
An Automatic Laryngoscopic Image Segmentation System Based on SAM Prompt Engineering: From Glottis Annotation to Vocal Fold Segmentation

Yucong Zhang^{1,2,†}, Yuchen Song^{2,†}, Juan Liu^{1,3,*} and Ming Li^{1,2,*}

¹ School of Computer Science, Wuhan University, Wuhan, China

² Suzhou Municipal Key Laboratory of Multimodal Intelligent Systems, Digital Innovation Research Center, Duke Kunshan University, Kunshan, China

³ School of Artificial Intelligence, Wuhan University, Wuhan, China

[†] These authors have contributed equally to this work.

Correspondence*:

Liu Juan

liujuan@whu.edu.cn

Ming Li

ming.li369@dukekunshan.edu.cn

2 Number of words: 5005

3 Number of figures and tables: 13

4 ABSTRACT

5 The laryngeal high-speed video (HSV) is a commonly used method for diagnosing laryngeal
6 diseases. Among various approaches, the segmentation of glottis areas on laryngeal images
7 shows great potential in analyzing vocal fold vibration patterns and diagnosing vocal fold
8 disorder. However, few works have been done on vocal fold segmentation. In this study,
9 we present an innovative approach to automatic vocal fold segmentation using only the
10 glottis information. Our system designs prompt engineering techniques customized for the
11 Segment Anything Model (SAM), leveraging glottis data to enhance segmentation accuracy. By
12 combining vocal fold information extracted from U-Net masks—enhanced through brightness
13 contrast adjustment and morphological closing—with a coarse bounding box of the larynx
14 region generated by the YOLO-v5 model, we generate an effective bounding box prompt.
15 Additionally, we introduce a point prompt derived from the local extrema in the first derivative
16 of gray-scale intensity along glottis-intersecting lines, providing auxiliary information on the
17 vocal fold location. Experimental results show that our method that does not need labeled
18 vocal fold training data achieves comparable performance with the fully supervised method,
19 reaching a Dice Coefficient of 0.91. Exemplary features extracted on the segmented masks
20 are included to further show the effectiveness of our work. We release our codes at <https://github.com/yucongzh/Laryngoscopic-Image-Segmentation-Toolkit>.

22 **Keywords:** Medical Image Analysis, Laryngoscope, Prompt Engineering, Segment Anything Model, Vocal Fold Segmentation

1 INTRODUCTION

23 In today's society, communication is an important part of people's life and work (Rodero, 2018; Vieira et al.,
24 2020). Correctly producing voice signals is critical to transmitting information effectively and accurately in
25 verbal communication (Diehl and McDonald, 1956). The voice production process has several main steps,
26 but phonation is the most important step among all (Cataldo et al., 2013). Phonation happens when the
27 vocal folds in the larynx vibrate as air from the lungs passes through them (Gordon and Ladefoged, 2001),
28 so the observation and study of vocal folds vibration patterns are substantially helpful for the diagnosis of
29 phonation-related diseases. Healthy vocal folds are symmetrical and vibrate periodically when producing
30 sound. In contrast, the abnormality in the periodic vibration and the asymmetrical shape results in vocal
31 disorders (Herzel et al., 1994).

32 In clinical diagnosis, laryngeal imaging techniques are used for quantitative measurement and
33 interpretation of the vocal fold vibration (Hirose, 1988; Sung et al., 1999). State-of-the-art technology
34 is the laryngeal high-speed video endoscopy (HSV) that enables a real-time recording of the vocal fold
35 vibration (Lohscheller et al., 2007). In common practice, the diagnosis of vocal disorders is based on
36 doctors' subjective analysis of HSV recordings (Verikas et al., 2009). However, this subjective observation
37 and evaluation of vibration period, vocal fold symmetry, the degree of vocal fold closure time, and many
38 other features are often time-consuming, experience-based, and error-prone (Ghasemzadeh and Deliyski,
39 2022). To alleviate the limitations brought by subjective diagnosis, objective features are important for a
40 quantitative analysis of HSV recordings.

41 Therefore, many studies have focused on methods that can automatically extract features to assist
42 clinicians. Glottal area waveform (GAW) (Noordzij and Woo, 2000) is the most widely used one, which
43 shows the changes of the glottal area through time. This feature is able to provide useful information for
44 analyzing the periodic patterns of vocal fold oscillation and the condition of glottis closure. To obtain a better

45 GAW, it requires an accurate segmentation of the glottis area. Traditional methods, like thresholding (Yan
46 et al., 2006), watershed algorithms (Osma-Ruiz et al., 2008), and active contour models (Karakozoglu
47 et al., 2012), utilize physical features to segment the glottal area. Nevertheless, if the recording condition
48 changes, those methods that depend on physical features might not work well.

49 In recent years, deep supervised learning models, particularly those based on U-Net
50 architectures (Ronneberger et al., 2015; Huang et al., 2020; Xu et al., 2023; Li et al., 2024; Huang
51 et al., 2024b), have achieved notable success in medical image segmentation. While these models have been
52 extensively applied in areas such as lung CT image segmentation, there has been comparatively less research
53 on the segmentation of the human larynx. Most studies in this domain have focused on glottis segmentation
54 for quantitative analysis, with (Derdiman and Koc, 2021; Zhang et al., 2024) validating the effectiveness
55 of U-Net on glottis images, and (Lee et al., 2023) enhancing U-Net with a dual-attention mechanism to
56 improve segmentation accuracy. However, vocal fold segmentation remains an underexplored area due to
57 the variability in vocal fold shape, color, and size, and the indistinct boundaries that challenge both manual
58 annotation and automated segmentation. Although several open-source laryngoscopic datasets exist for
59 glottis annotation, almost none of them provide vocal fold annotations, with the exception of (Fehling et al.,
60 2020).

61 The scarcity of annotated data is a common challenge in medical image segmentation, exacerbated by
62 patient privacy concerns. Recent studies have explored the Segment Anything Model (SAM) (Kirillov
63 et al., 2023) for zero-shot image segmentation due to its ability to generalize across diverse tasks using
64 only generic prompts, eliminating the need for task-specific annotations during inference. SAM accepts
65 various prompts as inputs and generates corresponding segmentation masks. In this work, we aim to design
66 prompts that leverage glottis annotations as prior knowledge for SAM, exploring its potential for vocal fold
67 segmentation. The main contributions of our work are outlined as follows.

- 68 1. The proposed system utilizes only glottis information to segment vocal folds in an unsupervised
69 manner. This approach addresses the scarcity of open-source vocal fold annotation data and reduces
70 the labor costs associated with manual vocal fold annotation.
- 71 2. We introduce a prompt engineering method to extract both bounding box and point prompts for SAM to
72 segment vocal folds. To our knowledge, this is the first exploration of SAM’s segmentation capabilities
73 on human larynx.
- 74 3. On the open-sourced public dataset (Fehling et al., 2020), our proposed system, trained solely on
75 glottis annotation data, achieves performance comparable to supervised methods trained directly on
76 vocal fold annotation data.
- 77 4. We extract potential useful metrics from the vocal fold masks using our prompting method, which
78 show abnormal signs of patients.

79 The following article is formed as follows. In Section 2, we introduce related works on both vocal folds
80 segmentation and SAM. In Section 3, we provide a comprehensive introduction of our system, including
81 laryngeal prompt engineering for SAM and vocal folds mask inference with SAM. Section 4 shows our
82 experimental settings and results. To further demonstrate the effectiveness of our system, parameter tuning
83 and ablation studies are also discussed in Section 4. In Section 5, we discuss the limitation of our prompting
84 methods and include our future works. In the end, we summarize our paper in Section 6.

2 RELATED WORKS

85 2.1 Vocal fold segmentation

86 In addition to glottis segmentation, the segmentation of vocal folds plays a crucial role in the clinical
87 diagnosis of laryngeal diseases. However, vocal fold segmentation is inherently more challenging than
88 glottis segmentation. While the glottis typically features well-defined and easily discernible boundaries,
89 vocal folds exhibit significant variability in shape, size, and color across individuals, along with complex and
90 less distinct boundaries. Despite its importance and difficulty, there are only a few existing works focusing
91 on vocal fold segmentation. Fehling et al. (2020) introduced a modified U-Net model called Convolutional
92 Long Short-Term Memory Network (CLSTM), which incorporates Long Short-Term Memory Networks
93 (LSTM) and Gated Recurrent Units (GRU) as inter-layers to propagate temporal information across the
94 network (Fehling et al., 2020). The authors also provided an open-source dataset containing annotations
95 for the glottis as well as the left and right vocal folds, which, to the best of our knowledge, is one of the
96 few publicly available datasets that include vocal fold labels. Their model achieved mean Dice coefficients
97 of 0.85, 0.91, and 0.90 for the glottis, right vocal fold, and left vocal fold, respectively, on their test set,
98 demonstrating the efficacy of supervised methods. However, several limitations still persist. First, the
99 annotation of masks for both the vocal folds and glottis requires manual input for each image. While
100 glottis labels can be generated with relative ease, the annotation of vocal fold masks is labor-intensive and
101 time-consuming. Furthermore, the robustness of the model remains unverified due to the limited quantity
102 of labeled data (13,000 images derived from 130 high-speed video recordings using similar laryngoscopes)
103 and the lack of additional public datasets. To address these challenges, this work seeks to develop methods
104 for vocal fold segmentation that do not rely on fully supervised learning models.

105 2.2 Segment anything model on medical images

106 The Segment Anything Model (SAM) is a recently introduced deep learning-based segmentation model
107 renowned for its strong generalization capabilities (Kirillov et al., 2023). SAM exhibits remarkable potential
108 in zero-shot segmentation tasks, requiring only minimal input prompts such as bounding boxes, points,
109 text, or even no prompts at all. Given the increasing demand for medical image segmentation, several
110 studies have evaluated SAM's performance across various types of medical images, including Computed
111 Tomography (CT), Magnetic Resonance Imaging (MRI), and endoscopy. The most straightforward
112 approach involves directly applying the pre-trained SAM to different segmentation tasks, which has
113 demonstrated robust annotation capabilities in certain domains (Hu et al., 2023; Mohapatra et al., 2023).
114 However, SAM's performance has been found to be suboptimal compared to traditional segmentation
115 models in specific contexts (Deng et al., 2023). Comparative analyses of different medical imaging
116 modalities suggest that SAM's effectiveness is influenced by factors such as task complexity, image
117 dimensionality, target region size, and the contrast between the target and background (Deng et al., 2023;
118 He et al., 2023). Consequently, numerous researchers have focused on fine-tuning SAM for particular
119 segmentation tasks. For example, MedSAM is a SAM-based model fine-tuned using over 1 million image-
120 mask pairs spanning 10 modalities (Ma et al., 2024), resulting in significant improvements in universal
121 medical image segmentation. However, the substantial data requirements for effective fine-tuning, coupled
122 with the limited availability of open-source medical images, have led many researchers to explore prompt
123 engineering for the pre-trained SAM (Yu et al., 2023; Huang et al., 2024a). This approach has also yielded
124 promising results in zero-shot image segmentation. Nevertheless, limited research has focused on the
125 human larynx, which motivates the application of a similar strategy for vocal fold segmentation. In this

126 work, we aim to design effective prompts derived from glottis information to enable SAM to segment vocal
127 folds.

3 METHOD

128 3.1 Overview

129 As illustrated in Fig. 1, the system architecture comprises four stages. In Stage 1 (described in Section 3.2),
130 a glottis mask and a preliminary bounding box of the vocal folds are obtained through the inference of
131 two pre-trained models: U-Net (Ronneberger et al., 2015) and YOLO-v5 (Jocher et al., 2022). In Stage 2
132 (described in Section 3.3), a more accurate bounding box is derived by applying multiple computer vision
133 techniques, utilizing the glottis masks and the estimated bounding boxes generated in the previous stage.
134 Stage 3 (described in Section 3.4) involves the extraction of points corresponding to the outer boundaries
135 of the vocal folds. Finally, in Stage 4 (described in Section 3.5), the refined bounding box and the edge
136 points obtained in the preceding stages are provided as box and point prompts to the Segment Anything
137 Model (SAM) (Kirillov et al., 2023), along with the mask generated in the previous iteration. The core
138 objective of the proposed method is to extract bounding boxes and points that effectively prompt SAM,
139 thereby facilitating high-quality segmentation of the vocal folds.

140 3.2 Glottis mask extraction

141 Previous works on glottis segmentation have predominantly employed supervised learning methods,
142 where a segmentation model is trained on manually labeled datasets. Researchers in (Gómez et al.,
143 2020) demonstrated that, with a basic U-Net model and sufficient glottis mask annotations, successful
144 segmentation of the glottis area can be achieved. In this work, we use a pre-trained U-Net model (Zhang
145 et al., 2024) using the same methodology described in (Gómez et al., 2020). The pre-trained model accepts
146 a laryngoscopic image as input and produces raw output values (logits) for each pixel. These logits are
147 subsequently converted into probabilities ranging from 0 to 1 through the application of the sigmoid
148 activation function. A threshold of 0.5 is then applied to generate a binarized mask image, labeling the
149 glottis region.

150 While the glottis area is relatively easier to annotate compared to the vocal folds, which has resulted
151 in fewer studies on vocal fold segmentation, we make a surprising discovery. By lowering the threshold
152 from 0.5 to a very small value, the glottis segmentation mask generated by the U-Net model includes a
153 rough segmentation mask of the vocal folds. As illustrated in Fig. 2, despite the presence of numerous
154 noisy points, the mask image contains a large white region near the glottis that corresponds to part of the
155 vocal fold area. This observation enables us to locate the region of the vocal folds more accurately.

156 3.3 Bounding box prompt extraction

157 As Fig. 3 illustrates, we first train a YOLO-v5 model on HSV images with a bounding box extracted a
158 few dozen pixels away from the glottis mask predicted by the U-Net model (Zhang et al., 2024). Therefore,
159 it is a rough estimation of the vocal fold area, which takes advantage of the physical structure of the human
160 larynx. However, since the training data provides only a rough estimation of the target region, the object
161 detection capability of the trained model is insufficient, leading to bad cases. Fig. 4 shows some of the
162 bad cases, including no bounding box, wrong bounding box, bounding box that is too small for the target
163 area, etc. In order to provide a more accurate bounding box, we also take advantage of the U-Net mask and

164 apply some traditional computer vision methods to process the mask and extract the information of vocal
165 folds in it.

166 By observing the U-Net mask, we find that the white points in the mask image often correspond to the
167 areas with high contrast between light and dark in the original image. Therefore, we apply the Contrast-
168 Limited Adaptive Histogram Equalization (CLAHE) method to the image (Pizer et al., 1987). As Fig. 5
169 shows, after processing the input image, the output mask contains more complete information of vocal
170 folds, though along with more noisy points. Thus, in the mask image obtained by the original image,
171 we only replace the part in the bounding box region obtained by the YOLO model with the mask image
172 obtained by the CLAHE processed image. In this way, we can avoid adding noise in non-target areas.

173 Then we find the middle point of the glottis mask and the connection line between its upper and lower
174 points. By moving and rotating, we make the connection line vertical and the middle point of the glottis
175 in the middle of the image. This processing can reduce the error caused by different shooting angles of
176 the camera, as the bounding box extracted on the rotated and moved image has a more precise estimation,
177 narrowing the non-target area in the image.

178 In order to extract the mask that represents the vocal fold area in the mask image, we use the following
179 methods. First, we apply the morphological closing method to the mask image to connect separate but
180 close contours (Salember et al., 1998). To identify the contour most relevant to the vocal fold region, we
181 incorporate the previously generated glottis mask into the mask image. The contour that encompasses the
182 integrated glottis mask is then selected as the extracted mask (Suzuki et al., 1985). Fig. 5c is an example of
183 the mask extracted after applying the methods.

184 Finally, we rotate and move the extracted mask using the same rotation and moving matrix and extract a
185 bounding box accordingly. The bounding box is then averaged with the one predicted by the YOLO-v5
186 model. This final bounding box serves as the box prompt provided to the SAM.

187 **3.4 Point prompt extraction**

188 To extract the point prompts, we first connect the top, middle, and bottom points of the glottis with a
189 vertical line, $l_{glottis}$, as shown in Fig. 6a. Next, we define three horizontal lines, l_{25} , l_{50} , and l_{75} , which
190 are orthogonal to the vertical line. Specifically, these three lines pass through the three quadrisection
191 points of the vertical line respectively. For each of these lines, we calculate the first derivative of the
192 gray values of the pixels along the line, and we apply a smoothing function to minimize the impact of
193 local extrema. Fig. 6b illustrates an example of the smoothed values along l_{50} . To identify the left and
194 right boundary points of the vocal folds from the plot, we select the first local maximum to the left of
195 the glottis region (corresponding to the left boundary) and the first local minimum to the right of the
196 glottis region (corresponding to the right boundary), as indicated by the two red points in the example plot.
197 This approach works because the gray values increase rapidly from shadow to vocal fold surface on the
198 left boundary, and decrease sharply from surface to shadow on the right boundary. Fig. 6c shows the six
199 extracted points along the three horizontal lines in blue, as well as the three glottis points in red. Together,
200 these nine points represent the extracted point prompts.

201 **3.5 Inference with SAM**

202 SAM is a prompt-based model that takes an image and prompts including boxes, points, texts, and even
203 rough masks as inputs (Kirillov et al., 2023). As for the architecture, it is a transformer-based model
204 consisting of three main components: an MAE pre-trained Vision Transformer (ViT) based image encoder

205 that encodes the input image into features, a prompt encoder integrating prompts provided by users, and a
206 mask decoder that generates a segmentation result by mapping the image embedding, prompt embeddings,
207 and an output token to a mask.

208 In this research, we utilize the original pre-trained SAM proposed by Kirillov et al. (Kirillov et al., 2023)
209 and provide the box and points prompts extracted in previous stages. In addition, inspired by studies on
210 the prompt engineering of the SAM and utilizing the feature of the model that receives a rough mask as
211 input, we try one or more iterations of SAM inference. The method can be explained as follows. In the first
212 iteration, we input a point prompt and obtain a rough mask (logits). In the following iterations, the inputs
213 are the point prompt and the logits. In the final iteration, we add a box prompt as the third input and obtain
214 the mask as the final output.

4 EXPERIMENTAL RESULTS

215 4.1 Datasets

216 We use two open-source laryngoscopic image datasets for different purposes in the evaluation. This study
217 (usage of existing databases) is approved by the Duke Kunshan University Institutional Review Board (IRB
218 No. 2024ML023).

219 4.1.1 Benchmark for Automatic Glottis Segmentation

220 The first is the Benchmark for Automatic Glottis Segmentation (BAGLS), a large dataset of endoscopic
221 high-speed video with 59250 frame-wise glottis annotations (Gómez et al., 2020). The frames are
222 extracted from 640 healthy and disordered larynx recordings that were recorded under varying
223 conditions (illumination, image resolution, endoscopy types, etc.). The ground truth glottis masks were
224 annotated by clinical experts. We use the same recipe as is described in (Gómez et al., 2020) to train the
225 U-Net model for glottis segmentation, and we train the YOLO-v5 model for rough vocal folds bounding
226 box extraction.

227 4.1.2 Fehling's Dataset

228 The second dataset is provided by Fehling et al. (2020), which contains 13000 frames extracted from 130
229 HSV recordings, 100 images each. The recordings cover both healthy and disordered cases, such as polyps,
230 carcinomas, and dysphonia. The ground truth masks are manually annotated and contain left and right
231 vocal folds and glottis labels. In our work, we adjust the parameters of our system on the training set and
232 test our performance on the test set, using the same dataset split setting described by Fehling et al. (2020).

233 4.2 Model Efficiency Analysis

234 Table 2 summarizes the computational complexity, parameter count, and inference time of the main
235 components in our method. Notably, YOLO and U-Net demonstrate relatively low inference times (9.95
236 ms and 15.33 ms, respectively), making them efficient for feature extraction. While SAM involves higher
237 computational demands due to its extensive pre-trained capabilities, its integration with lightweight modules
238 ensures that the overall pipeline remains practical for real-time applications.

239 4.3 Segmentation metric

240 To compare with the work of Fehling et al. (2020), we use the same metric called Dice
241 Coefficient (DC) (Dice, 1945) to measure the similarity between the ground truth and the segmentation

242 result. The equation is written as follows.

$$DC(x) = \frac{2|GT(x) \cap Seg(x)| + \epsilon}{|GT(x)| + |Seg(x)| + \epsilon}, \quad (1)$$

243 where $GT(x)$ and $Seg(x)$ represents the Ground Truth and the segmentation result respectively. The
244 $\epsilon = 2.2204 \cdot 10^{-16}$ is set to avoid the denominator being zero when there is no intersection due to the
245 possible false segmentation and the complete glottal closure.

246 4.4 Hyper-parameter tuning

247 We use the following ordered selection strategy to demonstrate the rationality of some methods in the
248 proposed system, and identify the best-performing parameters accordingly, using the training set. As
249 Table 1 illustrates, different thresholds of U-Net outputs for mask generation, the impact of CLAHE
250 processing, and various inference iterations for SAM are evaluated in the experiments. We first choose
251 the best-performing thresholds of the pre-trained U-Net model. The thresholds 1e-19 and 1e-20 reach the
252 best performance among all the thresholds with the powers of 10 ranging from -15 to -21 . This indicates
253 the masks obtained under these thresholds contain the most proper information on vocal fold area for box
254 prompt extraction in the SAM inference stage. Next, a comparative experiment is conducted to prove the
255 effectiveness of the image pre-processing method, CLAHE. The result is consistent with our observation
256 that by applying the brightness contrast enhancement method to the input images, the U-Net model can
257 generate masks containing more information on the vocal fold region. Then we identify the best-performing
258 iteration number for SAM inference and the best threshold using the selected number. According to the
259 previous analysis, the best-performing parameters and methods of the system are YOLO-v5 + U-Net (1e-20)
260 + CLAHE + SAM (2 iterations), and the best Dice score is 0.8227, 0.7883, 0.7776 and 0.7537 for the entire
261 vocal folds, left and right one, and the glottis respectively.

262 After identifying the best-performing parameters of the system on the training set, using these parameters,
263 we compare the proposed model's performance of the glottis area, vocal folds area, and left and right
264 vocal fold segmentation with the CLSTM model on the test set. As Table 3 shows, our system has a
265 Dice score of 0.9181 on the vocal fold region, which is very close to the supervised CLSTM model's
266 performance, 0.9218. For the glottis segmentation, our supervised U-Net model reaches a higher Dice
267 score of 0.8548 than the CLSTM model. However, since we simply separate the entire vocal fold mask
268 into two halves based on the midline, the Dice score of each side of the vocal fold is relatively lower than
269 the supervised model. Overall, by comparing the Dice score of the completely supervised vocal folds and
270 glottis segmentation model, the result shows the effectiveness and potential of the proposed system based
271 on supervised learning of glottis segmentation, using a series of processing methods and applying the
272 powerful SAM to achieve unsupervised vocal fold segmentation. Fig. 7 clearly illustrates some examples of
273 our approach, displaying input laryngoscopic images with their corresponding ground truth and predicted
274 masks. In each mask, dark grey, light grey, and white regions represent the glottis, left and right vocal fold
275 masks respectively.

276 4.5 Ablation study on various prompting methods

277 To prove the effectiveness of the SAM prompt engineering method proposed in this work, we conducted
278 an ablation study using different SAM prompt conditions. Table 4 displays the segmentation performance
279 under these conditions. When only the extracted box prompts or the point prompts are provided, the average
280 Dice score of the vocal fold masks significantly drops to 0.5730 and 0.1862, respectively. For segmentation

281 without any prompt, we utilize the "segment anything" mode of SAM, which performs zero-shot mask
282 generation by taking only the input image. For each generated mask, the model also outputs an IOU score.
283 Accordingly, we select the mask with the highest IOU score as the final segmentation result in the condition
284 without any prompt, yielding an even lower Dice score. This comparison demonstrates that our prompt
285 engineering method, which combines both box and point prompts, leads to a significant performance
286 improvement.

287 **4.6 Performance on Segment Anything Model 2**

288 In the course of our research, the involved version of SAM was released (Ravi et al., 2024), which is
289 called SAM2. It introduces a unique memory bank and memory attention design, which together enable
290 robust video analysis. The SAM2 can propagate through sequential frames by using only one prompt
291 for the initial frame, subsequently tracking and segmenting the target object. Due to the structural and
292 prompting similarities between SAM and SAM2, we also evaluate the effectiveness of our proposed prompt
293 engineering method on SAM2. Similar with the experiment on SAM, multiple experimental conditions
294 are conducted on the test set from Fehling et al. As shown in Table 5, we first leveraged SAM2's video
295 propagation capability by prompting only the first frame. Under this condition, when prompted with the
296 proposed engineering method—first by providing the extracted points prompt and subsequently applying
297 the same points prompt alongside the obtained box prompt in the second iteration—the model achieved
298 an average Dice score of 0.9071 for the vocal fold mask. In comparison, using only bounding boxes or
299 the points prompt resulted in lower scores of 0.7560 and 0.8570, respectively. We then applied SAM2's
300 "segment anything" mode without any prompts, and we obtain a substantially lower score. Since SAM2
301 keeps its original functionality for users to provide prompts for each frame of the video, we use our proposed
302 prompts on every frame to test the performance. It turns out that, in conjunction with the propagation
303 function, the Dice score for the vocal fold mask further improved to 0.9092.

304 Comparison of the four prompting conditions for a single-frame prompt shows the efficacy of our prompt
305 engineering method. The table shows the performance gains of 15%, 5%, and 81% over box-prompt-only,
306 points-prompt-only, and no-prompt conditions, respectively. Though lower dice scores are achieved by
307 just using one of the proposed prompts on SAM2, the segmentation performance has been significantly
308 improved comparing to using prompts on the original SAM. From Table 4 and Table 5, when using box
309 prompt only, the dice score for VF segmentation rises from 0.57 to 0.76. The dice score of using points
310 prompt increases dramatically from 0.19 to 0.86. The results suggest that SAM2 has a stronger learning
311 ability on the target than the original SAM, and our proposed prompting methods works well with SAM2's
312 video propagation function.

313 When comparing the dice scores obtained by prompting each frame to those by prompting only the
314 first frame, the former yields a higher score. This result shows that our prompting methods can provide
315 additional information on the target that SAM2 does not capture using its propagation function, further
316 showing the advantages of our proposed prompting methods. Moreover, we observed that the optimal
317 performance of SAM2 on the test data is slightly lower than SAM. This may be attributable to error
318 propagation within the segmentation of some intermediate frames.

319 Overall, our prompt engineering methods shows great potential on the open-sourced dataset, which can
320 effectively prompt SAM and SAM2 to achieve accurate vocal cord segmentation, outperforming SAM2's
321 novel function that considers temporal features. We acknowledge SAM2's impressive video analysis
322 capabilities, future works will further explore SAM2's potential of only prompting a few or even the initial
323 frame for this task through fine-tuning and adjustments to the pre-trained model.

324 **4.7 Application Potentials**

325 The use of vocal fold masks facilitates the extraction of more detailed metrics from laryngoscopic videos,
326 which is a significant advancement over the use of glottis masks alone. This section discusses new metrics
327 that could be integrated as additional features, assisting clinicians in a more comprehensive evaluation of
328 vocal fold function.

329 A well-documented correlation exists between the maximal separation of vocal folds and vocal fold
330 paralysis (Inagi et al., 1997). To further this research, scholars have investigated laryngeal features that
331 measure vocal fold separation, both in direct and indirect manners. The Glottis Area Waveform (GAW)
332 and Anterior Glottic Angle Waveform (AGAW) are notable examples (Adamian et al., 2021; Wang et al.,
333 2021; DeVore et al., 2023; DeChance et al., 2024). They are derived from measurements of the glottal area
334 and anterior laryngeal angle in successive video frames. Whilst these provide a general assessment of vocal
335 fold status, they lack the capability to inform on the functionality of individual vocal folds. The primary
336 limitation is their dependence on glottis masks, which are simpler to acquire than vocal fold masks due
337 to variable outlines and colors of the latter. Our methodology seeks to bridge the gap between the widely
338 available glottis masks and the challenging-to-detect vocal fold masks. Following a streamlined labeling
339 procedure adopted by Zhang et al. (2024), our complete labeling process is illustrated in Fig. 8. Initially,
340 point D at the bottom and point C , the centroid of the glottis mask, are identified and connected (refer to
341 Fig. 8a and Fig. 8b). This line CD hypothesizes the glottis midline, intersecting the glottis mask at point T .
342 Along CD , we locate n equidistant points between D and T (e.g., points C_1, C_2, C_3). Lastly, we compute
343 perpendiculars to CD through these equidistant points, which intersect the vocal fold mask at coordinates
344 $L_{i,j}, R_{i,j}$ for $i = 1, 2, \dots, n$ and $j = 1, 2$.

345 **Vocal Fold Movement Waveform**

346 Once the vocal folds are segmented and labeled, we can ascertain the distance of points on each vocal fold
347 from the estimated glottic midline. By averaging the lengths of segments $L_{i,1}C_i$ and $L_{i,2}C_i$, we assess
348 the vocal folds' deviation over time, thereby creating the vocal fold movement waveform. As depicted
349 on the left-hand side of Fig. 9, the vocal fold movements of the left and right folds are extracted for both
350 normative and atypical cases. These visualizations vividly demonstrate the phonation cycles of the vocal
351 folds, offering clinicians novel diagnostic perspectives.

352 **Vocal Fold Width Waveform**

353 The width of the vocal folds in each frame is determined by the gap between points $L_{i,1}$ and $L_{i,2}$ for the
354 left vocal fold, with an analogous process for the right vocal fold. This data synthesis results in the vocal
355 fold width waveform (presented on the right-hand side of Fig. 9). In this waveform analysis, frames devoid
356 of a glottal area, which complicates accurate vocal fold mask prediction, are excluded, given our method's
357 substantial reliance on the glottis mask. A waveform comparison reveals greater width stability in patients
358 with functional dysphonia or paralysis, in contrast to the fluctuations captured by the vocal fold movement
359 waveform. These findings may be indicative of vocal fold conditions, providing clinicians with valuable
360 diagnostic information. Additionally, for the carcinoma case shown in Fig. 9k and Fig. 9l, the non-periodic
361 nature of the vocal fold width waveform might reveal insights into its vocal fold irregularities.

5 DISCUSSION

362 Our system has achieved a high Dice coefficient on the test dataset of Fehling's dataset, demonstrating
363 the potential of the SAM prompt engineering method. Nonetheless, it is important to recognize the
364 system's limitations. Chiefly, the absence of publicly accessible annotated laryngoscopic image datasets

365 has prevented extensive testing under variable conditions, such as different laryngoscope types or lighting
366 environments. Further, within the Fehling dataset, there are cases exhibiting low Dice scores. Upon review,
367 it is evident that our method's dependence on segmented glottis masks presents challenges in the event of
368 glottis closure. Additionally, the segmentation performance of SAM deteriorates with poor lighting and
369 low-contrast images.

370 Future research will pursue the integration of our framework with SAM2 for vocal fold segmentation in
371 laryngeal videos. We argue that for video-based inference, SAM2 is better suited than the original SAM,
372 a detail expounded upon in Section 4.6. The incorporation of a memory bank and propagation function
373 in tandem with our initial prompts has yielded superior segmentation outcomes. Current methodology
374 involves straightforward frame-by-frame prompting while maintaining SAM2's underlying functionality.
375 Prospective enhancements to SAM2's performance could be achieved through a novel teacher-student
376 model, entailing the fine-tuning of the pre-trained SAM2 with our specialized prompts on a more diversified
377 vocal fold dataset.

6 CONCLUSION

378 In this work, we developed an automatic laryngoscopic image segmentation system that leverages glottis
379 data for vocal fold segmentation using prompt engineering techniques tailored for the Segment Anything
380 Model (SAM). We initially discover an unexpected utility of low-threshold U-Net outputs in capturing
381 vocal fold information. Then, by using this information, we obtain the bounding box prompt through
382 brightness contrast enhancement and morphological closing with the coarse bounding box of the larynx
383 region generated by the YOLO-v5 model. In addition, we extract vocal fold boundary points as the point
384 prompt by identifying the local extrema of the first derivative of the gray-scale intensity along lines
385 intersecting the glottis. Experimental results demonstrate that our system achieves superior segmentation
386 performance on the vocal fold segmentation task, with results comparable to those of the supervised model.
387 In the end, we show the potential application of our proposed method. We introduce metrics extracted from
388 the vocal folds' masks that are potentially useful to diagnosis, which cannot be derived from the glottis
389 masks alone.

DATA AVAILABILITY STATEMENT

390 The data used in this research are all open-sourced.

ETHICS STATEMENT

391 The studies involving humans used data contained in a public dataset. The studies were conducted in
392 accordance with the local legislation and institutional requirements. The data was generated in another
393 study for which ethics approval and consent had been previously obtained.

AUTHOR CONTRIBUTIONS

394 Yucong Zhang: Writing – original draft, Software, Methodology, Data curation, Visualization, Formal
395 analysis, Conceptualization. Yuchen Song: Writing – original draft, Software, Methodology, Visualization,
396 Formal analysis. Juan Liu: Writing - review and editing, Validation, Supervision. Ming Li: Writing –
397 review and editing, Validation, Supervision, Funding acquisition, Conceptualization.

FUNDING

398 This research is funded by the DKU foundation project "Interdisciplinary Signal Processing Technologies"
399 and the DKU Summer Research Scholars (SRS) Program.

CONFLICT OF INTEREST

400 The authors declare that the research was conducted in the absence of any commercial or financial
401 relationships that could be construed as a potential conflict of interest.

ACKNOWLEDGEMENT

402 Many thanks for the computational resource provided by the Advanced Computing East China Sub-Center.

REFERENCES

403 Adamian, N., Naunheim, M. R., and Jowett, N. (2021). An open-source computer vision tool for automated
404 vocal fold tracking from videoendoscopy. *The Laryngoscope* 131, E219–E225. doi:10.1002/lary.28669

405 Cataldo, E., Soize, C., and Sampaio, R. (2013). Uncertainty quantification of voice signal production
406 mechanical model and experimental updating. *Mechanical Systems and Signal Processing* 40, 718–726.
407 doi:10.1016/j.ymssp.2013.06.036

408 DeChance, D., Frank, E., Dehom, S., Watson, W., Simmons, E., Krishna, P. D., et al. (2024). Clinical and
409 anatomical variation during assessment of maximum glottic angle. *The Laryngoscope* 134, 2793–2798.
410 doi:10.1002/lary.31245

411 Deng, R., Cui, C., Liu, Q., Yao, T., Remedios, L. W., Bao, S., et al. (2023). Segment anything model (sam)
412 for digital pathology: Assess zero-shot segmentation on whole slide imaging. *Medical Imaging with
413 Deep Learning (MIDL)* doi:10.2352/EI.2025.37.14.COIMG-132

414 Derdiman, Y. S. and Koc, T. (2021). Deep learning model development with u-net architecture for
415 glottis segmentation. In *Proceeding of 2021 29th Signal Processing and Communications Applications
416 Conference (SIU)*. 1–4. doi:10.1109/SIU53274.2021.9477843

417 DeVore, E. K., Adamian, N., Jowett, N., Wang, T., Song, P., Franco, R., et al. (2023). Predictive outcomes
418 of deep learning measurement of the anterior glottic angle in bilateral vocal fold immobility. *The
419 Laryngoscope* 133, 2285–2291. doi:10.1002/lary.30473

420 Dice, L. R. (1945). Measures of the amount of ecologic association between species. *Ecology* 26, 297–302.
421 doi:10.2307/1932409

422 Diehl, C. F. and McDonald, E. T. (1956). Effect of voice quality on communication. *Journal of Speech and
423 Hearing Disorders* 21, 233–237. doi:doi.org/10.1044/jshd.2102.233

424 Fehling, M. K., Grosch, F., Schuster, M. E., Schick, B., and Lohscheller, J. (2020). Fully automatic
425 segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep
426 convolutional lstm network. *Plos one* 15, e0227791. doi:10.1371/journal.pone.0227791

427 Ghasemzadeh, H. and Deliyski, D. D. (2022). Non-linear image distortions in flexible fiberoptic endoscopes
428 and their effects on calibrated horizontal measurements using high-speed videoendoscopy. *Journal of
429 Voice* 36, 755–769. doi:10.1016/j.jvoice.2020.08.029

430 Gómez, P., Kist, A. M., Schlegel, P., Berry, D. A., Chhetri, D. K., Dürr, S., et al. (2020). Bagls, a
431 multihospital benchmark for automatic glottis segmentation. *Scientific data* 7, 186. doi:10.1038/
432 s41597-020-0526-3

433 Gordon, M. and Ladefoged, P. (2001). Phonation types: a cross-linguistic overview. *Journal of Phonetics*
434 29, 383–406. doi:doi.org/10.1006/jpho.2001.0147

435 He, S., Bao, R., Li, J., Stout, J., Bjornerud, A., Grant, P. E., et al. (2023). Computer-vision
436 benchmark segment-anything model (sam) in medical images: Accuracy in 12 datasets. *arXiv preprint*
437 *arXiv:2304.09324*

438 Herzel, H., Berry, D., Titze, I. R., and Saleh, M. (1994). Analysis of vocal disorders with methods
439 from nonlinear dynamics. *Journal of Speech, Language, and Hearing Research* 37, 1008–1019.
440 doi:0.1044/jshr.3705.1008

441 Hirose, H. (1988). High-speed digital imaging of vocal fold vibration. *Acta Oto-Laryngologica* 105,
442 151–153. doi:10.3109/00016488809125120

443 Hu, C., Xia, T., Ju, S., and Li, X. (2023). When sam meets medical images: An investigation of segment
444 anything model (sam) on multi-phase liver tumor segmentation. *arXiv preprint arXiv:2304.08506*

445 Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y., et al. (2020). Unet 3+: A full-scale connected
446 unet for medical image segmentation. In *Proceeding of IEEE international conference on acoustics,
447 speech and signal processing (ICASSP)*. 1055–1059. doi:10.1109/ICASSP40776.2020.9053405

448 Huang, J., Jiang, K., Zhang, J., Qiu, H., Lu, L., Lu, S., et al. (2024a). Learning to prompt segment anything
449 models. *arXiv preprint arXiv:2401.04651*

450 Huang, L., Miron, A., Hone, K., and Li, Y. (2024b). Segmenting medical images: From unet to res-unet
451 and nnunet. In *Proceeding of IEEE 37th International Symposium on Computer-Based Medical Systems
452 (CBMS)*. 483–489. doi:10.1109/CBMS61543.2024.000086

453 Inagi, K., Khidr, A. A., Ford, C. N., Bless, D. M., and Heisey, D. M. (1997). Correlation between vocal
454 functions and glottal measurements in patients with unilateral vocal fold paralysis. *The Laryngoscope*
455 107, 782–791. doi:10.1097/00005537-199706000-00012

456 [Dataset] Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., NanoCode012, Kwon, Y., et al. (2022).
457 ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation. doi:10.5281/zenodo.7347926

458 Karakozoglou, S.-Z., Henrich, N., d’Alessandro, C., and Stylianou, Y. (2012). Automatic glottal
459 segmentation using local-based active contours and application to glottovibrography. *Speech
460 Communication* 54, 641–654. doi:10.1016/j.specom.2011.07.010

461 Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., et al. (2023). Segment anything. In
462 *Proceedings of the IEEE/CVF International Conference on Computer Vision*. 4015–4026

463 Lee, S.-H., Ni, J.-C., Shen, Y.-C., Ku, H.-C., Yang, C.-S., Huang, K.-W., et al. (2023). Improved u-net
464 based on dual attention mechanism for glottis segmentation and dysphagia auxiliary diagnosis. In
465 *Proceeding of Asian Conference on Intelligent Information and Database Systems*. 234–243. doi:10.
466 1007/978-3-031-42430-4_19

467 Li, H., Zhai, D.-H., and Xia, Y. (2024). Erdunet: An efficient residual double-coding unet for medical
468 image segmentation. *IEEE Transactions on Circuits and Systems for Video Technology* 34, 2083–2096.
469 doi:10.1109/TCSVT.2023.3300846

470 Lohscheller, J., Toy, H., Rosanowski, F., Eysholdt, U., and Döllinger, M. (2007). Clinically evaluated
471 procedure for the reconstruction of vocal fold vibrations from endoscopic digital high-speed videos.
472 *Medical Image Analysis* 11, 400–413. doi:10.1016/j.media.2007.04.005

473 Ma, J., He, Y., Li, F., Han, L., You, C., and Wang, B. (2024). Segment anything in medical images. *Nature
474 Communications* 15, 654. doi:10.1038/s41467-024-44824-z

475 Mohapatra, S., Gosai, A., and Schlaug, G. (2023). Sam vs bet: A comparative study for brain extraction
476 and segmentation of magnetic resonance images using deep learning. *arXiv preprint arXiv:2304.04738*

477 Noordzij, J. P. and Woo, P. (2000). Glottal area waveform analysis of benign vocal fold lesions
478 before and after surgery. *Annals of Otology, Rhinology & Laryngology* 109, 441–446. doi:10.1177/
479 000348940010900501

480 Osma-Ruiz, V., Godino-Llorente, J. I., Sáenz-Lechón, N., and Fraile, R. (2008). Segmentation of the
481 glottal space from laryngeal images using the watershed transform. *Computerized Medical Imaging and*
482 *Graphics* 32, 193–201. doi:10.1016/j.compmedimag.2007.12.003

483 Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., et al. (1987). Adaptive
484 histogram equalization and its variations. *Computer vision, graphics, and image processing* 39, 355–368

485 Ravi, N., Gabeur, V., Hu, Y.-T., Hu, R., Ryali, C., Ma, T., et al. (2024). Sam 2: Segment anything in images
486 and videos. *arXiv preprint arXiv:2408.00714*

487 Rodero, E. (2018). The growing importance of the voice and sound in communication in the digital age.
488 the leading role of orality. *AC/E Digital culture annual Report. Digital trends in culture. Focus: reader*
489 *in the digital age*, 74–87

490 Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image
491 segmentation. In *Proceeding of the 18th International Conference on Medical Image Computing and*
492 *Computer-Assisted Intervention part III 18*. 234–241. doi:10.1007/978-3-319-24574-4_28

493 Salembier, P., Oliveras, A., and Garrido, L. (1998). Antiextensive connected operators for image and
494 sequence processing. *IEEE Transactions on Image Processing* 7, 555–570. doi:10.1109/83.663500

495 Sung, M.-W., Kim, K. H., Koh, T.-Y., Kwon, T.-Y., Mo, J.-H., Choi, S.-H., et al. (1999).
496 Videostrobokymography: a new method for the quantitative analysis of vocal fold vibration. *The*
497 *Laryngoscope* 109, 1859–1863. doi:10.1097/00005537-199911000-00027

498 Suzuki, S. et al. (1985). Topological structural analysis of digitized binary images by border following.
499 *Computer Vision, Graphics, and Image Processing* 30, 32–46

500 Verikas, A., Uloza, V., Bacauskiene, M., Gelzinis, A., and Kelertas, E. (2009). Advances in
501 laryngeal imaging. *European Archives of Oto-rhino-laryngology* 266, 1509–1520. doi:10.1007/
502 s00405-009-1050-4

503 Vieira, V., Coelho, R., and de Assis, F. M. (2020). Hilbert–huang–hurst-based non-linear acoustic feature
504 vector for emotion classification with stochastic models and learning systems. *IET Signal Processing* 14,
505 522–532. doi:10.1049/iet-spr.2019.0383

506 Wang, T. V., Adamian, N., Song, P. C., Franco, R. A., Huston, M. N., Jowett, N., et al. (2021). Application
507 of a computer vision tool for automated glottic tracking to vocal fold paralysis patients. *Otolaryngology–*
508 *Head and Neck Surgery* 165, 556–562. doi:10.1177/0194599821989608

509 Xu, G., Zhang, X., He, X., and Wu, X. (2023). Levit-unet: Make faster encoders with transformer
510 for medical image segmentation. In *Proceeding of Chinese Conference on Pattern Recognition and*
511 *Computer Vision (PRCV)*. 42–53. doi:10.1007/978-981-99-8543-2_4

512 Yan, Y., Chen, X., and Bless, D. (2006). Automatic tracing of vocal-fold motion from high-speed digital
513 images. *IEEE Transactions on Biomedical Engineering* 53, 1394–1400. doi:10.1109/TBME.2006.
514 873751

515 Yu, Q., Li, J., Ye, W., Tang, S., and Zhuang, Y. (2023). Interactive data synthesis for systematic vision
516 adaptation via llms-aigc collaboration. *arXiv preprint arXiv:2305.12799*

517 Zhang, Y., Zou, X., Yang, J., Chen, W., Liang, F., and Li, M. (2024). Multimodal laryngoscopic video
518 analysis for assisted diagnosis of vocal cord paralysis. *arXiv preprint arXiv:2409.03597*

FIGURES AND TABLES

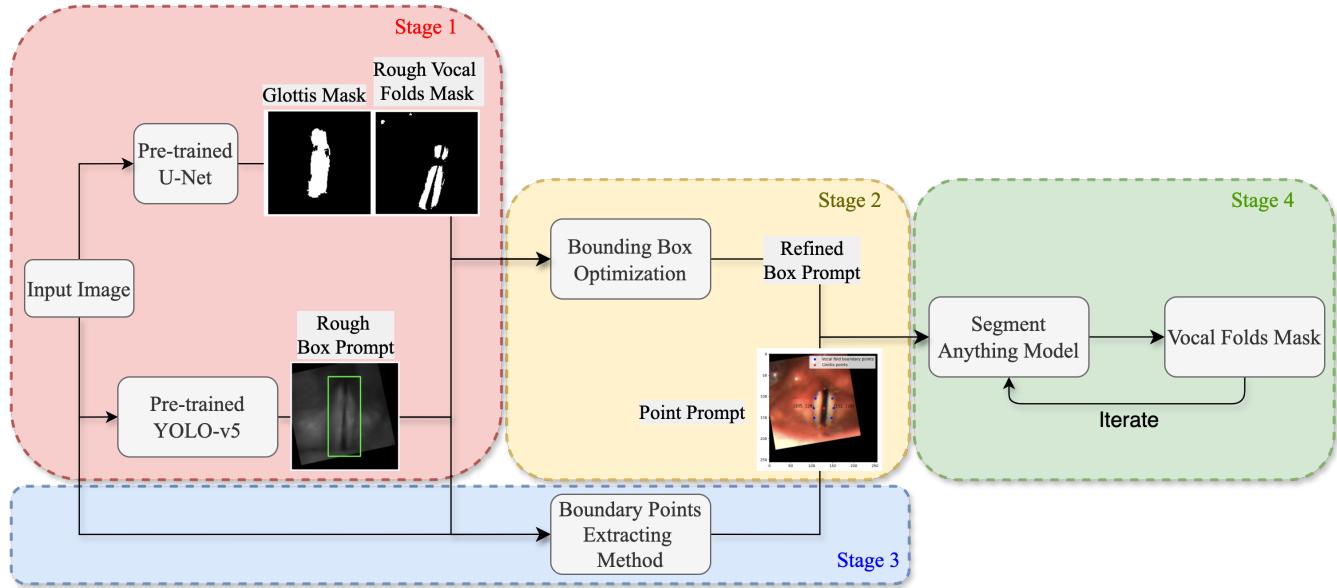


Figure 1. Flowchart illustrating the main components of the proposed system.

Figure 2a. (a) Input image

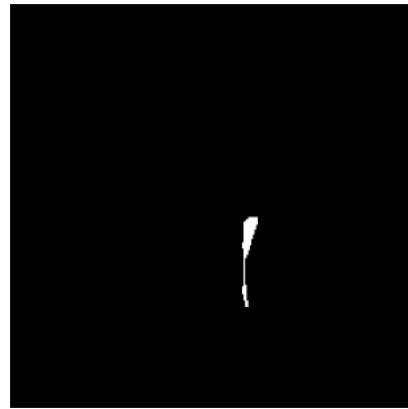


Figure 2b. (b) thres.>0.5

Figure 2c. (c) thres.<1e-17

Figure 2. An example of two output masks generated by the pre-trained U-Net model. The image in the middle is a glottis mask. The one on the right is a mask obtained by setting the threshold to be lower than $1e-17$.

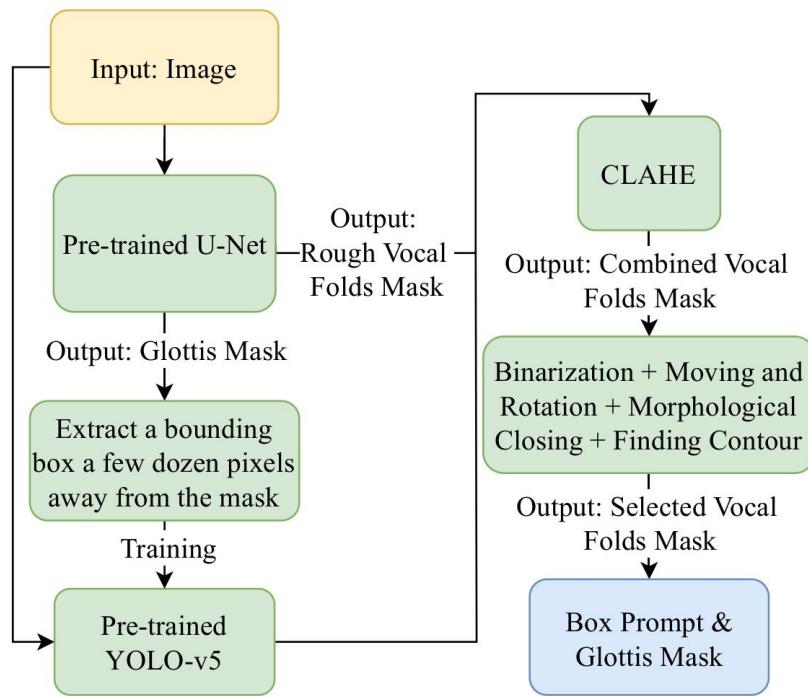


Figure 3. The workflow of the box prompt extraction stage.

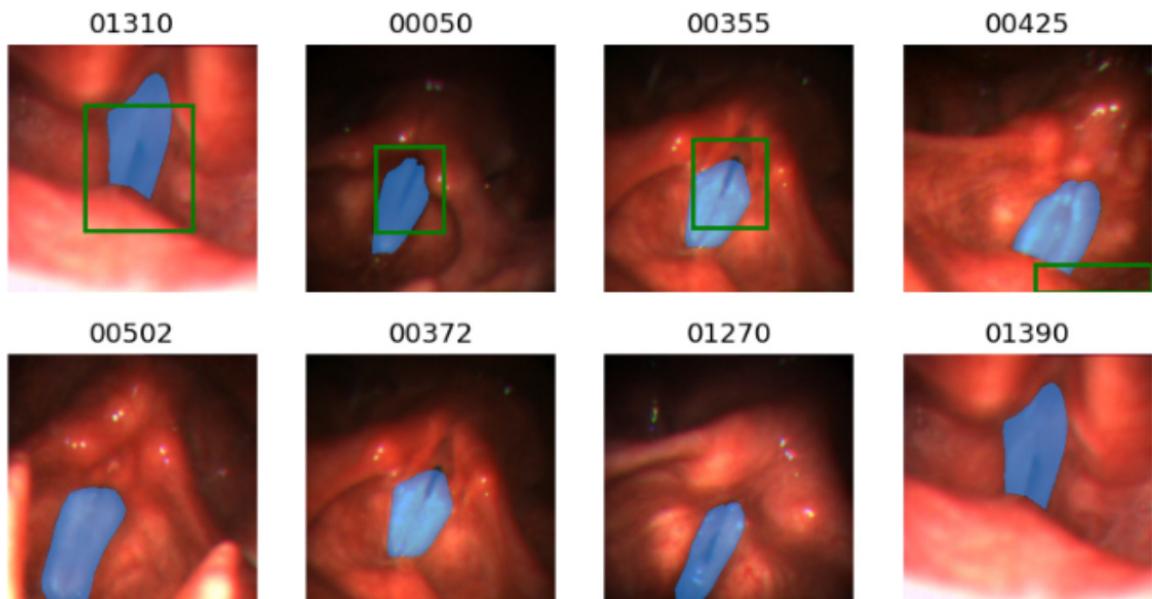


Figure 4. Illustration of some bad cases of the bounding box generated by the pre-trained YOLO-v5 model. For each image, the blue mask is the ground truth mask and the green bounding box is the output of the pre-trained YOLO-v5 model. The below four figures show that the pre-trained YOLO-v5 model fails to detect the glottis area.

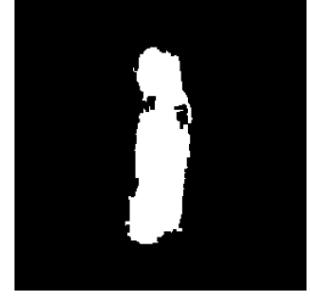
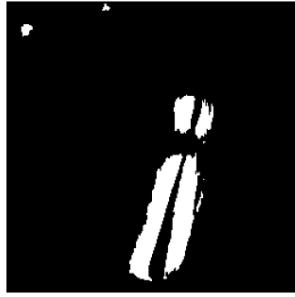
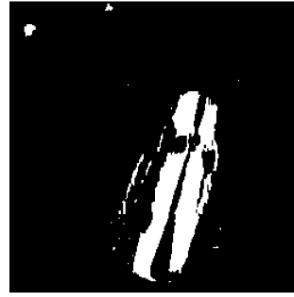
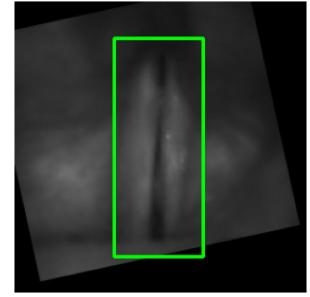
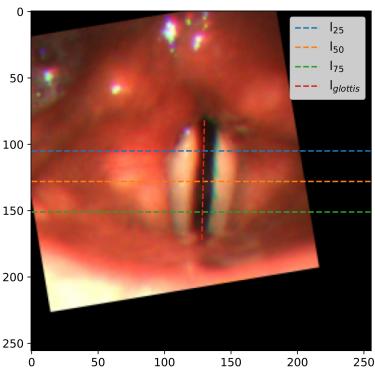
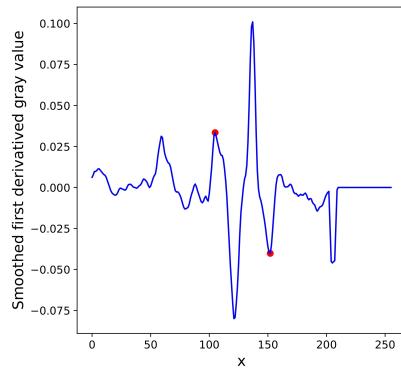
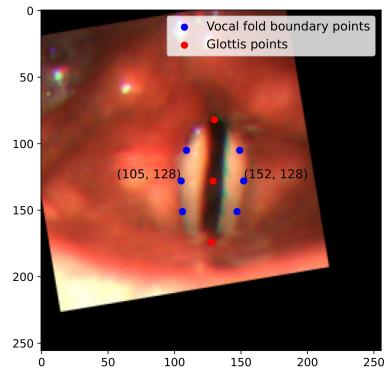
Figure 5a. Input image**Figure 5b.** CLAHE**Figure 5c.** Selected mask**Figure 5d.** ori**Figure 5e.** CLAHE+ori**Figure 5f.** Bbox

Figure 5. A group of images illustrating the outputs of different intermediate steps and the final bounding box obtained: (a) the original input image, (d) the U-Net mask generated using the original image, (b) the CLAHE processed image, (e) the combination of two mask images generated by the original image and the processed image respectively, (c) the selected mask with rotation and moving, and (f) the final bounding box.

**Figure 6a.** Critical lines**Figure 6b.** First derivative of l_{50} **Figure 6c.** Point prompts**Figure 6.** Figures illustrating the main steps in the point prompt extraction.

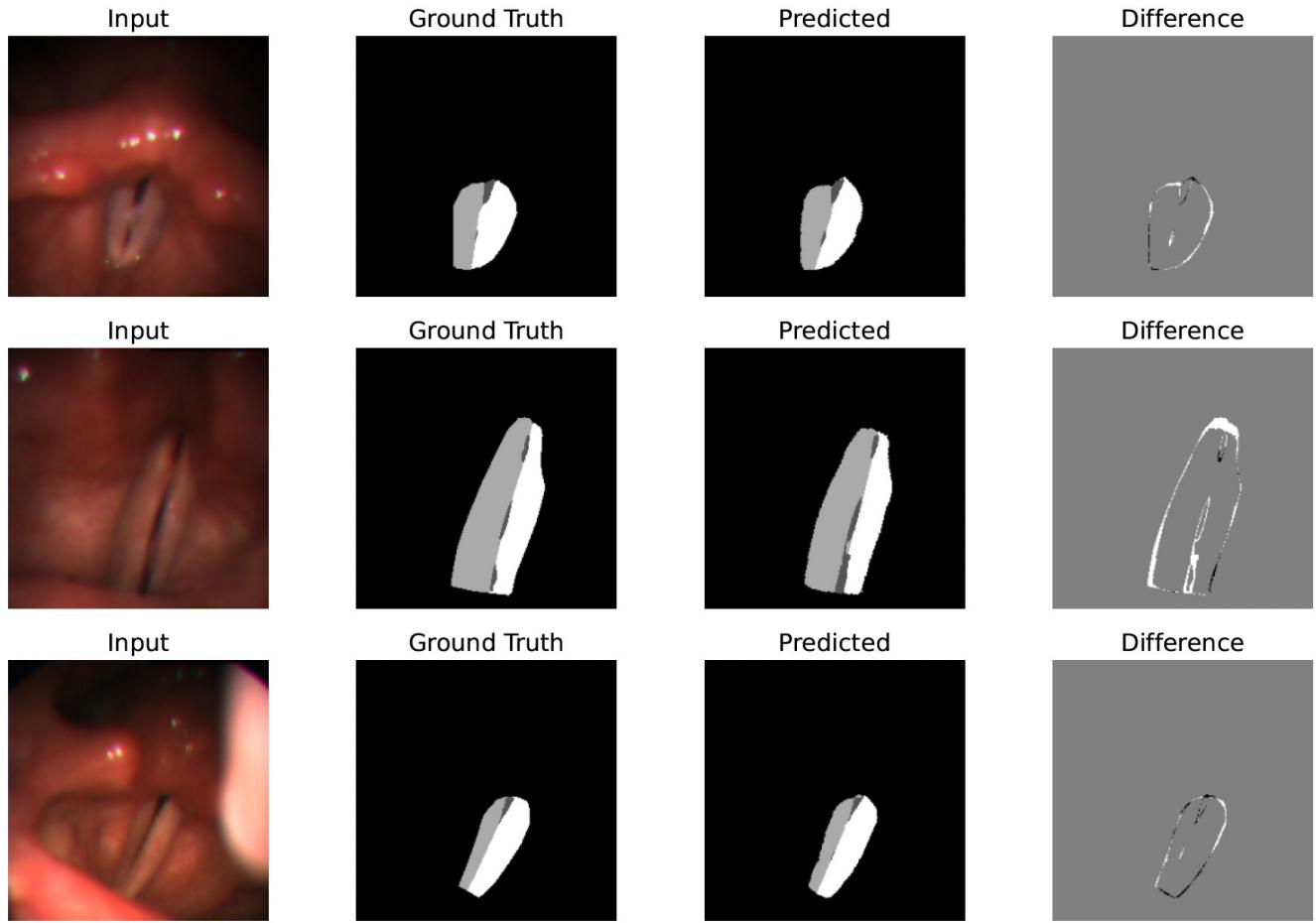


Figure 7. Examples that display the input image, ground truth mask, and predicted mask showing the effectiveness and good performance of the system's segmentation on laryngoscopic images.

Figure 8a. Step 1

Figure 8b. Step 2

Figure 8c. Step 3

Figure 8d. Step 4

Figure 8. The pipeline of metric computing on image #1149 from the Fehling's dataset.

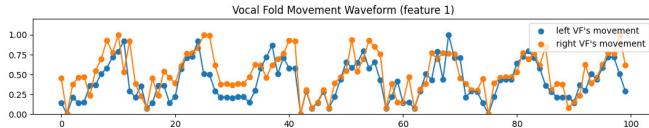


Figure 9a. VFM on the normal case (video#1)

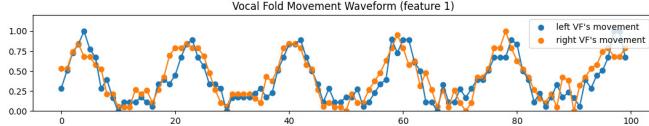


Figure 9c. VFM on the normal case (video#2)

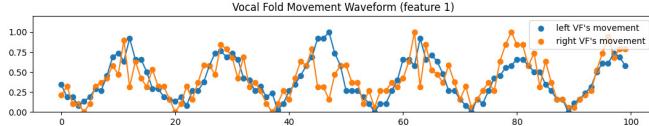


Figure 9e. VFM on the normal case (video#3)

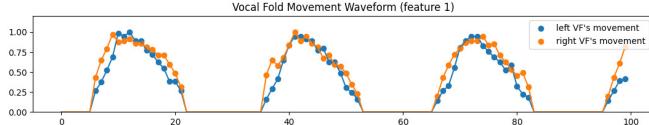


Figure 9g. VFM on the functional dysphonia case (video#5)

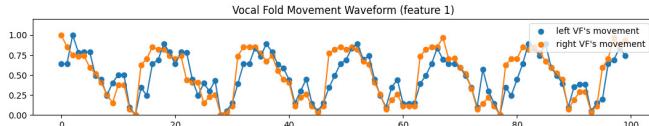


Figure 9i. VFM on the paralysis case (video#8)

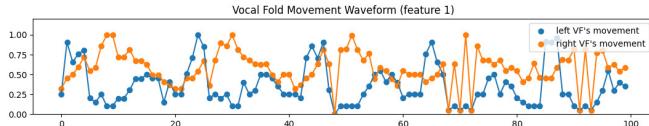


Figure 9k. VFM on the carcinoma case (video#15)

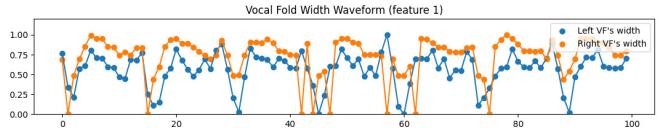


Figure 9b. VFW on the normal case (video#1)

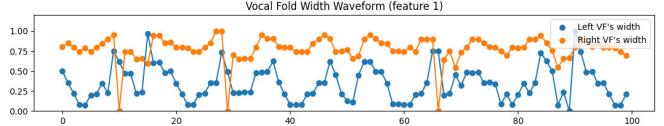


Figure 9d. VFW on the normal case (video#2)

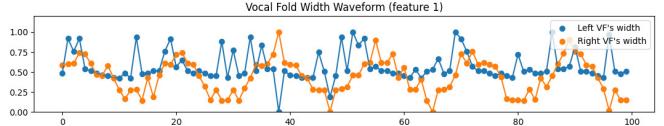


Figure 9f. VFW on the normal case (video#3)

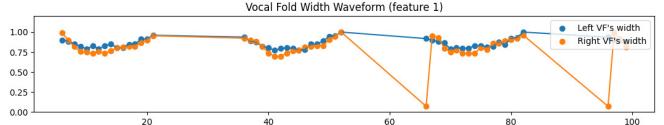


Figure 9h. VFW on the functional dysphonia case (video#5)

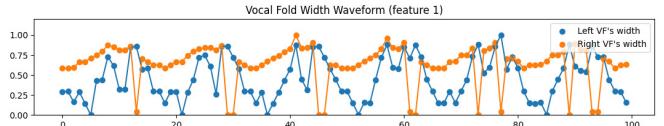


Figure 9j. VFW on the paralysis case (video#8)

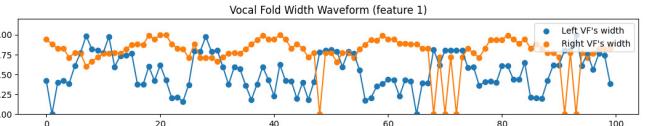


Figure 9l. VFW on the carcinoma case (video#15)

Figure 9. Examples of the vocal fold's movement and width waveform analysis on the normal cases of the Fehling's Dataset. VFM and VFW stand for Vocal Fold Movement and Vocal Fold Width respectively. We only show the waveforms for the first equidistance points (feature 1), which are derived from the metrics across C_1 . For all the waveforms, we collect the points from a total number of 100 consecutive frames from the dataset, forming a video with a length of 4 seconds for each case.

Conditions				DC			
YOLO-v5	U-Net (Thresholds)	CLAHE	SAM (Iterations)	VF	Left VF	Right VF	Glottis
✓	1e-15	✓	1	0.6447	0.6179	0.6139	0.7537
	1e-16			0.7340	0.7000	0.6993	
	1e-17			0.7742	0.7374	0.7367	
	1e-18			0.7981	0.7621	0.7594	
	1e-19			0.8033	0.7693	0.7651	
	1e-20			0.8033	0.7697	0.7662	
	1e-21			0.7996	0.7668	0.7622	
	1e-19	✗	2	0.7752	0.7380	0.7382	0.7439
	1e-18			0.7791	0.7423	0.7420	
	1e-19	✓	3	0.8205	0.7870	0.7743	0.7537
	1e-20			0.8227	0.7883	0.7776	
				0.8223	0.7900	0.7753	
			4	0.8211	0.7901	0.7734	

Table 1. Our proposed segmentation performance on the training set of the Fehling’s Dataset using different hyper-parameters. VF stands for vocal fold. CLAHE stands for the image processing method by Pizer et al. (1987).

Table 2. Model complexity, number of parameters, and inference time for different modules.

Model	FLOPs (G)	Parameters (M)	Average Inference Time (ms)
YOLO (Object Detection)	2.52	7.01	9.95
U-Net (Image Segmentation)	109.32	31.04	15.33
SAM	2730	631.58	636.16

Models	VF	Left VF	Right VF	Glottis
Our proposed unsupervised system with the best-performing parameters	0.9181	0.8930	0.8919	0.8548
Supervised CLSTM system (Fehling et al. 2020)	0.9218	0.9087	0.8988	0.8502

Table 3. Segmentation performance on the test set of the Fehling’s Dataset. VF stands for vocal fold.

SAM Prompt Conditions	VF	Left VF	Right VF
Our prompt engineering method (Points prompt+Box prompt+2 iterations)	0.9181	0.8930	0.8919
Box prompt only	0.5730	0.5346	0.5607
Point prompt only	0.1862	0.1760	0.1856
Without any prompt	0.1104	0.1069	0.1023

Table 4. Segmentation performance under different SAM prompt conditions on the test set of the Fehling’s Dataset. VF stands for vocal fold.

SAM2 Prompt Conditions		VF	Left VF	Right VF
Prompt each frame with the proposed method		0.9092	0.8826	0.8823
Prompt the first frame only	The proposed method	0.9071	0.8813	0.8787
	Box prompt only	0.7560	0.7329	0.7095
	Point prompt only	0.8570	0.8385	0.8199
	”Segment anything” mode	0.0941	0.0678	0.0951

Table 5. Segmentation performance under different SAM2 prompt conditions on the test Set of the Fehling’s Dataset (Fehling et al., 2020). VF stands for vocal folds.