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ABSTRACT

The laryngeal high-speed video (HSV) is a commonly used method for diagnosing laryngeal
diseases. Among various approaches, the segmentation of glottis areas on laryngeal images
shows great potential in analyzing vocal fold vibration patterns and diagnosing vocal fold
disorder. However, few works have been done on vocal fold segmentation. In this study,
we present an innovative approach to automatic vocal fold segmentation using only the
glottis information. Our system designs prompt engineering techniques customized for the
Segment Anything Model (SAM), leveraging glottis data to enhance segmentation accuracy. By
combining vocal fold information extracted from U-Net masks—enhanced through brightness
contrast adjustment and morphological closing—with a coarse bounding box of the larynx
region generated by the YOLO-v5 model, we generate an effective bounding box prompt.
Additionally, we introduce a point prompt derived from the local extrema in the first derivative
of gray-scale intensity along glottis-intersecting lines, providing auxiliary information on the
vocal fold location. Experimental results show that our method that does not need labeled
vocal fold training data achieves comparable performance with the fully supervised method,
reaching a Dice Coefficient of 0.91. Exemplary features extracted on the segmented masks
are included to further show the effectiveness of our work. We release our codes at https:
//github.com/yucongzh/Laryngoscopic—Image—Segmentation—-Toolkit.

Keywords: Medical Image Analysis, Laryngoscope, Prompt Engineering, Segment Anything Model, Vocal Fold Segmentation

1 INTRODUCTION

In today’s society, communication is an important part of people’s life and work (Rodero, 2018}, Vieira et al.,
2020). Correctly producing voice signals is critical to transmitting information effectively and accurately in
verbal communication (Diehl and McDonald, [1956). The voice production process has several main steps,
but phonation is the most important step among all (Cataldo et al., 2013)). Phonation happens when the
vocal folds in the larynx vibrate as air from the lungs passes through them (Gordon and Ladefoged, 2001)),
so the observation and study of vocal folds vibration patterns are substantially helpful for the diagnosis of
phonation-related diseases. Healthy vocal folds are symmetrical and vibrate periodically when producing
sound. In contrast, the abnormality in the periodic vibration and the asymmetrical shape results in vocal
disorders (Herzel et al., [1994).

In clinical diagnosis, laryngeal imaging techniques are used for quantitative measurement and
interpretation of the vocal fold vibration (Hirosel |[1988; |Sung et al., |1999). State-of-the-art technology
is the laryngeal high-speed video endoscopy (HSV) that enables a real-time recording of the vocal fold
vibration (Lohscheller et al., 2007). In common practice, the diagnosis of vocal disorders is based on
doctors’ subjective analysis of HSV recordings (Verikas et al., 2009). However, this subjective observation
and evaluation of vibration period, vocal fold symmetry, the degree of vocal fold closure time, and many
other features are often time-consuming, experience-based, and error-prone (Ghasemzadeh and Deliyski,
2022)). To alleviate the limitations brought by subjective diagnosis, objective features are important for a
quantitative analysis of HSV recordings.

Therefore, many studies have focused on methods that can automatically extract features to assist
clinicians. Glottal area waveform (GAW) (Noordzij and Woo, |[2000) is the most widely used one, which
shows the changes of the glottal area through time. This feature is able to provide useful information for
analyzing the periodic patterns of vocal fold oscillation and the condition of glottis closure. To obtain a better
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GAVW, it requires an accurate segmentation of the glottis area. Traditional methods, like thresholding (Yan
et al., 2006), watershed algorithms (Osma-Ruiz et al., 2008)), and active contour models (Karakozoglou
et al., 2012), utilize physical features to segment the glottal area. Nevertheless, if the recording condition
changes, those methods that depend on physical features might not work well.

In recent years, deep supervised learning models, particularly those based on U-Net
architectures (Ronneberger et al., 2015; |Huang et al., 2020; Xu et al., 2023}; L1 et al., 2024} Huang
et al., 2024b), have achieved notable success in medical image segmentation. While these models have been
extensively applied in areas such as lung CT image segmentation, there has been comparatively less research
on the segmentation of the human larynx. Most studies in this domain have focused on glottis segmentation
for quantitative analysis, with (Derdiman and Koc, 2021} Zhang et al., 2024) validating the effectiveness
of U-Net on glottis images, and (Lee et al., 2023) enhancing U-Net with a dual-attention mechanism to
improve segmentation accuracy. However, vocal fold segmentation remains an underexplored area due to
the variability in vocal fold shape, color, and size, and the indistinct boundaries that challenge both manual
annotation and automated segmentation. Although several open-source laryngoscopic datasets exist for
glottis annotation, almost none of them provide vocal fold annotations, with the exception of (Fehling et al.,
2020).

The scarcity of annotated data is a common challenge in medical image segmentation, exacerbated by
patient privacy concerns. Recent studies have explored the Segment Anything Model (SAM) (Kirillov
et al., [2023) for zero-shot image segmentation due to its ability to generalize across diverse tasks using
only generic prompts, eliminating the need for task-specific annotations during inference. SAM accepts
various prompts as inputs and generates corresponding segmentation masks. In this work, we aim to design
prompts that leverage glottis annotations as prior knowledge for SAM, exploring its potential for vocal fold
segmentation. The main contributions of our work are outlined as follows.

1. The proposed system utilizes only glottis information to segment vocal folds in an unsupervised
manner. This approach addresses the scarcity of open-source vocal fold annotation data and reduces
the labor costs associated with manual vocal fold annotation.

2. We introduce a prompt engineering method to extract both bounding box and point prompts for SAM to
segment vocal folds. To our knowledge, this is the first exploration of SAM’s segmentation capabilities
on human larynx.

3. On the open-sourced public dataset (Fehling et al., 2020), our proposed system, trained solely on
glottis annotation data, achieves performance comparable to supervised methods trained directly on
vocal fold annotation data.

4. We extract potential useful metrics from the vocal fold masks using our prompting method, which
show abnormal signs of patients.

The following article is formed as follows. In Section[2] we introduce related works on both vocal folds
segmentation and SAM. In Section 3| we provide a comprehensive introduction of our system, including
laryngeal prompt engineering for SAM and vocal folds mask inference with SAM. Section 4| shows our
experimental settings and results. To further demonstrate the effectiveness of our system, parameter tuning
and ablation studies are also discussed in Section4] In Section[5] we discuss the limitation of our prompting
methods and include our future works. In the end, we summarize our paper in Section [6]
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2 RELATED WORKS
2.1 Vocal fold segmentation

In addition to glottis segmentation, the segmentation of vocal folds plays a crucial role in the clinical
diagnosis of laryngeal diseases. However, vocal fold segmentation is inherently more challenging than
glottis segmentation. While the glottis typically features well-defined and easily discernible boundaries,
vocal folds exhibit significant variability in shape, size, and color across individuals, along with complex and
less distinct boundaries. Despite its importance and difficulty, there are only a few existing works focusing
on vocal fold segmentation. Fehling et al. (2020) introduced a modified U-Net model called Convolutional
Long Short-Term Memory Network (CLSTM), which incorporates Long Short-Term Memory Networks
(LSTM) and Gated Recurrent Units (GRU) as inter-layers to propagate temporal information across the
network (Fehling et al., [2020). The authors also provided an open-source dataset containing annotations
for the glottis as well as the left and right vocal folds, which, to the best of our knowledge, is one of the
few publicly available datasets that include vocal fold labels. Their model achieved mean Dice coefficients
of 0.85, 0.91, and 0.90 for the glottis, right vocal fold, and left vocal fold, respectively, on their test set,
demonstrating the efficacy of supervised methods. However, several limitations still persist. First, the
annotation of masks for both the vocal folds and glottis requires manual input for each image. While
glottis labels can be generated with relative ease, the annotation of vocal fold masks is labor-intensive and
time-consuming. Furthermore, the robustness of the model remains unverified due to the limited quantity
of labeled data (13,000 images derived from 130 high-speed video recordings using similar laryngoscopes)
and the lack of additional public datasets. To address these challenges, this work seeks to develop methods
for vocal fold segmentation that do not rely on fully supervised learning models.

2.2 Segment anything model on medical images

The Segment Anything Model (SAM) is a recently introduced deep learning-based segmentation model
renowned for its strong generalization capabilities (Kirillov et al., 2023)). SAM exhibits remarkable potential
in zero-shot segmentation tasks, requiring only minimal input prompts such as bounding boxes, points,
text, or even no prompts at all. Given the increasing demand for medical image segmentation, several
studies have evaluated SAM’s performance across various types of medical images, including Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), and endoscopy. The most straightforward
approach involves directly applying the pre-trained SAM to different segmentation tasks, which has
demonstrated robust annotation capabilities in certain domains (Hu et al., 2023; Mohapatra et al., 2023).
However, SAM’s performance has been found to be suboptimal compared to traditional segmentation
models in specific contexts (Deng et al., 2023). Comparative analyses of different medical imaging
modalities suggest that SAM’s effectiveness is influenced by factors such as task complexity, image
dimensionality, target region size, and the contrast between the target and background (Deng et al., 2023
He et al., 2023)). Consequently, numerous researchers have focused on fine-tuning SAM for particular
segmentation tasks. For example, MedSAM is a SAM-based model fine-tuned using over 1 million image-
mask pairs spanning 10 modalities (Ma et al., 2024), resulting in significant improvements in universal
medical image segmentation. However, the substantial data requirements for effective fine-tuning, coupled
with the limited availability of open-source medical images, have led many researchers to explore prompt
engineering for the pre-trained SAM (Yu et al., 2023; [Huang et al., 2024a). This approach has also yielded
promising results in zero-shot image segmentation. Nevertheless, limited research has focused on the
human larynx, which motivates the application of a similar strategy for vocal fold segmentation. In this
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work, we aim to design effective prompts derived from glottis information to enable SAM to segment vocal
folds.

3 METHOD
3.1 Overview

As illustrated in Fig. [T} the system architecture comprises four stages. In Stage 1 (described in Section3.2)),
a glottis mask and a preliminary bounding box of the vocal folds are obtained through the inference of
two pre-trained models: U-Net (Ronneberger et al., 2015) and YOLO-v5 (Jocher et al., 2022)). In Stage 2
(described in Section[3.3)), a more accurate bounding box is derived by applying multiple computer vision
techniques, utilizing the glottis masks and the estimated bounding boxes generated in the previous stage.
Stage 3 (described in Section involves the extraction of points corresponding to the outer boundaries
of the vocal folds. Finally, in Stage 4 (described in Section [3.5)), the refined bounding box and the edge
points obtained in the preceding stages are provided as box and point prompts to the Segment Anything
Model (SAM) (Kirillov et al., [2023)), along with the mask generated in the previous iteration. The core
objective of the proposed method is to extract bounding boxes and points that effectively prompt SAM,
thereby facilitating high-quality segmentation of the vocal folds.

3.2 Glottis mask extraction

Previous works on glottis segmentation have predominantly employed supervised learning methods,
where a segmentation model is trained on manually labeled datasets. Researchers in (Gomez et al.,
2020) demonstrated that, with a basic U-Net model and sufficient glottis mask annotations, successful
segmentation of the glottis area can be achieved. In this work, we use a pre-trained U-Net model (Zhang
et al., 2024) using the same methodology described in (Gomez et al., 2020). The pre-trained model accepts
a laryngoscopic image as input and produces raw output values (logits) for each pixel. These logits are
subsequently converted into probabilities ranging from O to 1 through the application of the sigmoid
activation function. A threshold of 0.5 is then applied to generate a binarized mask image, labeling the
glottis region.

While the glottis area is relatively easier to annotate compared to the vocal folds, which has resulted
in fewer studies on vocal fold segmentation, we make a surprising discovery. By lowering the threshold
from 0.5 to a very small value, the glottis segmentation mask generated by the U-Net model includes a
rough segmentation mask of the vocal folds. As illustrated in Fig. [2| despite the presence of numerous
noisy points, the mask image contains a large white region near the glottis that corresponds to part of the
vocal fold area. This observation enables us to locate the region of the vocal folds more accurately.

3.3 Bounding box prompt extraction

As Fig. [3]illustrates, we first train a YOLO-v5 model on HSV images with a bounding box extracted a
few dozen pixels away from the glottis mask predicted by the U-Net model (Zhang et al.,|2024)). Therefore,
it is a rough estimation of the vocal fold area, which takes advantage of the physical structure of the human
larynx. However, since the training data provides only a rough estimation of the target region, the object
detection capability of the trained model is insufficient, leading to bad cases. Fig. 4 shows some of the
bad cases, including no bounding box, wrong bounding box, bounding box that is too small for the target
area, etc. In order to provide a more accurate bounding box, we also take advantage of the U-Net mask and
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apply some traditional computer vision methods to process the mask and extract the information of vocal
folds in it.

By observing the U-Net mask, we find that the white points in the mask image often correspond to the
areas with high contrast between light and dark in the original image. Therefore, we apply the Contrast-
Limited Adaptive Histogram Equalization (CLAHE) method to the image (Pizer et al.|[1987)). As Fig.[5]
shows, after processing the input image, the output mask contains more complete information of vocal
folds, though along with more noisy points. Thus, in the mask image obtained by the original image,
we only replace the part in the bounding box region obtained by the YOLO model with the mask image
obtained by the CLAHE processed image. In this way, we can avoid adding noise in non-target areas.

Then we find the middle point of the glottis mask and the connection line between its upper and lower
points. By moving and rotating, we make the connection line vertical and the middle point of the glottis
in the middle of the image. This processing can reduce the error caused by different shooting angles of
the camera, as the bounding box extracted on the rotated and moved image has a more precise estimation,
narrowing the non-target area in the image.

In order to extract the mask that represents the vocal fold area in the mask image, we use the following
methods. First, we apply the morphological closing method to the mask image to connect separate but
close contours (Salembier et al., 1998)). To identify the contour most relevant to the vocal fold region, we
incorporate the previously generated glottis mask into the mask image. The contour that encompasses the
integrated glottis mask is then selected as the extracted mask (Suzuki et al., [1985). Fig. [5¢]is an example of
the mask extracted after applying the methods.

Finally, we rotate and move the extracted mask using the same rotation and moving matrix and extract a
bounding box accordingly. The bounding box is then averaged with the one predicted by the YOLO-v5
model. This final bounding box serves as the box prompt provided to the SAM.

3.4 Point prompt extraction

To extract the point prompts, we first connect the top, middle, and bottom points of the glottis with a
vertical line, l4i04ti5, a8 shown in Fig. @ Next, we define three horizontal lines, ls5, 50, and [75, which
are orthogonal to the vertical line. Specifically, these three lines pass through the three quadrisection
points of the vertical line respectively. For each of these lines, we calculate the first derivative of the
gray values of the pixels along the line, and we apply a smoothing function to minimize the impact of
local extrema. Fig. [6b|illustrates an example of the smoothed values along [5q. To identify the left and
right boundary points of the vocal folds from the plot, we select the first local maximum to the left of
the glottis region (corresponding to the left boundary) and the first local minimum to the right of the
glottis region (corresponding to the right boundary), as indicated by the two red points in the example plot.
This approach works because the gray values increase rapidly from shadow to vocal fold surface on the
left boundary, and decrease sharply from surface to shadow on the right boundary. Fig. [6c|shows the six
extracted points along the three horizontal lines in blue, as well as the three glottis points in red. Together,
these nine points represent the extracted point prompts.

3.5 Inference with SAM

SAM is a prompt-based model that takes an image and prompts including boxes, points, texts, and even
rough masks as inputs (Kirillov et al., 2023)). As for the architecture, it is a transformer-based model
consisting of three main components: an MAE pre-trained Vision Transformer (ViT) based image encoder
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that encodes the input image into features, a prompt encoder integrating prompts provided by users, and a
mask decoder that generates a segmentation result by mapping the image embedding, prompt embeddings,
and an output token to a mask.

In this research, we utilize the original pre-trained SAM proposed by Kirillov et al. (Kirillov et al., 2023))
and provide the box and points prompts extracted in previous stages. In addition, inspired by studies on
the prompt engineering of the SAM and utilizing the feature of the model that receives a rough mask as
input, we try one or more iterations of SAM inference. The method can be explained as follows. In the first
iteration, we input a point prompt and obtain a rough mask (logits). In the following iterations, the inputs
are the point prompt and the logits. In the final iteration, we add a box prompt as the third input and obtain
the mask as the final output.

4 EXPERIMENTAL RESULTS
4.1 Datasets

We use two open-source laryngoscopic image datasets for different purposes in the evaluation. This study
(usage of existing databases) is approved by the Duke Kunshan University Institutional Review Board (IRB
No. 2024ML023).

4.1.1 Benchmark for Automatic Glottis Segmentation

The first is the Benchmark for Automatic Glottis Segmentation (BAGLS), a large dataset of endoscopic
high-speed video with 59250 frame-wise glottis annotations (Gomez et al., 2020). The frames are
extracted from 640 healthy and disordered larynx recordings that were recorded under varying
conditions (illumination, image resolution, endoscopy types, etc.). The ground truth glottis masks were
annotated by clinical experts. We use the same recipe as is described in (Gomez et al.,|2020) to train the
U-Net model for glottis segmentation, and we train the YOLO-v5 model for rough vocal folds bounding
box extraction.

4.1.2 Fehling’s Dataset

The second dataset is provided by Fehling et al. (2020), which contains 13000 frames extracted from 130
HSV recordings, 100 images each. The recordings cover both healthy and disordered cases, such as polyps,
carcinomas, and dysphonia. The ground truth masks are manually annotated and contain left and right
vocal folds and glottis labels. In our work, we adjust the parameters of our system on the training set and
test our performance on the test set, using the same dataset split setting described by |Fehling et al. (2020).

4.2 Model Efficiency Analysis

Table 2| summarizes the computational complexity, parameter count, and inference time of the main
components in our method. Notably, YOLO and U-Net demonstrate relatively low inference times (9.95
ms and 15.33 ms, respectively), making them efficient for feature extraction. While SAM involves higher
computational demands due to its extensive pre-trained capabilities, its integration with lightweight modules
ensures that the overall pipeline remains practical for real-time applications.

4.3 Segmentation metric

To compare with the work of [Fehling et al| (2020), we use the same metric called Dice
Coefficient (DC) (Dice, |1945) to measure the similarity between the ground truth and the segmentation
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result. The equation is written as follows.

_ 2|GT(z) N Seg(x)| + €

D) = T @) + Seg@) T ¢

(1

where GT(x) and Seg(x) represents the Ground Truth and the segmentation result respectively. The
€ = 2.2204 - 10716 is set to avoid the denominator being zero when there is no intersection due to the
possible false segmentation and the complete glottal closure.

4.4 Hyper-parameter tuning

We use the following ordered selection strategy to demonstrate the rationality of some methods in the
proposed system, and identify the best-performing parameters accordingly, using the training set. As
Table [I] illustrates, different thresholds of U-Net outputs for mask generation, the impact of CLAHE
processing, and various inference iterations for SAM are evaluated in the experiments. We first choose
the best-performing thresholds of the pre-trained U-Net model. The thresholds 1e-19 and le-20 reach the
best performance among all the thresholds with the powers of 10 ranging from —15 to —21. This indicates
the masks obtained under these thresholds contain the most proper information on vocal fold area for box
prompt extraction in the SAM inference stage. Next, a comparative experiment is conducted to prove the
effectiveness of the image pre-processing method, CLAHE. The result is consistent with our observation
that by applying the brightness contrast enhancement method to the input images, the U-Net model can
generate masks containing more information on the vocal fold region. Then we identify the best-performing
iteration number for SAM inference and the best threshold using the selected number. According to the
previous analysis, the best-performing parameters and methods of the system are YOLO-vS5 + U-Net (1e-20)
+ CLAHE + SAM (2 iterations), and the best Dice score is 0.8227, 0.7883, 0.7776 and 0.7537 for the entire
vocal folds, left and right one, and the glottis respectively.

After identifying the best-performing parameters of the system on the training set, using these parameters,
we compare the proposed model’s performance of the glottis area, vocal folds area, and left and right
vocal fold segmentation with the CLSTM model on the test set. As Table [3| shows, our system has a
Dice score of 0.9181 on the vocal fold region, which is very close to the supervised CLSTM model’s
performance, 0.9218. For the glottis segmentation, our supervised U-Net model reaches a higher Dice
score of 0.8548 than the CLSTM model. However, since we simply separate the entire vocal fold mask
into two halves based on the midline, the Dice score of each side of the vocal fold is relatively lower than
the supervised model. Overall, by comparing the Dice score of the completely supervised vocal folds and
glottis segmentation model, the result shows the effectiveness and potential of the proposed system based
on supervised learning of glottis segmentation, using a series of processing methods and applying the
powerful SAM to achieve unsupervised vocal fold segmentation. Fig. [7|clearly illustrates some examples of
our approach, displaying input laryngoscopic images with their corresponding ground truth and predicted
masks. In each mask, dark grey, light grey, and white regions represent the glottis, left and right vocal fold
masks respectively.

4.5 Ablation study on various prompting methods

To prove the effectiveness of the SAM prompt engineering method proposed in this work, we conducted
an ablation study using different SAM prompt conditions. Table 4] displays the segmentation performance
under these conditions. When only the extracted box prompts or the point prompts are provided, the average
Dice score of the vocal fold masks significantly drops to 0.5730 and 0.1862, respectively. For segmentation
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without any prompt, we utilize the ’segment anything” mode of SAM, which performs zero-shot mask
generation by taking only the input image. For each generated mask, the model also outputs an IOU score.
Accordingly, we select the mask with the highest IOU score as the final segmentation result in the condition
without any prompt, yielding an even lower Dice score. This comparison demonstrates that our prompt
engineering method, which combines both box and point prompts, leads to a significant performance
improvement.

4.6 Performance on Segment Anything Model 2

In the course of our research, the involved version of SAM was released (Ravi et al., 2024), which is
called SAM2. It introduces a unique memory bank and memory attention design, which together enable
robust video analysis. The SAM2 can propagate through sequential frames by using only one prompt
for the initial frame, subsequently tracking and segmenting the target object. Due to the structural and
prompting similarities between SAM and SAM2, we also evaluate the effectiveness of our proposed prompt
engineering method on SAM?2. Similar with the experiment on SAM, multiple experimental conditions
are conducted on the test set from Fehling et al. As shown in Table [5] we first leveraged SAM2’s video
propagation capability by prompting only the first frame. Under this condition, when prompted with the
proposed engineering method—first by providing the extracted points prompt and subsequently applying
the same points prompt alongside the obtained box prompt in the second iteration—the model achieved
an average Dice score of 0.9071 for the vocal fold mask. In comparison, using only bounding boxes or
the points prompt resulted in lower scores of 0.7560 and 0.8570, respectively. We then applied SAM2’s
”segment anything” mode without any prompts, and we obtain a substantially lower score. Since SAM?2
keeps its original functionality for users to provide prompts for each frame of the video, we use our proposed
prompts on every frame to test the performance. It turns out that, in conjunction with the propagation
function, the Dice score for the vocal fold mask further improved to 0.9092.

Comparison of the four prompting conditions for a single-frame prompt shows the efficacy of our prompt
engineering method. The table shows the performance gains of 15%, 5%, and 81% over box-prompt-only,
points-prompt-only, and no-prompt conditions, respectively. Though lower dice scores are achieved by
just using one of the proposed prompts on SAM?2, the segmentation performance has been significantly
improved comparing to using prompts on the original SAM. From Table 4] and Table[5] when using box
prompt only, the dice score for VF segmentation rises from 0.57 to 0.76. The dice score of using points
prompt increases dramatically from 0.19 to 0.86. The results suggest that SAM?2 has a stronger learning
ability on the target than the original SAM, and our proposed prompting methods works well with SAM?2’s
video propagation function.

When comparing the dice scores obtained by prompting each frame to those by prompting only the
first frame, the former yields a higher score. This result shows that our prompting methods can provide
additional information on the target that SAM?2 does not capture using its propagation function, further
showing the advantages of our proposed prompting methods. Moreover, we observed that the optimal
performance of SAM2 on the test data is slightly lower than SAM. This may be attributable to error
propagation within the segmentation of some intermediate frames.

Overall, our prompt engineering methods shows great potential on the open-sourced dataset, which can
effectively prompt SAM and SAM?2 to achieve accurate vocal cord segmentation, outperforming SAM?2’s
novel function that considers temporal features. We acknowledge SAM2’s impressive video analysis
capabilities, future works will further explore SAM2’s potential of only prompting a few or even the initial
frame for this task through fine-tuning and adjustments to the pre-trained model.
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4.7 Application Potentials

The use of vocal fold masks facilitates the extraction of more detailed metrics from laryngoscopic videos,
which is a significant advancement over the use of glottis masks alone. This section discusses new metrics
that could be integrated as additional features, assisting clinicians in a more comprehensive evaluation of
vocal fold function.

A well-documented correlation exists between the maximal separation of vocal folds and vocal fold
paralysis (Inagi et al., 1997)). To further this research, scholars have investigated laryngeal features that
measure vocal fold separation, both in direct and indirect manners. The Glottis Area Waveform (GAW)
and Anterior Glottic Angle Waveform (AGAW) are notable examples (Adamian et al., 2021; Wang et al.,
2021; DeVore et al., 2023; DeChance et al., 2024)). They are derived from measurements of the glottal area
and anterior laryngeal angle in successive video frames. Whilst these provide a general assessment of vocal
fold status, they lack the capability to inform on the functionality of individual vocal folds. The primary
limitation is their dependence on glottis masks, which are simpler to acquire than vocal fold masks due
to variable outlines and colors of the latter. Our methodology seeks to bridge the gap between the widely
available glottis masks and the challenging-to-detect vocal fold masks. Following a streamlined labeling
procedure adopted by Zhang et al. (2024), our complete labeling process is illustrated in Fig. 8| Initially,
point D at the bottom and point C, the centroid of the glottis mask, are identified and connected (refer to
Fig.[8a and Fig. [8b)). This line C'D hypothesizes the glottis midline, intersecting the glottis mask at point 7".
Along C' D, we locate n equidistant points between D and 1" (e.g., points C'1, C2, C3). Lastly, we compute
perpendiculars to C'D through these equidistant points, which intersect the vocal fold mask at coordinates
Li7j;Ri,j for: = 1,2,...,nandj = 1,2.

Vocal Fold Movement Waveform

Once the vocal folds are segmented and labeled, we can ascertain the distance of points on each vocal fold
from the estimated glottic midline. By averaging the lengths of segments L; 1C; and L; 2C;, we assess
the vocal folds’ deviation over time, thereby creating the vocal fold movement waveform. As depicted
on the left-hand side of Fig.[9] the vocal fold movements of the left and right folds are extracted for both
normative and atypical cases. These visualizations vividly demonstrate the phonation cycles of the vocal
folds, offering clinicians novel diagnostic perspectives.

Vocal Fold Width Waveform

The width of the vocal folds in each frame is determined by the gap between points L; 1 and L; o for the
left vocal fold, with an analogous process for the right vocal fold. This data synthesis results in the vocal
fold width waveform (presented on the right-hand side of Fig. [9). In this waveform analysis, frames devoid
of a glottal area, which complicates accurate vocal fold mask prediction, are excluded, given our method’s
substantial reliance on the glottis mask. A waveform comparison reveals greater width stability in patients
with functional dysphonia or paralysis, in contrast to the fluctuations captured by the vocal fold movement
waveform. These findings may be indicative of vocal fold conditions, providing clinicians with valuable
diagnostic information. Additionally, for the carcinoma case shown in Fig. [9k|and Fig. 0]} the non-periodic
nature of the vocal fold width waveform might reveal insights into its vocal fold irregularities.

5 DISCUSSION

Our system has achieved a high Dice coefficient on the test dataset of Fehling’s dataset, demonstrating
the potential of the SAM prompt engineering method. Nonetheless, it is important to recognize the
system’s limitations. Chiefly, the absence of publicly accessible annotated laryngoscopic image datasets
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has prevented extensive testing under variable conditions, such as different laryngoscope types or lighting
environments. Further, within the Fehling dataset, there are cases exhibiting low Dice scores. Upon review,
it is evident that our method’s dependence on segmented glottis masks presents challenges in the event of
glottis closure. Additionally, the segmentation performance of SAM deteriorates with poor lighting and
low-contrast images.

Future research will pursue the integration of our framework with SAM?2 for vocal fold segmentation in
laryngeal videos. We argue that for video-based inference, SAM?2 is better suited than the original SAM,
a detail expounded upon in Section [4.6] The incorporation of a memory bank and propagation function
in tandem with our initial prompts has yielded superior segmentation outcomes. Current methodology
involves straightforward frame-by-frame prompting while maintaining SAM?2’s underlying functionality.
Prospective enhancements to SAM2’s performance could be achieved through a novel teacher-student
model, entailing the fine-tuning of the pre-trained SAM2 with our specialized prompts on a more diversified
vocal fold dataset.

6 CONCLUSION

In this work, we developed an automatic laryngoscopic image segmentation system that leverages glottis
data for vocal fold segmentation using prompt engineering techniques tailored for the Segment Anything
Model (SAM). We initially discover an unexpected utility of low-threshold U-Net outputs in capturing
vocal fold information. Then, by using this information, we obtain the bounding box prompt through
brightness contrast enhancement and morphological closing with the coarse bounding box of the larynx
region generated by the YOLO-v5 model. In addition, we extract vocal fold boundary points as the point
prompt by identifying the local extrema of the first derivative of the gray-scale intensity along lines
intersecting the glottis. Experimental results demonstrate that our system achieves superior segmentation
performance on the vocal fold segmentation task, with results comparable to those of the supervised model.
In the end, we show the potential application of our proposed method. We introduce metrics extracted from
the vocal folds’ masks that are potentially useful to diagnosis, which cannot be derived from the glottis
masks alone.
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Figure 2. An example of two output masks generated by the pre-trained U-Net model. The image in the
middle is a glottis mask. The one on the right is a mask obtained by setting the threshold to be lower than
le-17.
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Figure 3. The workflow of the box prompt extraction stage.
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Figure 4. Illustration of some bad cases of the bounding box generated by the pre-trained YOLO-v5
model. For each image, the blue mask is the ground truth mask and the green bounding box is the output of
the pre-trained YOLO-v5 model. The below four figures show that the pre-trained YOLO-v5 model fails to
detect the glottis area.
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Figure 5a. Input image Figure Sc. Selected mask

Figure 5d. ori Figure Se. CLAHE+ori Figure 5f. Bbox

Figure 5. A group of images illustrating the outputs of different intermediate steps and the final bounding
box obtained: (a) the original input image, (d) the U-Net mask generated using the original image, (b) the
CLAHE processed image, (e) the combination of two mask images generated by the original image and the
processed image respectively, (c) the selected mask with rotation and moving, and (f) the final bounding
box.
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Figure 6. Figures illustrating the main steps in the point prompt extraction.
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Ground Truth Predicted Difference

Ground Truth Predicted

Ground Truth Predicted Difference

Figure 7. Examples that display the input image, ground truth mask, and predicted mask showing the
effectiveness and good performance of the system’s segmentation on laryngoscopic images.

Figure 8a. Step 1 Figure 8b. Step 2 Figure 8c. Step 3 Figure 8d. Step 4

Figure 8. The pipeline of metric computing on image #1149 from the Fehling’s dataset.
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Figure 9a. VFM on the normal case (video#1)
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Vocal Fold Width Waveform (feature 1)

® left VF's movement 1.00 o Left VF's width
© right VF's movement ww M ® Right VF's width
0.75 T e
Pooé ﬂ“, i
050 f |
0.25 \“
0.00
o 20 40 60 80 100 o 20 40 60 80 100

Figure 9c. VFM on the normal case (video#2)
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Figure 9d. VFW on the normal case (video#2)

Vocal Fold Width Waveform (feature 1)

@ left VF's movement
®  right VF's movement

. ® Left VF's width
® Right VF's width

0 20 40 60 80 100

Figure 9e. VFM on the normal case (video#3)
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Figure 9f. VFW on the normal case (video#3)
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Figure 9g. VFEM on the functional dysphonia
case (video#5)
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Figure 9h. VFW on the functional dysphonia
case (video#)5)
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Figure 9i. VEM on the paralysis case (video#8)
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Figure 9j. VFW on the paralysis case (video#8)
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Figure 9k. VFM on the carcinoma case (video#15) Figure 91. VFW on the carcinoma case (video#15)

Figure 9. Examples of the vocal fold’s movement and width waveform analysis on the normal cases of the
Fehling’s Dataset. VFM and VFW stand for Vocal Fold Movement and Vocal Fold Width respectively. We
only show the waveforms for the first equidistance points (feature 1), which are derived from the metrics
across (. For all the waveforms, we collect the points from a total number of 100 consecutive frames
from the dataset, forming a video with a length of 4 seconds for each case.
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Conditions DC
YOLO-v5 | U-Net (Thresholds) | CLAHE | SAM (Iterations) VF Left VF | Right VF | Glottis
le-15 0.6447 | 0.6179 0.6139
le-16 0.7340 | 0.7000 | 0.6993
le-17 0.7742 | 0.7374 0.7367
le-18 v 0.7981 | 0.7621 0.7594 | 0.7537
le-19 1 0.8033 | 0.7693 0.7651
le-20 0.8033 | 0.7697 0.7662
v le-21 0.7996 | 0.7668 0.7622
le-19 « 0.7752 | 0.7380 | 0.7382 0.7439
le-18 0.7791 | 0.7423 0.7420
le-19 ) 0.8205 | 0.7870 | 0.7743
v 0.8227 | 0.7883 0.7776 07537
1e-20 3 0.8223 | 0.7900 | 0.7753
4 0.8211 | 0.7901 0.7734

Table 1. Our proposed segmentation performance on the training set of the Fehling’s Dataset using
per-parameters. VF stands for vocal fold. CLAHE stands for the image processing method by

different hy
Pizer et al.|(1987).

Table 2. Model complexity, number of parameters, and inference time for different modules.

Model FLOPs (G) | Parameters (M) | Average Inference Time (ms)
YOLO (Object Detection) 2.52 7.01 9.95
U-Net (Image Segmentation) 109.32 31.04 15.33
SAM 2730 631.58 636.16
Models VF | Left VF | Right VF | Glottis
Our proposed unsupe‘rV1sed system with 0.9181 | 0.8930 | 08919 | 08548
the best-performing parameters
Supervised CLSTM system (Fehling et al.2020) | 0.9218 | 0.9087 | 0.8988 | 0.8502

Table 3. Segmentation performance on the test set of the Fehling’s Dataset. VF stands for vocal fold.

SAM Prompt Conditions VEF | Left VF | Right VF
 Our prompt engineering method 0.9181 | 0.8930 | 0.8919
(Points prompt+Box prompt+2 iterations)
Box prompt only 0.5730 | 0.5346 0.5607
Point prompt only 0.1862 | 0.1760 | 0.1856
Without any prompt 0.1104 | 0.1069 | 0.1023

Table 4. Segmentation performance under different SAM prompt conditions on the test set of the Fehling’s
Dataset. VF stands for vocal fold.
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SAM?2 Prompt Conditions VF | Left VF | Right VF
Prompt each frame with 0.9092 | 0.8826 | 0.8823
the proposed method
The proposed method 0.9071 | 0.8813 0.8787
Prompt the Box prompt only 0.7560 | 0.7329 | 0.7095
first frame only Point prompt only 0.8570 | 0.8385 0.8199
”Segment anything” mode | 0.0941 | 0.0678 0.0951

Table 5. Segmentation performance under different SAM?2 prompt conditions on the test Set of the
Fehling’s Dataset (Fehling et al., 2020). VF stands for vocal folds.
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