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Abstract

Speaker diarization benefits from multi-channel micro-
phone arrays, yet current systems struggle with diverse con-
figurations. We address this by simulating a dataset with var-
ious microphone topologies and proposing Selective Channel
Attention-based Target Speaker Voice Activity Detection (SCA-
TSVAD). We utilize cross-channel self-attention with masking
mechanisms to enable selective attention on specific channels,
allowing for the effective processing of audio data with variable
multi-channel configurations. SCA-TSVAD is built upon the
foundation of single-channel TSVAD. It performs superior on
our simulated dataset, showcasing its robustness across diverse
array configurations. To further validate the effectiveness of a
real dataset, we evaluate SCA-TSVAD on the real-world Ali-
Meeting database, where it successfully handles multi-channel
audio inputs even when some channels were unavailable or mal-
functioning, proving its practical applicability.

Index Terms: Target-speaker voice activity detection, Multi-
channel speaker diarization, Selective channel attention

1. Introduction

Speaker diarization, often called the ”who spoke when” task,
involves identifying and segmenting speech in multi-party con-
versations [1] by attributing each segment to the correspond-
ing speaker. It consists of determining the temporal boundaries
of each speaker’s utterances and labeling them with speaker
identifiers. Traditional clustering-based speaker diarization sys-
tems [2, 3], which assume single-speaker dominance in each
segment, struggle to handle overlapped speech without addi-
tional modules. Previous research has attempted to address this
limitation through various approaches, including speech sepa-
ration [4] as a pre-processing step, target-speaker voice activ-
ity detection (TS-VAD) [5] as post-processing, and end-to-end
neural diarization (EEND) [6, 7] for overlap-aware diarization.

In contrast, multi-channel speech processing systems [8],
can leverage spatial information to enhance source discrimina-
tion. Among the diverse designs of such systems, cross-channel
attention has emerged as a powerful tool, demonstrating success
in tasks such as speech enhancement [9], separation [10, 11],
recognition [12], and diarization [13].

Most existing systems, while promising, are tailored for
specific array setups, limiting their adaptability to diverse mi-
crophone arrangements. This lack of flexibility hinders practi-
cal deployment, as real-world applications often involve vary-
ing microphone topologies. Furthermore, practical issues such
as structural damage or loose connections can lead to par-
tial channel loss even in fixed microphone array setups. In
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speech separation, [11] tackles issues such as unknown mi-
crophone counts and geometries, as well as asynchronous sig-
nals, by employing a Transformer-based architecture to model
the signals from spatially distributed microphones. Similarly,
in speaker verification, [14] proposes an attention-based multi-
channel system for ad-hoc microphone arrays. The method
employs an inter-channel processing layer with residual self-
attention to weigh different microphones and a global fusion
layer to integrate signals independently of channel numbers.

This paper proposes the Selective Channel Attention-based
Target Speaker Voice Activity Detection (SCA-TSVAD), which
extends the single-channel TS-VAD framework [7] by incorpo-
rating selective channel attention for variable channels. We first
construct a simulated multi-channel, multi-speaker dataset with
various microphone configurations based on LibriSpeech [15].
Our code about the data simulation, as well as the database
and examples, is publicly available'. The SCA-TSVAD model
demonstrates excellent performance on this simulated dataset,
showcasing its robustness and adaptability to different micro-
phone configurations. We further validate our approach on the
real-world Ali-Meeting dataset, confirming its effectiveness in
handling incomplete or faulty multi-channel inputs.

2. Methods
2.1. Selective Channel Attention-based TSVAD

This section describes the framework of our SCA-TSVAD
method for ad-hoc microphone settings. Figure 1 shows
the model architecture. Let C, N, D, T and L represent
the number of audio channels, speakers, target-speaker em-
bedding dimensions, time frames and log mel-filterbank fea-
ture dimensions respectively. For each channel i, we ex-
tract the target-speaker embedding E; € RY*P correspond-
ing to N speakers using a pre-trained speaker embedding
model [7]. These channel-specific embeddings are then ag-
gregated into a £ = (E1,...,E;,...,Ec). Then, audio sig-
nals are used to compute the log mel-filterbank features X' =
(X1,...,Xs,...,Xc), where X; € RF*L is the i-th channel
log mel-filterbank of F' frames. Next, these features are fed into
our front-end model to generate frame-level speaker features
S. The front-end feature extraction employs a ResNet34 [16]
architecture, which processes input L-dim log mel-filterbank
feature, followed by segmental statistical pooling (SSP) [17]
to compute frame-level representations which are then pro-
jected into D-dim speaker features S = (él, N Sc),
where S; € RT*P is the frame-level speaker features from
the i-th channel. Now we have frame-level speaker features
S € RE*T*P and target speaker embeddings £ € RE*N*D,
Later, the frame-level speaker features are replicated N times
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Figure 1: The architecture of the SCA-TSVAD model. C is the maximum channel number in the dataset, F is the number of frames in the
log mel-filterbank, N is the number of speakers, L is the dimension of the log mel-filterbank, T is the number of time frames in speaker

features, and D is the dimension of speaker features.

along the speaker dimension, while the target-speaker embed-
ding is duplicated T times across the temporal axis, followed by
concatenation of these two tensors along the embedding dimen-

sion: )
S = concat(€,S) c RTXNxCx2D n

Selective channel attention relies on a mask matrix M €
RS> based on the C-channel speaker features. For each pair
of channels ¢ and j, if M;; = 1, the value will be included
in the attention computation for channel 7 attending to channel
j. To block j-th channel (depicted as a black column), we set
the j-th column of each row to -inf. The columns for active
channels (visually represented as green columns in the figure)
are set to 1. Additionally, a channel weight matrix W, €
RE*! is initialized with ones, where the values corresponding
to the masked channels are set to 0, ensuring that only unmasked
channels contribute to the output.

Thereafter, to align with the mask matrix dimension, the
concatenated embeddings cannot be directly used as input for
selective attention, and the concatenated embeddings of each
speaker denoted by S;, € RT*C*2P must be processed one
by one. The selective channel attention takes S;,, and the mask

matrix, after being replicated T times to R7*C*C as jointly
input.
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where W" € RP*P is the weight and b" € R is the bias
for the h-th head, Att is an abbreviation for attention, Q", K"
and V" denotes the query, key and value matrices for the h-th
head, M € RTXE*C is the extended mask matrix and F rep-
resents the dimension of the query vectors. Next, a positional-
wise feed-forward layer with a ReLLU activation is applied to
generate the output, where layer norm and residual connec-
tions are employed between each layer. The single speaker out-
put obtained from selective channel attention is represented as
Sout € RT*CX2D and the output tensor undergoes weighted
averaging using the weight matrix.
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Then, all the O € RT*2P representations correspond-
ing to N speakers are stacked together to form the final out-
put Sfinar € RY*T*2D - Afterwards, the cross-frame self-
attention which allows the model to learn contextual relation-
ships between time frames, improving its ability to distinguish
between speakers and handle overlapping speech takes the S’
as input. Following this, a bidirectional LSTM (BiLSTM [18])
is applied by incorporating sequential dependencies. Finally, a
linear layer and a sigmoid activation function are used to pro-
duce the output of SCA-TSVAD.

2.2. Multi-Channel audio data simulation for varied micro-
phone array setups

To validate the robustness of SCA-TSVAD across diverse mi-
crophone configurations, we developed a simulated dataset us-
ing SonicSim [19]. Built on the embodied Al simulation plat-
form Habitat-sim [20], SonicSim enables multi-level adjust-
ments at the scene, microphone, and source levels, facilitating
the generation of highly diverse synthetic data. The simulation
process is outlined as follows:

First, a 3D scene from the Matterport3D [21] dataset is
imported into SonicSim to establish the acoustic environment.
Sound source positions are randomly determined using Habitat-
sim’s API, with the number of positions matching the number
of speakers in the audio.

Next, noise sources and microphones are randomly placed
within a circular region of a 6-meter radius in the horizontal
plane (X and Z axes) and a 2-meter range in the vertical axis (Y
axis) relative to the sound sources. Microphone configurations
are generated randomly, with details provided in Section 3.3.1.

For audio generation, to simulate a more realistic conversa-
tional scenario audio, speech segments from multiple speakers
in the LibriSpeech database are truncated and re-arranged into
a single long audio file based on the start times and durations
specified in the RTTM file. This process uses predetermined
RTTM files from real-world Ali-Meeting databases but with
various simulated microphone configurations applied to gener-
ate the data in our experiment. This process is repeated for all
speakers in a recording. SonicSim calculates the room impulse
responses (RIRs) based on the source audio positions and mi-
crophone configurations and then convolves the source audio
with the corresponding RIRs.

Finally, the convolved audio signals from all speakers and
noise sources are combined to simulate a realistic multi-speaker
scenario. This approach ensures the dataset captures a wide
range of acoustic conditions.



3. Experimental setup

3.1. Data preparation

To handle varying audio input channels, we align the channel
dimensions by padding the audio signals and target-speaker em-
beddings to the maximum channel number Ch,x in the dataset.
For an X -channel input, we create a zero tensor of size Cax,
generate a random permutation of indices from 0 to X — 1,
and use it to assign the original signals and embeddings into
the padded tensor. This method effectively pads the original X -
channel input to the Chax dimension, with the signal channel
positions shuffled according to the random permutation.

3.2. Speaker embedding extraction

TSVAD requires an additional speaker embedding extractor to
extract the target speaker’s voice features, so we use the ResNet-
based pre-trained speaker embedding model from [7]. This
model, trained with ArcFace [22] on the CN-Celeb [23] and
Ali-Meeting datasets, used a margin of 0.2 and softmax prescal-
ing of 32. During the evaluation, cosine similarity was em-
ployed for scoring. Since the Ali-Meeting dataset lacks single-
speaker utterances, [7] selected non-overlapping speech seg-
ments longer than 2 seconds for training and built a trial set from
the evaluation set consisting of 10,692 trials from 25 speak-
ers. The model finally achieved an equal error rate (EER) of
3.199% on the Ali-Meeting trial set and was used to extract tar-
get speaker embedding and initialize the front-end ResNet-34
in the SCA-TSVAD system.

3.3. Dataset

3.3.1. Simulated dataset

For our dataset simulation, we utilize the same RTTM files from
the train, eval, and test sets of the Ali-Meeting [24] dataset and
use the LibriSpeech [15] dataset as the sound source, combined
with environmental noise from MUSAN [25] and musical noise
from the Free Music Archive (FMA) [26] dataset. Regarding
the microphone array configuration, many electronic devices to-
day employ an even number of microphones, with their arrange-
ments being predominantly linear or circular. We randomly se-
lect the number of microphones from the set {1, 2, 4, 6, 8} for
the training set. We randomly choose linear or circular arrays
when the configuration is not mono or binaural. As a result,
there are eight types of microphone arrays with different micro-
phone spacings, and we randomly select 50 audio samples from
the Ali-Meeting train set and apply these eight microphone ar-
rays to obtain a training set of 400 audio samples. For a linear
arrangement, the microphone spacing is randomly set within the
range of 20 to 40 mm, while for a circular array, the diameter is
chosen to be between 82 and 122 mm. Given that the circular
array in Ali-Meeting has a diameter of 102 mm, we defined a
20 mm margin on either side.

For the validation set, we fix the linear array spacings at
15mm, 40 mm, and 65 mm, and the circular array diameters
at75 mm, 100 mm, and 130 mm. For the test set, we add two
more values for each configuration: linear array spacings of
30 mm and 55 mm, and circular array diameters of 90 mm and
115 mm, to ensure a broader range. Both sets use even numbers
of microphones with linear and circular array configurations.
Apart from microphone settings, other variables (e.g., room,
sound sources, and noise positions) remaine consistent across
validation and test sets for each audio instance. The validation
set has 16 distinct topologies, making it 16 times larger than
the Ali-Meeting eval set. For the test set, we select eight au-
dio samples from the Ali-Meeting test set, with corresponding
RTTM files, to simulate the configurations of 27 microphone
topologies (as shown in Table 1).

3.3.2. Modified-Ali-Meeting dataset

To validate our SCA-TSVAD model on a real-world dataset, we
modify the Ali-Meeting dataset [24] to address the challenge
of multi-channel input audio with potentially missing channels
due to microphone malfunctions. Specifically, we use the train-
ing set of Ali-Meeting, applying the method in [27] to simulate
additional data for training—the simulation process follows [7].
During training, we generate a random number less than the
maximum number of channels and create corresponding chan-
nel permutations, modifying the active channels of the input au-
dio. The modified version of the Ali-Meeting evaluation set is
used for validation, and the test set is used for inference, both
with various subsets of microphones available.

3.4. Training process

In our experiments, we employ a 2-layer and 2-head Trans-
former Encoder as the selective channel attention and cross-
frame attention layer, and the hidden dimension is 1024. All
training audio signals are segmented into 16s chunks. The
model input consists of 80-dimensional log mel-filterbank en-
ergies extracted with a 25 ms frame length and a 10 ms frame
shift. The dimension of speaker features is 128. The number of
speakers is set to 4, and if it is not enough, it will be randomly
added from the audio of the same channel. The training is car-
ried out using the binary cross-entropy (BCE) loss function and
Adam optimizer. We train our model in three steps. Firstly,
the front-end ResNet-34 is frozen, and only the back-end pa-
rameters are trained for 20 epochs. Then, all model parameters
are unfrozen and trained for another 20 epochs. The first two
steps have the same learning rate of 1e-4. Lastly, our model is
fine-tuned with a reduced learning rate of le-5 for 100 epochs
to refine the parameters further. The five checkpoints with the
lowest validation loss are averaged to obtain the final model for
evaluation and inference.

When utilizing the generated dataset with multi-channel
and multi-microphone configurations, all three training stages
rely entirely on our generated dataset. During training with the
Ali-Meeting dataset, the first two stages employ online simu-
lated data, as detailed in Section 3.3.2. In contrast, the third
stage utilizes real Ali-Meeting data for training, with a random
selection of 1 to 8 channels retained. A specific channel ar-
rangement is selected for each number of retained channels for
model validation. The channel arrangements used during test-
ing are presented in Table 2.

3.5. Inference settings

In the inference stage, an AHC-based diarization system [28]
initially generates a preliminary result shown in Table 2. Then,
non-overlapped speech regions for each speaker are selected to
extract target-speaker embeddings using a pre-trained speaker
embedding model [7]. Following this, silence regions are re-
moved based on the oracle VAD, and the audio signals are seg-
mented into 16s chunks with a 4s shift. After obtaining the
probabilities from the SCA-TSVAD model, these results can
also serve as the input for the next round of inference. Through
multiple iterations in the testing, we observe that the results
show minimal improvement beyond the third iteration and, in
some cases, even deteriorate. Therefore, we report the results
from the second iteration.

4. Experimental results

4.1. Simulated dataset

Table 1 shows the results of our SCA-TSVAD on the simulated
test set. Missed speaker time (MI), false alarm speaker time
(FA), speaker confusion time (CF), and Diarization Error Rate
(DER) are reported. The test set focuses on circular arrays with



Table 1: DER(%) of different microphone settings on the sim-
ulated test set with oracle VAD (collar=250ms). Mic. Num.
means the number of microphones. D. means distance between
adjacent linear microphones and diameter for circular array.

Mic. Num. Array D MI FA CF DER

1 | Mono - |27 196 185 650
2 | Binaural - | 267 160 152 578
15 | 364 101 068 533

, 30 | 341 102 078 522

linear 40 | 348 104 065 517

55 | 362 108 066 536

4 65 | 402 104 065 517
75 332 099 066 4.61

. 90 | 325 094 070 4.89

circular 100 | 3.04 093 063 4.6l

115 | 334 096 057 488

130 | 329 1.00 077 506

15 | 3.64 084 064 511

‘ 30 | 339 104 064 507

linear 40 | 378 094 057 529

55 | 352 098 055 5.5

6 65 | 405 081 050 535
75 | 351 099 083 532

, 90 | 353 105 055 5.13

circular 100 | 391 075 058 525

115 | 367 105 056 528

130 | 345 098 069 5.12

75 [ 3.19 090 055 4.68

_ 90 | 325 101 070 496

8 circular 100 | 3.18 095 055 4.68
115 | 351 074 050 474

130 | 334 087 070 491

eight microphones, which are more common and align with
Ali-Meeting. Additionally, we include two spacing values per
group, the first and last ones unseen during training, evaluating
the model’s ability to generalize across microphone spacings.

Four out of the five groups achieve the lowest DER un-
der conditions where the microphone spacing deviated from
the range used in training, demonstrating that SCA-TSVAD ex-
hibits strong generalization capabilities and can effectively han-
dle microphone configurations not encountered during training.
Furthermore, increasing the number of microphones for linear
arrays tends to reduce the DER, whereas this effect is not ob-
served with circular arrays.

The comparative analysis in the table suggests that circular
arrays generally outperform linear arrays given the same num-
ber of microphones in our setup, likely due to their more uni-
form spatial coverage. Interestingly, the 8-microphone circular
array shows slightly higher DER than the 4-microphone config-
uration, which may result from signal redundancy introduced
by the doubled number of microphones.

4.2. Ali-Meeting dataset

The performance on the Ali-Meeting test set is outlined in Ta-
ble 2. It is evident from the table that our model outperforms
most current models in handling all eight channels. This may
be because randomly selecting the number of channels during
training reduces the model’s reliance on specific channel struc-
tures and mitigates overfitting to fixed arrangements. Addition-
ally, we test the performance of the SCA-TSVAD model using
five different microphone arrangements, ranging from 2 to 7 mi-
crophones. The results demonstrate that with the same number
of microphones, DER varies only slightly across different chan-
nel arrangements. As the channel number increases, the DER
gradually declines and eventually leads to stabilization.

Table 2: DER(%) of different channel arrangements on Ali-
Meeting test set with oracle VAD (collar=250ms). Ch.
Num. means the number of channels, Arr. means the ar-
rangements of channel and number 0-7 in the Arr. repre-
sents channels 1-8.

Ch. Num. Arr. DER Model Name/Average

0 472  SCA-TSVAD(our)
1 - 6.11°  EEND-M2F+FT [29]
- 10.20°  WavLM-updated [30]
- 13.65 AHC-based clustering

01 3.76

3.75
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2.76
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9 MC-TSVAD [7]
3.98 FFM-TS-VAD [31]
15.67 Official baseline [24]

* These results are obtained without using oracle VAD
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5. Conclusion and future work

In this study, we simulated a database featuring diverse micro-
phone configurations and multiple speakers. Additionally, we
introduced the SCA-TSVAD model, a unified speaker diariza-
tion system capable of handling the dataset of various micro-
phone configurations. Our model demonstrates strong perfor-
mance on simulated databases. For future work, we plan to
evaluate the performance of the SCA-TSVAD model on other
multi-channel databases. Furthermore, since the SCA-TSVAD
model does not incorporate multi-channel audio’s Direction of
Arrival (DOA), we aim to further enhance its performance.
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