigning auxiliary
losses to attention heads,” in Proc. ICASSP, 2023, pp. 1–5.

[47] D. Palzer, M. Maciejewski, and E. Fosler-Lussier, “Improving neural
diarization through speaker attribute attractors and local dependency
modeling,” in Proc. ICASSP, 2024, pp. 11 911–11 915.

[48] Y. Dissen, F. Kreuk, and J. Keshet, “Self-supervised speaker diarization,”
in Proc. INTERSPEECH, 2022, pp. 4013–4017.

[49] Y. Takashima, Y. Fujita, S. Horiguchi, S. Watanabe, L. P. G. Perera, and
K. Nagamatsu, “Semi-supervised training with pseudo-labeling for end-
to-end neural diarization,” in Proc. INTERSPEECH, 2021, pp. 3096–
3100.

[50] M. He, D. Raj, Z. Huang, J. Du, Z. Chen, and S. Watanabe, “Target-
speaker voice activity detection with improved i-vector estimation for
unknown number of speaker,” in Proc. INTERSPEECH, 2021, pp. 3555–
3559.

[51] C.-Y. Cheng, H.-S. Lee, Y. Tsao, and H.-M. Wang, “Multi-target
extractor and detector for unknown-number speaker diarization,” IEEE
Signal Processing Letters, vol. 30, pp. 638–642, 2023.

[52] D. Wang, X. Xiao, N. Kanda, T. Yoshioka, and J. Wu, “Target speaker
voice activity detection with transformers and its integration with end-
to-end neural diarization,” in Proc. ICASSP, 2023, pp. 1–5.

[53] W. Wang, X. Qin, and M. Li, “Cross-channel attention-based target
speaker voice activity detection: Experimental results for the m2met
challenge,” in Proc. ICASSP, 2022, pp. 9171–9175.

[54] M. Cheng, H. Wang, Z. Wang, Q. Fu, and M. Li, “The whu-alibaba
audio-visual speaker diarization system for the misp 2022 challenge,”
in Proc. ICASSP, 2023, pp. 1–2.

[55] M. Cheng and M. Li, “Multi-input multi-output target-speaker voice
activity detection for unified, flexible, and robust audio-visual speaker
diarization,” arXiv preprint arXiv:2401.08052, 2024.

[56] Y. Jiang, R. Tao, Z. Chen, Y. Qian, and H. Li, “Target speech diarization
with multimodal prompts,” arXiv preprint arXiv:2406.07198, 2024.

[57] W. Wang, D. Cai, M. Cheng, and M. Li, “Joint inference of speaker
diarization and asr with multi-stage information sharing,” in Proc.
ICASSP, 2024, pp. 11 011–11 015.

[58] Z. Chen, B. Han, S. Wang, Y. Jiang, and Y. Qian, “Flow-tsvad: Target-
speaker voice activity detection via latent flow matching,” arXiv preprint
arXiv:2409.04859, 2024.

[59] S. Horiguchi, T. Moriya, A. Ando, T. Ashihara, H. Sato, N. Tawara, and
M. Delcroix, “Guided speaker embedding,” in Proc. ICASSP, 2025, pp.
1–5.

[60] M.-K. He, J. Du, Q.-F. Liu, and C.-H. Lee, “Ansd-ma-mse: Adaptive
neural speaker diarization using memory-aware multi-speaker embed-
ding,” IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 31, pp. 1561–1573, 2023.

[61] A. Zhang, Q. Wang, Z. Zhu, J. Paisley, and C. Wang, “Fully supervised
speaker diarization,” in Proc. ICASSP, 2019, pp. 6301–6305.

[62] E. Fini and A. Brutti, “Supervised online diarization with sample mean
loss for multi-domain data,” in Proc. ICASSP, 2020, pp. 7134–7138.

[63] J. M. Coria, H. Bredin, S. Ghannay, and S. Rosset, “Overlap-aware
low-latency online speaker diarization based on end-to-end local seg-
mentation,” in Proc. ASRU, 2021, pp. 1139–1146.

[64] A. Sholokhov, N. Kuzmin, K. A. Lee, and E. S. Chng, “Probabilistic
back-ends for online speaker recognition and clustering,” in Proc.
ICASSP, 2023, pp. 1–5.

[65] Y. Chen, G. Cheng, R. Yang, P. Zhang, and Y. Yan, “Interrelate training
and clustering for online speaker diarization,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 32, pp. 1352–1364,
2024.

[66] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov,
“Transformer-XL: Attentive language models beyond a fixed-length
context,” in Proc. ACL. Association for Computational Linguistics,
2019, pp. 2978–2988.

[67] W. Chen, T. T. Anh, X. Zhong, and E. S. Chng, “Enhancing low-latency
speaker diarization with spatial dictionary learning,” in Proc. ICASSP,
2024, pp. 11 371–11 375.

[68] S. Wang, Z. Chen, K. A. Lee, Y. Qian, and H. Li, “Overview of
speaker modeling and its applications: From the lens of deep speaker
representation learning,” arXiv preprint arXiv:2407.15188, 2024.

[69] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, 2016.

[70] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer: Convolution-
augmented transformer for speech recognition,” in Proc. INTER-
SPEECH, 2020, pp. 5036–5040.

[71] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc.
NeurIPS, vol. 30, 2017.

[72] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in Proc.
NAACL, 2019, pp. 4171–4186.

[73] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular
margin loss for deep face recognition,” in Proc. CVPR, 2019.

[74] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep speaker
recognition,” in Proc. INTERSPEECH, 2018, pp. 1086–1090.

[75] Y. Lin, M. Cheng, F. Zhang, Y. Gao, S. Zhang, and M. Li, “Voxblink2: A
100k+ speaker recognition corpus and the open-set speaker-identification
benchmark,” in Proc. INTERSPEECH, 2024, pp. 4263–4267.

[76] Z. Gao, Z. Li, J. Wang, H. Luo, X. Shi, M. Chen, Y. Li, L. Zuo, Z. Du,
and S. Zhang, “Funasr: A fundamental end-to-end speech recognition
toolkit,” in Proc. INTERSPEECH, 2023, pp. 1593–1597.

[77] N. Ryant, K. Church, C. Cieri, A. Cristia, J. Du, S. Ganapathy, and
M. Liberman, “The second dihard diarization challenge: Dataset, task,
and baselines,” in Proc. INTERSPEECH, 2019, pp. 978–982.

[78] N. Ryant, P. Singh, V. Krishnamohan, R. Varma, K. Church, C. Cieri,
J. Du, S. Ganapathy, and M. Liberman, “The third dihard diarization
challenge,” in Proc. INTERSPEECH, 2021, pp. 3570–3574.

[79] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: A large-
scale speaker identification dataset,” in Proc. INTERSPEECH, 2017, pp.
2616–2620.

[80] G. Hinton, “Distilling the knowledge in a neural network,” arXiv preprint
arXiv:1503.02531, 2015.

[81] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and noise
corpus,” arXiv preprint arXiv:1510.08484, 2015.

[82] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur, “A
study on data augmentation of reverberant speech for robust speech
recognition,” in Proc. ICASSP, 2017, pp. 5220–5224.

[83] I. Loshchilov, “Decoupled weight decay regularization,” arXiv preprint
arXiv:1711.05101, 2017.

[84] Y. Yue, J. Du, M.-K. He, Y. Yeung, and R. Wang, “Online speaker
diarization with core samples selection,” in Proc. INTERSPEECH, 2022,
pp. 1466–1470.

[85] Y. Kwon, H.-S. Heo, B.-J. Lee, Y. J. Kim, and J.-W. Jung, “Absolute
decision corrupts absolutely: Conservative online speaker diarisation,”
in Proc. ICASSP, 2023, pp. 1–5.

16

[86] S. Horiguchi, P. Garcı́a, Y. Fujita, S. Watanabe, and K. Nagamatsu,
“End-to-end speaker diarization as post-processing,” in Proc. ICASSP,
2021, pp. 7188–7192.

[87] Z. Chen, B. Han, S. Wang, and Y. Qian, “Attention-based encoder-
decoder end-to-end neural diarization with embedding enhancer,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 32, pp. 1636–1649, 2024.

[88] A. Plaquet and H. Bredin, “Powerset multi-class cross entropy loss for
neural speaker diarization,” in Proc. INTERSPEECH, 2023, pp. 3222–
3226.

[89] M. Härkönen, S. J. Broughton, and L. Samarakoon, “Eend-m2f: Masked-
attention mask transformers for speaker diarization,” in Proc. INTER-
SPEECH, 2024, pp. 37–41.

[90] S. Horiguchi, N. Yalta, P. Garcia, Y. Takashima, Y. Xue, D. Raj,
Z. Huang, Y. Fujita, S. Watanabe, and S. Khudanpur, “The hitachi-
jhu dihard iii system: Competitive end-to-end neural diarization and
x-vector clustering systems combined by dover-lap,” arXiv preprint
arXiv:2102.01363, 2021.

Ming Cheng is currently a Ph.D. candidate in
Computer Science at Wuhan University. He received
his Master’s degree in Electrical and Electronic
Engineering from The University of Hong Kong
and Bachelor’s degree in Measuring and Control
Technologies and Instruments from China Jiliang
University. His research interests include speech
signal processing and multimodal behavior analysis.

Yuke Lin is currently a Master’s student in Com-
puter Science at Wuhan University. He received
his Bachelor’s degree in Computer Science from
Wuhan University. His research interests include
speech signal processing (e.g., speaker verification
and diarization).

Ming Li (Senior Member, IEEE) received his Ph.D.
in Electrical Engineering from University of South-
ern California in 2013. He is currently a Profes-
sor of Electronical and Computer Engineering at
Duke Kunshan University. He is also an Adjunct
Professor at School of Computer Science in Wuhan
University. His research interests are in the areas
of audio, speech and language processing as well
as multimodal behavior signal processing. He has
published more than 200 papers and served as the
member of IEEE speech and language technical

committee, APSIPA speech and language processing technical committee, the
editorial board member of the IEEE/ACM Transactions on Audio, Speech,
and Language Processing and Computer Speech & Language. He is an area
chair at Interspeech 2016, 2018, 2020, 2024 and 2025 as well as the technical
program co-chair of Odyssey 2022 and ASRU 2023. Works co-authored with
his colleagues have won first prize awards at Interspeech Computational
Paralinguistic Challenges 2011, 2012 and 2019, ASRU 2019 MGB-5 ADI
Challenge, Interspeech 2020 and 2021 Fearless Steps Challenges, VoxSRC
2021, 2022 and 2023 Challenges, ICASSP 2022 M2MeT Challenge, ICASSP
2023 MISP challenge, IJCAI 2023 ADD challenge, ICME 2024 ChatCLR
challenge and Interspeech 2024 AVSE challenge. He received the IBM faculty
award in 2016, the ISCA Computer Speech and Language 5-years best journal
paper award in 2018 and the youth achievement award of outstanding scientific
research achievements of Chinese higher education in 2020.

