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Abstract
Genetically engineered mice, whose behaviors resemble those
of individuals with Autism Spectrum Disorder (ASD), serve as
valuable models for studying ASD through ultrasound vocaliza-
tion (USV) analysis. In this paper, we investigate the effective-
ness of pre-trained models in learning features of the USVs by
fine-tuning. To bridge the gap between the pre-trained model
and the inductive bias of the ultrasonic signal, we design a
uniformly-spaced filter bank to reduce the dimension in the fre-
quency domain. The extracted filter-bank energies of the ultra-
sonic spectrogram form a pseudo-spectrogram for pre-trained
models. In the back-end, we employ an attentive frame-wise
scoring method for classification, resulting in a comprehensive
judgment. Experimental results demonstrate the effectiveness
of our approach, achieving a segment-level Unweighted Aver-
age Recall (UAR) of 0.729 and a subject-level UAR of 0.882 on
the validation set provided by the MADUV 2025 Challenge.
Index Terms: mice autism spectrum disorder detection, ultra-
sound vocalizations, bioacoustic feature analysis

1. Introduction
Autism Spectrum Disorder (ASD) is a complex neurological
and developmental disorder characterized by deficits in social
communication and interaction, as well as restricted and repet-
itive behaviors [1, 2]. The etiology of ASD is multifactorial,
involving a combination of genetic and environmental factors
that disrupt typical brain development. Experimental animal
models are indispensable for advancing our understanding of
the underlying causes and developmental trajectories of human
diseases, including ASD [3, 4]. These models allow researchers
to explore mechanisms that cannot be easily studied in humans
and are essential for evaluating potential treatments. Gener-
ally, ASD animal models can be classified into two main cat-
egories: those induced by environmental factors and those gen-
erated through genetic manipulations [3]. In particular, genet-
ically induced ASD models, particularly mouse models, have
been instrumental in elucidating the genetic basis of the disor-
der. Mice share significant genetic similarities with humans,
including conserved genomic regions associated with ASD [5].
By using genetic engineering techniques, researchers can create
mouse models that replicate key aspects of human ASD symp-
toms, enabling them to test potential treatments and identify
genetic alterations that may also be relevant to human popu-
lations [3, 6].

Among the various studies using mouse models, one key
area of focus is analyzing mice’s behavioral patterns through
their Ultrasonic Vocalizations (USVs) and examining how these
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vocalizations relate to social behavior [7]. Numerous studies
have demonstrated significant differences between the USVs of
genetically engineered mice and those of wild-type mice [8, 9].
Building on these biological insights, the MADUV 2025 Chal-
lenge [10] introduces a novel interdisciplinary research field
that integrates speech processing techniques with biology and
neuroscience. The challenge provides audio data from both
ASD and wild-type mice, aiming to advance speech-technique-
aided classification and diagnosis of ASD in animal models.

While previous studies have explored ASD detection
through the analysis of human vocalizations [11, 12, 13], this
challenge takes a groundbreaking step by focusing on non-
human vocalizations. A key difficulty lies in the fact that most
existing speech processing technologies are designed for hu-
man speech, which primarily occupies lower frequency ranges.
In contrast, mice produce USVs at relatively high frequencies,
posing a unique challenge.

In this paper, we explore the effectiveness of audio pre-
trained models on the mice ASD task of mice ultrasound vo-
calization processing. In order to bridge the gap between the
ultrasound spectrogram and the audio spectrogram, we intro-
duce a set of uniform filter banks to model USVs. The obtained
filter bank energies serve as pseudo-spectrogram input for fine-
tuning the BEATs [14] and CED [15], which are pre-trained on
AudioSet [16], as the backbone models. We also introduce an
attention-based frame-wise scoring method for the classifica-
tion task to deal with the frequency characteristics that exhibit
significant temporal fluctuations in mice USVs. We achieved a
segment UAR of 0.729 and a subject UAR of 0.882 on the vali-
dation set of the MADUV 2025 challenge. We release our code
at 1.

2. Related works
Previous studies in humans ASD have identified prosodic differ-
ences between individuals with and without ASD, revealing that
individuals with ASD tend to exhibit a slower speech rate [17],
a more melodic intonation style [18], and higher pitch values
along with abnormal high-frequency components [19].

These findings underscore the distinct acoustic characteris-
tics associated with ASD, suggesting that vocal patterns could
serve as potential biomarkers for diagnosis. Building on this,
researchers have increasingly leveraged machine learning and
speech processing techniques to automatically detect ASD us-
ing human speech. In 2013, the Interspeech Computational
Paralinguistics Challenge introduced tasks aiming at studying
autism and its manifestations in speech [20]. Asgari et al. [21]
proposed a novel speech feature extraction algorithm that im-
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Figure 1: The overview of our proposed framework. F and T stands for the dimensions for frequency and time domain in the spectrogram
respectively. E denotes the filter bank energy.

proved upon existing methods by estimating harmonic model
parameters and deriving features such as Harmonic-to-Noise
Ratio (HNR), shimmer, and jitter. By combining these features
with standard acoustic features and employing Support Vector
Machines (SVMs) for classification, their approach achieved a
2.3% and 2.8% improvement in UAR over baseline results for
detecting ASD and classifying individuals into four subtypes.
Later, Baird et al. [22] explored multi-class classification of vo-
calizations from children with varying autism severity using a
novel dataset. Their research applied feature extraction methods
based on the Interspeech Computational Paralinguistics Chal-
lenge [23] feature sets and used SVM for classification. Addi-
tionally, they investigated the use of convolutional neural net-
works (CNNs) to analyze spectrogram representations of autis-
tic speech data, further expanding the application of deep learn-
ing techniques in ASD detection. Recently, Chi et al. [24] com-
pared the performance of Random Forest, CNNs, and a fine-
tuned Wav2Vec 2.0 model for autism detection, demonstrating
the significant advantage of deep learning models over tradi-
tional machine learning approaches.

Mice USVs, which have been found to be related to charac-
teristics such as sex, health, and health conditions [25], have
been used as a model for understanding human communica-
tion [26]. However, mouse vocalizations differ significantly
from human speech, as they occur in the ultrasonic frequency
range. Fonseca et al. [27] developed a software called Vo-
calMat, which applies image processing and machine learning
for multi-class labeling to detect mice USVs in spectrograms.
Premoli et al. proposed a CNN-based framework for auto-
matic mice vocalization classification, with experimental results
showing that, compared to traditional supervised machine learn-
ing methods like SVM and Random Forest, considering the en-
tire time/frequency information of the spectrograms led to a sig-
nificant performance improvement [28]. In a similar study [29]
conducted on the challenge dataset, Qian et al. explored the
inaudible portion of the USVs for ASD diagnosis using a large-
scale pre-trained audio model, PANNs (CNN14) [30]. Their
approach achieved a segment-level UAR of 0.666 and a subject-
level UAR of 0.792 for this binary classification task.

3. Methodology
We fine-tune pre-trained models to learn feature representa-
tions of ultrasound vocalizations obtained by a novel uniformly
spaced filter bank. Specifically, the filter bank reduces the
frequency-domain dimensionality of ultrasound signals, ex-
tracting filter-bank energies to construct a pseudo-spectrogram,

which then serves as input for model fine-tuning. Addition-
ally, we also propose an attention-based frame-wise scoring
method in the back-end to capture essential frequency changes
along frames. As illustrated in Figure 1, the input audio is
first transformed into a spectrogram representation, which is
then preprocessed by our proposed uniformly spaced filter bank
and concatenated into a low-dimensional filter bank energy fea-
ture, which is then encoded using a pre-trained model for fine-
tuning. The framework further incorporates an output module
designed to down-sample the encoded embeddings and perform
classification. In Section 3.1, we explain the proposed uni-
formly spaced filter bank method. In Sections 3.2, we introduce
the pre-trained BEATs model [14] and briefly discuss the fine-
tuning strategies. Section 3.3 presents the proposed attention-
based frame-wise scoring method and provides a detailed ex-
planation of its design and implementation.

3.1. Uniformly Spaced Filter Bank

As shown in Figure 1 our method involves transforming high-
frequency ultrasonic audio into a spectrogram and applying
Uniformly Spaced Filter Bank to extract filter-bank energies as
a pseudo low-dimensional spectorgram. Specifically, by apply-
ing the filter bank, the full frequency range is partitioned into
128 equal sub-band images, and the mean value within each
images is computed along the frequency-domain. This process
results in a compact feature representation of shape [t, 128],
where t represents the time dimension.

The key advantage of this approach is its ability to sig-
nificantly reduce the dimensionality of the ultrasonic spectro-
gram while retaining crucial frequency information. By down-
sampling the ultrasonic signals, this method enables us to fine-
tuning models that are pre-trained on human-audible sound us-
ing USVs. Additionally, by averaging within each sub-band
image, it smooths out local variations, mitigating the effects of
noise and redundant high-frequency components.

In Section 4.5, we compare the performance of different
window length parameters when extracting the spectrogram
during the feature extraction.

3.2. Pre-trained Models and Fine-tuning

In this section we will provide a brief introduction of the pre-
trained models explored and employed in our system, and the
fine-tuning strategies.

BEATs [14] is a self-supervised learning framework for
audio pre-training that utilizes an acoustic tokenizer to learn
meaningful audio representations. Inspired by NLP pre-training



methods, BEATs first trains an acoustic tokenizer to discretize
audio signals into token-like units, following the human au-
ditory perception by focusing on high-level audio semantics.
BEATs achieves a state-of-the-art results in various audio un-
derstanding tasks, such as speech, music and environmental
sound classification.

CED [15] is an augmentation and knowledge distillation
method designed for audio tagging. It uses the Vision Trans-
former (ViT) as its backbone model, leveraging its scalability
and ability to handle varying input lengths. By transferring the
advantages of ensemble models to a more efficient, lightweight
student model, CED significantly enhances audio tagging accu-
racy while reducing computational complexity.

In our framework, we perform full model fine-tuning on
both pre-trained models rather than training from scratch, given
the limited dataset size. Fine-tuning is particularly effective in
this scenario, as it leverages the knowledge already learned by
the pre-trained models, reducing the need for large amounts of
data and mitigating the risk of overfitting [31].

In Section 4.5, we compare the performance of these two
pre-trained models.

3.3. Attention-based Frame-wise Scoring Method

For the classification task, we propose an attention-based frame-
wise scoring method to adaptively down-sample the feature em-
beddings obtained from the backbone model. As illustrated in
Figure 1, our approach consists of a dropout layer, a linear pro-
jection layer, and an attentive pooling layer.

Specifically, given an input embedding X ∈ RB×T×F ,
where B, T , and F denote batch size, time steps, and frequency
feature dimensions, respectively, we first apply a linear transfor-
mation to project the feature dimension from F to 2, resulting in
X ′ ∈ RB×T×2. This transformation condenses the frequency
domain information into two representative logits per frame.

Next, we employ an attention-based pooling layer [32] to
adaptively assign importance scores αt to different frames, en-
suring the model focuses on the most informative time steps.
The final representation is computed as a weighted sum of trans-
formed frame-level embeddings:

Xfinal =

T∑
t=1

αtX
′′
t , Xfinal ∈ RB×2 (1)

This process effectively aggregates the sequence into a
compact form that serves as the input for the classification
task. By leveraging attention mechanisms, our method en-
hances key temporal patterns while filtering out noise and ir-
relevant variations. Given the temporal variability in mice vo-
calizations—where frequency characteristics can fluctuate sig-
nificantly over time—our approach dynamically weights frames
based on their contribution to classification. This allows us to
capture essential frequency changes while reducing the influ-
ence of less relevant information, ultimately leading to more
robust and accurate predictions.

In Section 4.5, we present experiments that demonstrate the
effectiveness of the scoring method.

4. Experiments
4.1. Dataset

The MADUV 2025 challenge provides a dataset consisting of
recordings from 84 mouse subjects, including 44 wild-type and
40 ASD model type [10]. Each subject was recorded once at
Postnatal Day 8 (P08) for five minutes using high-precision

Table 1: Statistics on number of audio segments in the dataset

Train Valid Test Total

All 51 17 16 84
With ASD 27 7 6 40
Wild Type 24 10 10 44

microphones at a 300 kHz sampling rate, resulting in approx-
imately 7 hours of audio.

To ensure balanced distributions of ASD model type, the
dataset was divided into training (51 subjects), validation (17
subjects), and test (16 subjects) sets. The test set was further
segmented into 160 non-overlapping 30-second clips, with la-
bels removed and shuffled for evaluation. In contrast, training
and validation recordings remain unsegmented. The dataset dis-
tribution is summarized in Table 1.

4.2. Implementation Details

For data processing, we follow the baseline approach in [10],
segmenting each audio recording in the training and valida-
tion sets into 30-second clips with a 15-second overlap. This
segmentation ensures that the model captures sufficient context
while preserving relevant temporal information. Spectrograms
are then computed from the segmented audio using an NFFT of
300k, a hop length of 150k, and a window length of 300k. Next,
we apply our proposed uniformly spaced filter bank method
to extract filter bank energies with dimensions of [t, 128] and
[t, 64] from each spectrogram. The 128-dimensional repre-
sentation aligns with the BEATs [14] structure, while the 64-
dimensional representation is suited for the CED [15] frame-
work.

For the pre-trained model, we load the BEATsiter3 check-
points for both backbone models from their official GitHub
repositories. During training, we follow the challenge baseline
paper and use the binary cross-entropy loss function, optimizing
the model with the ADAM optimizer [33]. A warm-up sched-
uler is applied, starting with an initial learning rate of 2e − 5
and gradually increasing to a target learning rate of 1e− 4 over
1000 warm-up steps. The batch size is set to 250, and the model
is trained for 200 epochs.

4.3. Metrics

Following the baseline paper of the MADUV challenge [10],
Segment Unweighted Average Recall (UAR) and Subject UAR
are used as the criterion, with the following definition:

UAR =
1

C

C∑
c=1

TPc

TPc + FNc
(2)

where C is the total number of classes, TPc represents the num-
ber of true positive samples for class c, and FNc denotes the
false negatives for class c.

4.4. Performance Comparison

We compare the performance of our proposed model with the
challenge baseline model, as shown in Table 2. On the vali-
dation set, our model achieves a segment UAR of 0.729 and a
subject UAR of 0.882, representing relative improvements of
0.047 and 0.069, respectively, over the best-performing base-
line. These results highlight the effectiveness of our approach



Table 2: Comparison of performance between the proposed and
baseline models on the validation set

Validation Set
Model Feature Segment UAR Subject UAR

baseline [10] full 0.675 0.813
baseline [10] ultra 0.664 0.819
baseline [10] audi 0.682 0.813

Ours - 0.729 0.882

in capturing more discriminative features and improving classi-
fication accuracy.

4.5. Ablation Study

Table 3: Comparison of the best performance of BEATs and
CED pre-trained models on the validation set

Pre-trained Model Segment UAR Subject UAR

BEATs 0.729 0.882
CED 0.643 0.750

4.5.1. Pre-trained Models

Table 3 presents a comparison between pre-trained BEATs and
CED models. BEATs significantly outperform CED, achieving
0.729 and 0.882 in segmental and subject UAR, respectively,
compared to 0.643 and 0.750 for CED. The performance advan-
tage of BEATs can be attributed to its self-supervised learning
(SSL) approach, which enables it to learn robust audio repre-
sentations directly from data, making it more adaptable to ultra-
sound audio. In contrast, CED relies on knowledge distillation
from pre-trained teacher models, which may not generalize well
to non-speech audio like ultrasound signals.

Table 4: Comparison of performance between different input
feature dimensions and different types of pooling layer on the
validation set using pre-trained BEATs

Feature Dim Pooling Layer Segment UAR Subject UAR

[181,128] AttAvgPool 0.706 0.764
[91,128] AttAvgPool 0.716 0.764
[61,128] AttAvgPool 0.729 0.882
[61,128] AvgPool 0.688 0.750

4.5.2. Input Feature Dimension

Lines 1-3 in Table 4 present a comparison of the performance
across different input feature dimensions on the validation set.
The variations in time axis of the feature dimensions are the re-
sult of setting different window length, 100k, 200k and 300k
respectively, when extracting spectrogram from raw audio data.
From the results, it is evident that using an input size of
[61, 128] yields the best performance. This improvement can
be attributed to the fact that the [61, 128] is obtained from a
spectrogram extracted with the same window length, 300k as
the baseline paper [10]. In contrast, when the input dimension
deviates from this size, the feature distribution becomes mis-
aligned, which in turn hampers the effectiveness of fine-tuning.

4.5.3. Pooling Layer

Lines 3 and 4 in Table 4 compare two pooling layers for down-
sampling embeddings from the backbone model. Our proposed
Attentive Average Pooling (AttAvgPool) significantly outper-
forms standard Average Pooling (AvgPool), despite both using
the same input dimension of [61, 128]. This highlights the ben-
efits of adaptive frame-wise weighting, allowing the model to
emphasize the most relevant frames for classification. By dy-
namically adjusting frame importance, our method effectively
handles the temporal variability in mice vocalizations, demon-
strating its superiority in enhancing classification performance.

Table 5: Comparison of performance between different spectro-
gram augmentation mask size on the validation set using pre-
trained BEATs

TimeMask FreqMask Segment UAR Subject UAR

5 10 0.713 0.826
10 15 0.729 0.882
15 20 0.683 0.833
20 25 0.669 0.694

4.5.4. Spectrogram Augmentation

As shown in Figure 1, we apply spectrogram augmentation [34]
to enhance model robustness by randomly masking spectrogram
regions during training. Table 5 compares model performance
with different time and frequency mask sizes on the validation
set. The best results—Segment UAR of 0.729 and Subject UAR
of 0.882—are achieved with a time mask of 10 and a frequency
mask of 15, suggesting that moderate masking helps the model
learn more generalized features. However, larger masks (e.g.,
15, 20 and 20, 25) degrade performance due to excessive infor-
mation loss, while smaller masks (e.g., 5, 10) lead to overfitting,
highlighting the need for balanced augmentation.

5. Conclusion
In this work, we explore the effectiveness of pre-trained models
for ultrasound vocalization (USV) analysis in genetically engi-
neered mice, a crucial step toward improving Autism Spectrum
Disorder (ASD) detection. To address the gap between models
pre-trained on audible data and the high-dimensionality feature
of ultrasonic signals, we design a uniformly spaced filter bank
to reduce frequency-domain dimensionality, enabling more ef-
fective feature extraction. The resulting filter bank energy fea-
tures are used to fine-tune pre-trained models, while an atten-
tive frame-wise scoring method provided a robust classification
framework. Experimental results demonstrate the superiority of
our approach, achieving segment-level and subject-level UARs
of 0.729 and 0.882 on the MADUV 2025 Challenge validation
set. These findings highlight the potential of our method in ad-
vancing automated ASD analysis in mouse models and pave
the way for further research on pre-trained model adaptation
for bioacoustic signal processing.
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