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Abstract
This paper describes the speaker diarization system devel-

oped for the Multimodal Information-Based Speech Process-
ing (MISP) 2025 Challenge. First, we utilize the Sequence-
to-Sequence Neural Diarization (S2SND) framework to gen-
erate initial predictions using single-channel audio. Then, we
extend the original S2SND framework to create a new version,
Multi-Channel Sequence-to-Sequence Neural Diarization (MC-
S2SND), which refines the initial results using multi-channel
audio. The final system achieves a diarization error rate (DER)
of 8.09% on the evaluation set of the competition database,
ranking first place in the speaker diarization task of the MISP
2025 Challenge.
Index Terms: MISP 2025 Challenge, Speaker Diarization

1. Introduction
Speaker diarization refers to the process of identifying each
speaker’s utterance boundaries in conversational data, address-
ing the “Who-Spoke-When” problem [1]. It is essential for
various downstream speech-related tasks, such as multi-talker
speech recognition [2].

Many classical studies have been proposed for speaker di-
arization. Conventional approaches, often referred to as modu-
larized methods, rely on independent modules to split the au-
dio signal into short segments and cluster speaker identities
based on speaker embedding similarities [3, 4, 5]. However,
these methods struggle with overlapped speech, as the cluster-
ing module inherently assumes that each audio segment should
be speaker-homogeneous.

End-to-End Neural Diarization (EEND) and its variants [6,
7, 8] can predict the voice activities of multiple speakers
through multi-label classification, demonstrating strong robust-
ness to overlapped speech. Nevertheless, the Permutation-
Invariant Training (PIT) [9] employed in EEND models tends
to degrade performance as the number of speakers increases in
long audio signals, which has yet to be fully resolved.

Target-Speaker Voice Activity Detection (TSVAD) ap-
proaches [10, 11, 12] combine modularized methods with end-
to-end neural networks. A typical TSVAD system first uses
the modularized method to extract target-speaker embeddings
as speaker enrollment. Then, it employs a back-end neural net-
work to predict the voice activities of all speakers. TSVAD-
based methods have demonstrated outstanding performance on
popular benchmarks such as DIHARD-III [13] and VoxSRC21-
23 [14, 15, 16].
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Figure 1: Overview of our developed system. The dashed parts
represent the prior single-channel diarization method [17].

Recently, a novel Sequence-to-Sequence Neural Diariza-
tion (S2SND) framework [17] has been proposed for speaker di-
arization. By utilizing an automatic speaker detection and rep-
resentation technique, it eliminates the need for unsupervised
clustering methods (e.g., K-Means [3], SC [4], AHC [18]) and
the PIT [9] strategy. The proposed S2SND models significantly
outperform previous state-of-the-art methods, achieving lower
diarization error rates on the DIHARD-II [19] and DIHARD-
III [20] evaluation sets.

In order to advance speaker diarization performance for the
MISP 2025 Challenge [21], we choose the promising S2SND
framework [17] as the foundation. However, the S2SND model
is primarily designed for online inference using single-channel
audio, which may not be ideal for offline inference using multi-
channel audio. In this paper, we extend the S2SND framework
to develop a new version tailored for offline multi-channel infer-
ence, named Multi-Channel Sequence-to-Sequence Neural Di-
arization (MC-S2SND).

Fig. 1 illustrates the overview of our developed system.
First, the original S2SND model processes the first-channel au-
dio signal to obtain initial results. Next, the proposed MC-
S2SND model leverages these initial results to extract speaker
embeddings and then processes multi-channel audio to predict
the outcomes. Experimental results demonstrate that the multi-
channel system yields significant improvements over previous
approaches, achieving a diarization error rate (DER) of 8.09%
on the evaluation set of the MISP 2025 Challenge.

2. Methodology
Fig. 2 demonstrates the proposed Multi-Channel Sequence-to-
Sequence Neural Diarization (MC-S2SND) framework, which
is partially modified from the original S2SND [17] model. The
details are described as follows.
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Figure 2: Multi-Channel Sequence-to-Sequence Neural Diarization (MC-S2SND) framework. Det. and Rep. denote the abbreviations
of detection and representation, respectively.

2.1. Architecture

2.1.1. Front-End

The front-end module comprises the extractor and channel at-
tention (CH-Attention) block. The extractor is based on a
ResNet model [22] integrated with segmental statistical pooling
(SSP) [11]. For the input audio with C channels, each chan-
nel is converted into log Mel-filterbank energies and separately
passed through the extractor. This step results in deep features
denoted as X′ ∈ RT×F×C, where T and F represent the length
and dimension of the extracted feature sequence. Subsequently,
we implement a Transformer-based model [23] combined with
average pooling to form the channel-attention block. This step
applies self-attention along the channel axis of X′ and aver-
ages the output across the different channels. The final feature
sequence, which integrates multi-channel information, is repre-
sented as X ∈ RT×F.

2.1.2. Encoder

The Conformer-based model [24] with sinusoidal positional en-
codings [23] is used as the encoder. Let D denote the attention
dimension in the encoder, with an additional linear layer that
maps the input dimension from F to D (this layer is omitted for
clarity in the plot). The encoder then processes the deep features
X ∈ RT×F to produce X̂ ∈ RT×D, which aims to model long-
term dependencies within the frame-wise feature sequence.

2.1.3. Decoder

The structures of the detection (Det.) and representation (Rep.)
decoders are detailed in the original S2SND work [17]. Gen-
erally, these decoders take a set of auxiliary queries as refer-
ence information to output results for different speakers. Let
E ∈ RN×S represent the speaker embeddings, where N is the
number of speakers and S is the embedding dimension. The
ground truth for their target voice activities is represented by a
binary matrix Y ∈ {0, 1}N×T′

, where yn,t′ indicates whether
the n-th speaker is speaking at time t′. The detection decoder
uses the encoder output X̂ as feature embeddings and speaker
embeddings E as auxiliary queries to predict the target-speaker
voice activities Ŷ ∈ {0, 1}N×T′

. On the other hand, the rep-
resentation decoder uses the front-end output X as feature em-
beddings and the voice activities Y as auxiliary queries to ex-
tract the target-voice speaker embeddings Ê ∈ RN×S. The two
decoders perform inverse tasks, predicting voice activities and

extracting speaker embeddings simultaneously.

2.2. Training Process

The ground truth for Y can be obtained from the dataset an-
notations during training. However, E is not directly avail-
able because the embedding space must be learned by the neu-
ral network. Thus, we initialize a learnable embedding matrix
Eall ∈ RNall×S to store the embedding vectors for all speak-
ers in the training data, where Nall represents the total number
of speakers and S is the embedding dimension. Speaker labels
are tokenized into Nall-dimensional one-hot vectors. For exam-
ple, the n-th speaker label is represented by a one-hot vector
with all zeros except for the n-th position, which is set to 1.
Given an input audio with speaker labels Sloc ∈ RNloc×Nall ,
where Nloc is the number of locally existing speakers. The
input speaker embeddings for the detection decoder are com-
puted using (Sloc · Eall) ∈ RNloc×S, which is a simple table
lookup operation through matrix multiplication. Also, a learn-
able non-speech embedding enon is initialized. To handle cases
where Nloc ≤ N , the absent input is padded with either enon

or randomly selected embeddings from speakers not present in
the current audio. The ground truth for these padded inputs is
set to zeros. This padding strategy ensures that the input dimen-
sion of mini-batched training data remains consistent and allows
the model to differentiate between valid (existing) and invalid
(padded) speaker enrollment in the input audio. It is notewor-
thy that the masked speaker prediction technique used in the
original S2SND model has been removed in the MC-S2SND
model, as it is unnecessary for an offline-only model.

2.2.1. Target-Speaker Voice Activity Detection

After feeding E into the detection decoder, the output Ŷ is opti-
mized by minimizing its Binary Cross-Entropy (BCE) loss with
Y, as defined by the following equation:

Lbce = − 1

N × T ′

N∑
n=1

T ′∑
t′=1

[yn,t′ log(ŷn,t′)+

(1− yn,t′) log(1− ŷn,t′)] ,

(1)

where ŷn,t′ = Ŷ(n, t′) represents the predicted speaking prob-
ability of the n-th speaker at time t′, and yn,t′ = Y(n, t′) is
the corresponding ground-truth label.



2.2.2. Target-Voice Speaker Embedding Extraction

After feeding Y into the representation decoder, the output Ê
is optimized by minimizing its ArcFace [25] loss with the em-
bedding matrix Eall, as given by the following equation:

Larc =
1

N

N∑
n=1

− log
es cos(θn+m)

es cos(θn+m) +
∑Nall

i=1,i ̸=Sn
es cos θi

,

(2)

where θn is the angle between the n-th extracted speaker em-
bedding ên ∈ Ê and its ground-truth embedding in Eall; θi is
the angle between ên and the i-th speaker embedding in Eall.
Let Sn denote the index of the n-th given speaker label corre-
sponding to ên. The condition i ̸= Sn ensures that θi is com-
puted only for negative pairs in this contrastive learning setup.
The parameters s and m represent the re-scaling factor and ad-
ditive angular margin penalty, respectively.

Finally, the total training loss is the sum of Lbce in Eq. 1
and Larc in Eq. 2. This way, the input embedding space for
speaker detection and the output embedding space for speaker
representation can be jointly optimized within a single model.

2.3. Inferring Process

During inference, Y can be obtained from an initial diarization
system. The following steps are then performed: First, the input
multi-channel audio is processed through the front-end module
and encoder to obtain the deep features X and X̂. Second, us-
ing the prepared X and Y, the representation decoder extracts
the speaker embeddings Ê for enrollment. Third, the trained
embedding matrix is no longer required. Using the prepared X̂
and Ê, the detection decoder predicts the corresponding voice
activities, which form the final diarization result Ŷ. Overall,
the proposed framework integrates speaker embedding extrac-
tion and voice activity detection into a single model.

3. Experimental Setup
3.1. Datasets

For the simulated data, we combine the VoxCeleb2 [26],
VoxBlink2 [27], KeSpeech [28], and 3D-Speaker [29] datasets
to create a large-scale corpus with 153,738 identities. Then, an
on-the-fly simulation method can generate new training data,
which is used in our previous works [12, 17, 30]. For the real
data, the MISP-Meeting [31] dataset is provided by the MISP
2025 Challenge, which includes 119 hours of training data,
3 hours of development data, and 3 hours of evaluation data,
recorded using a headset microphone, microphone array, and
panoramic camera. In this study, we only use the 8-channel
audio data from the far-field microphone array and apply the
NARA-WPE 1 toolkit for dereverberation. The training set is
used for model training, while the development set is reserved
for model validation and hyperparameter tuning.

3.2. Network Configurations

As described in Sec. 2.1, the main network architecture con-
sists of the extractor, channel-attention, encoder, and decoder
modules. The ResNet-152 [22] model is used as the extrac-
tor, with residual blocks having widths (number of channels)
of {64, 128, 256, 512}. The channel-attention module is based

1https://github.com/fgnt/nara_wpe

on a Transformer model [23], consisting of 2 blocks with 512-
dimensional, 8-head attention and 1024-dimensional feedfor-
ward layers. The encoder is based on a Conformer [24] model,
utilizing convolutions with a kernel size 15. Both decoders are
based on the Speaker-wise Decoder (SW-D) proposed in the
original S2SND [17]. All encoders and decoders have 6 blocks,
and their settings of attention and feedforward layers are identi-
cal to those of the channel-attention module. The key difference
between the S2SND and MC-S2SND models lies in the inclu-
sion of the channel-attention module in the MC-S2SND model.

3.3. Training Details

All training audio is divided into 8-second blocks with a 2-
second shift. After normalization with a mean of 0 and a stan-
dard deviation of 1, each audio block is converted into 80-
dimensional log Mel-filterbank energies as the acoustic features
with a frame length of 25 ms and a shift of 10 ms.

We directly adopt the default settings from the previous pa-
per [17]: the temporal resolution (duration per frame-level pre-
diction) of the system output is set to 10 ms, and the speaker ca-
pacity N is set to 30 to accommodate the maximum number of
speakers in most cases. During training, the input speaker em-
beddings and voice activities are randomly shuffled to ensure
the model is invariant to speaker order. As a result, the cor-
responding ground-truth labels must be reassigned according
to the shuffled order. Additionally, data augmentation is per-
formed using additive noise from Musan [32] and reverberation
from RIRs [33]. The model is trained using 8 NVIDIA RTX-
3090 GPUs with the AdamW [34] optimizer, Binary Cross-
Entropy (BCE) loss, and ArcFace loss (s = 32,m = 0.2) [25],
as illustrated in Fig. 2.

3.3.1. Pretrained Extractor

To enable the model to learn identity-related information in the
audio effectively, we pretrain the extractor as a speaker ver-
ification model. Using the statistical pooling [35] and 256-
dimensional linear output layer, the extractor is trained with
the ArcFace loss (s = 32,m = 0.2) [25] classifier on the
VoxBlink2 [27] dataset. Then, it undergoes large-margin fine-
tuning (LMFT) [36] on the VoxCeleb2 [26] dataset, achieving
an equal error rate (EER) of 0.3403% on the Vox-O [37] trial.

3.3.2. S2SND Model

The S2SND model training follows the same procedure outlined
in the paper [17]. The process consists of several stages, which
are briefly introduced as follows.
• Stage 1: The weights of the pretrained extractor are frozen,

and the remaining parts of the model are trained solely on the
simulated data with a learning rate of 1e-4.

• Stage 2: The weights of the pretrained extractor are unfrozen,
and the entire S2SND model is trained using 50% simulated
data and 50% real data.

• Stage 3: The learning rate is further decayed to 1e-5 for the
final fine-tuning.

3.3.3. MC-S2SND Model

Regarding network architecture, the MC-S2SND model differs
from the original S2SND model only by adding a new channel
attention module. Therefore, we begin training the MC-S2SND
model using the weights from the previously trained S2SND
model. Due to the lack of multi-channel simulated data, only



Table 1: Diarization error rates (DERs) of different models on
the MISP-Meeting evaluation set.

# Method Embedding
Clustering

Block
Shift

DER
(%)

1

S2SND

× 8s 13.79
2 ✓ 8s 13.68
3 × 2s 11.89
4 ✓ 2s 11.48

5

MC-S2SND

× 8s 9.77
6 ✓ 8s 9.42
7 × 2s 8.94
8 ✓ 2s 8.62

9 MC-S2SND (+adapt.) ✓ 2s 8.09

real data is used for this model. The two-stage training strategy
is described as follows:
• Stage 1: The weights initialized from the previous S2SND

model are frozen, and the newly initialized channel attention
module is added. The MC-S2SND model is trained with a
learning rate of 1e-4.

• Stage 2: All weights of the MC-S2SND model are unfrozen
and fine-tuned with a learning rate of 1e-5.

3.4. Inferring Details

The primary inference process has been introduced in Sec. 2.3.
However, due to limited GPU memory, all test audio must also
be split, normalized, and converted into log Mel-filterbank en-
ergies in the same manner as the training data. For both S2SND
and MC-S2SND models, two implementation tricks for block-
wise processing are outlined as follows.

3.4.1. Embedding Clustering

At the step of speaker embedding extraction, each speaker will
have multiple embedding vectors from different blocks. To
maximize intra-speaker similarity and minimize inter-speaker
similarity across all extracted embeddings, we perform K-
Means clustering using the Scikit-Learn 2 toolkit. Specifically,
the average embedding of each speaker is used as the initial cen-
troid for the K-means algorithm. After clustering, the number
of speakers remains unchanged, but some embedding vectors
may be reassigned. The updated average embedding for each
speaker is then used for voice activity detection.

3.4.2. Score-level Fusion

At the step of voice activity detection, the output from each
block is stitched along the time axis. Since the block shift is
shorter than the block length, there will be overlapping predic-
tions between adjacent blocks. We average the overlapping pre-
dictions as a score-level fusion. The impacts of these techniques
are evaluated in the experimental results.

4. Results
The evaluation metric is the diarization error rate (DER) with-
out collar tolerance. Table 1 illustrates the performance of the
systems we developed on the MISP-Meeting evaluation set.

2https://scikit-learn.org/stable/
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Figure 3: Leaderboard of the MISP 2025 Challenge (Task 1).
The official baseline and top-ranked systems are plotted, where
team names have been anonymized.

Systems #1-4 represent the S2SND model with different in-
ference settings. The ablation results show that the embedding
clustering and dense score-level fusion strategies contribute to
improved diarization performance. System #4, which combines
both strategies, achieves the best S2SND result with a diariza-
tion error rate (DER) of 11.48%.

Systems #5-8 represent the MC-S2SND model with differ-
ent inference settings. The initial diarization result is provided
by System #4. Ablation experiments still demonstrate the effec-
tiveness of embedding clustering and score-level fusion strate-
gies. System #8 achieves the best MC-S2SND result with a
diarization error rate (DER) of 8.62%.

The experimental results above show that our newly pro-
posed MC-S2SND model significantly outperforms the original
S2SND model in offline multi-channel inference. Finally, Sys-
tem #9 further adapts System #8 on a mixture of the training
and development sets for several epochs. The resulting diariza-
tion error rate (DER) of 8.09% demonstrates that deep neural
networks can still greatly benefit from real high-quality data as
much as possible.

5. Conclusions

This paper describes our proposed Multi-Channel Sequence-to-
Sequence Neural Diarization (MC-S2SND) framework for the
speaker diarization task in the MISP 2025 Challenge. Com-
pared to the original S2SND method, the modified MC-S2SND
model effectively processes multi-channel audio to enhance di-
arization performance in offline scenarios. As shown in Fig. 3,
the best result from our developed system ranks first place in
Task 1 (speaker diarization) of the competition leaderboard.
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