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Investigating Long-Term and Short-Term
Time-Varying Speaker Verification

Xiaoyi Qin, Na Li, Shufei Duan

Abstract—The performance of speaker verification systems can
be adversely affected by time domain variations. However, limited
research has been conducted on time-varying speaker verification
due to the absence of appropriate datasets. This paper aims to
investigate the impact of long-term and short-term time-varying
in speaker verification and proposes solutions to mitigate these
effects. For long-term speaker verification (i.e., cross-age speaker
verification), we introduce an age-decoupling adversarial learning
method to learn age-invariant speaker representation by min-
ing age information from the VoxCeleb dataset. For short-term
speaker verification, we collect the SMIIP-TimeVarying (SMIIP-
TV) Dataset, which includes recordings at multiple time slots every
day from 373 speakers for 90 consecutive days and other relevant
meta information. Using this dataset, we analyze the time-varying
of speaker embeddings and propose a novel but realistic time-
varying speaker verification task, termed incremental sequence-
pair speaker verification. This task involves continuous interaction
between enrollment audios and a sequence of testing audios with
the aim of improving performance over time. We introduce the
template updating method to counter the negative effects over
time, and then formulate the template updating processing as a
Markov Decision Process and propose a template updating method
based on deep reinforcement learning (DRL). The policy network
of DRL is treated as an agent to determine if and how much should
the template be updated. In summary, this paper releases our
collected database, investigates both the long-term and short-term
time-varying scenarios and provides insights and solutions into
time-varying speaker verification.

Index Terms—Cross-age, reinforcement learning, speaker
verification, template updating, time-varying.

I. INTRODUCTION

UTOMATIC Speaker Verification (ASV) has made re-
markable advancements in recent years, largely due to the
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application of deep learning techniques such as X-vector [1] and
its variant [2], [3], [4], which extract a fixed-dimensional dis-
criminative feature from variable-length audio inputs. Margin-
based loss functions such as SphereFace [5] and ArcFace [6],
have also been adopted to train ASV system with large-scale
databases, which effectively reduces the intra-speaker variability
and increasing the inter-speaker distance. However, the current
performance of ASV systems falls short of the standards required
for certain applications. Several challenges and limitations exist
that impede the reliability and accuracy of ASV in practical
scenarios. We categorize these challenges into speaker intrinsic
and extrinsic variations. Speaker intrinsic variations consist of
variations in individual’s speech and vocal characteristics, such
as changes in the human voice due to aging, emotions, and
physiological state. Speaker external variabilities also include
various factors that can affect ASV performance. These fac-
tors include but not limited to low-quality data characterized
by low signal-to-noise ratio (SNR), reverberation, distortion,
and far-field recording. Additionally, cross-domain scenarios,
such as cross-lingual and cross-channel conditions, can further
degrade the ASV performance. While many research works
have been devoted to speaker external factors [7], [8], [9], [10],
[11], [12], limited attention has been given to speaker intrinsic
variations due to challenges in simulating intrinsic changes and
a scarcity of relevant data. However, in practical applications,
voice characteristics of an individual can naturally vary over
time, potentially leading to errors in speaker verification systems
crossing a certain period of time [13], [14], [15], [16], [17].
Therefore, this paper focuses on the time-varying effects in
speaker verification. We divide time-varying speaker verification
into three subproblems:!
¢ Intra-day variation speaker verification (IDV-SV) for vari-
ations across different times of the day;
e Short-term time-varying speaker verification (STTV-SV)
for variations across times of the year;
e Long-term time-varying speaker verification or cross-age
speaker verification (CA-SV) for variations across ages.
We focus on the solutions of STTV-SV and CA-SV. [18]
introduces that the biometric template aging problem is typ-
ically addressed in the following ways: (1) frequent (and
forced) template updates; (2) use of age invariant biometric
features; (3) simulation of aging effects; (4) age progression
compensation methods. Considering the time-varying speaker

The definition of time-varying scenarios in this paper is slightly different
from [14], which defines the short-term as different times of the day, medium-
term as times of the year, and long-term as changes with age.

2329-9290 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Duke University. Downloaded on November 15,2024 at 14:18:06 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-6072-8237
https://orcid.org/0000-0002-6406-1983
mailto:ming.li369@dukekunshan.edu.cn
https://github.com/qinxiaoyi/TimeVarying_ASV
https://github.com/qinxiaoyi/TimeVarying_ASV

QIN et al.: INVESTIGATING LONG-TERM AND SHORT-TERM TIME-VARYING SPEAKER VERIFICATION

characteristics of human speech signal, we adopt different strate-
gies to handle different types of speaker time-varying chal-
lenges: proposing a template updating strategy to deal with
short-term time-varying variabilities and learning age-invariant
speaker representations to address long-term time-varying
effects.

For STTV-SV scenarios, previous studies have shown that
speaker verification systems can experience degraded perfor-
mance over just a few months or even days [9], [16], [19].
However, existing short-term time-varying speaker verification
datasets often have limited speakers and specific time intervals,
and most of them are recorded in lab settings. Consequently,
they may not fully capture the complexity of real-life scenarios
and their proposed methods may lack robustness. Additionally,
it is worth noting that some of these datasets were recorded
decades ago, using a relatively low sampling rate of 8 kHz.
To overcome these limitations and further investigate short-
time time-varying speaker verification, we collect the SMIIP-
TimeVarying (SMIIP-TV) dataset and publicly release it in this
paper. The SMIIP-TV dataset comprises continuous recordings
of 373 speakers over a span of 90 days. This dataset also includes
meta-information associated with each recording. In real-world
usage scenarios, enrollment templates interact with positive or
negative samples at various time periods. Therefore, we propose
anovel time-varying speaker verification task called Incremental
Sequence-pair Speaker Verification (ISSV), where enrollment
template interacts with testing audios in chronological order,
ASV system can continue updating templates in the interactive
process of a sequential trial to counteract the effects of time-
varying. In this task, we propose a template updating method
that leverages deep reinforcement learning (DRL) to replace
the fix-weight template updating approach [20], in which the
updating thresholds and weights are pre-determined and fixed.

For CA-SV scenarios, also known as long-term time-varying
speaker verification, early research focus on small-scale datasets
due to the challenges in collecting cross-age speech data, which
is time-consuming and expensive [21], [22], [23], [24]. Some
recent works have analyzed the influence of age on speaker
verification [25] and diarization [26]. However, the evaluation
sets in these datasets do not include the cross-age speaker
verification scenario. Some studies [27], [28], [29], [30], [31]
also experimented on NIST SRE and TIMIT [32] datasets to
estimate speaker age, but each speaker’s data only cover one
age point. [33] studied the impact of demographic imbalance
on group fairness in speaker recognition, taking into account
age influence. [34] establishes a quantitative measure between
aging and ASV scores in VoxCeleb and LCFSH. [35] proposed
an aging calibration method to compensate for the detrimental
impact of aging on speaker verification performance. However,
there is no large-scale dataset available for CA-SV studies. Cur-
rently, we found that celebrity audio-visual resource is inherently
cross-age. Therefore, we mine cross-age test sets based on the
VoxCeleb dataset. [36], [37] gathered age information from
VoxCeleb, with [37] reporting 14,247 videos with age labels
in VoxCeleb2, and [36] reporting 21,678 videos with age labels
in VoxCeleb2 as well. However, considering the total number
of videos in VoxCeleb2 development set (143,124 videos) and
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VoxCeleb 1 (22,496 videos), [36], [37] only cover a very small
portion. This limitation prevents for sufficient model training,
especially when compared with the current published studies
that were trained on Vox2dev and evaluated on VoxCelebl.
Therefore, we employ a facial age estimation method to label
all videos in VoxCelebl & 2. Specifically, the paper constructs
multiple cross-age test sets on VoxCelebl (Vox-CA), deliber-
ately selecting positive trials with significant age gaps. The
baseline system’s performance experienced a noticeable drop
from a 1.939% Equal Error Rate (EER) on the Vox-H [38] test
set to 10.419% on the Vox-CA20 test set, as detailed in Section
V-B1. Inspired by related works of face recognition [39], [40],
[41],[42], we propose the Age Decoupling Adversarial Learning
(ADAL) module to encourage speaker identity features to have
smaller intra-class variations and be less correlated with the age
information.

This paper builds on our previous work on cross-age speaker
verification [43], while also introducing a novel short-term time-
varying speaker verification task. Our previous work focused on
the construction of the Vox-CA benchmark and the description
of the learning age-invariant representation method, but due to
space constraints, we were unable to provide comprehensive
experimental details. In this paper, we provide more experimen-
tal details to fully present our findings of CA-SV and propose
a new task with its corresponding solutions of STTV-SV. Our
main contributions are as follows:

® A systematic discussion of time-varying speaker verifica-
tion, including both short-term time-varying and cross-age
speaker verification.

® Providing additional design details of the previously pro-
posed cross-age speaker verification scenario.

e Releasing the SMIIP-TV dataset, which focuses on the
short-term time-varying speaker verification. Based on this
dataset, we propose time-delay score and time-delay EER
as auxiliary metrics to evaluate the ASV system over time.

¢ Introducing the incremental sequence-pair speaker verifi-
cation task in the short-term time-varying scenario.

e Formulating the template updating process as a Markov
Decision Process and using a deep reinforcement learning-
based mechanism to determine the updating strategy.

The remaining paper is organized as follows. We discuss
related works and introduce time-varying speaker verification
tasks in Section II. Section III describes cross-age speaker
verification task and proposed methods. Section IV presents
the SMIIP-TV dataset and our proposed deep reinforcement
learning based template updating method. Sections V and VI
provides the experimental setup and results analysis for CA-SV
and STTV-SV, respectively. Finally, our conclusions are pre-
sented in Section VIII.

II. RELATED WORKS AND TASK INTRODUCTION
A. Related Works

In this part, we provide a brief overview of time-varying
speaker verification, focusing on two categories: short-term and
long-term time-varying speaker verification.
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Short-term time-varying speaker verification: Early research
has raised concerns about the impact of time-varying effects
on speaker verification. [13] observed a decline in performance
as the time gap between training and test data increased. [16]
demonstrated that system performance dropped by nearly 50%
when the time interval between enrollment and testing increased
from 10 minutes to 2 months. Similarly, DeepSpeaker [19]
reported a decrease in performance from 2.11% Equal Error
Rate (EER) t0 2.50% and 2.76% when the enrollment and testing
intervals vary from 1 week to 1 mo and 3 months, respectively.
In our summary report of Far-field Speaker Verification Chal-
lenge 2022 (FFSVC2022) [9], we also reported a significant
performance decline with longer intervals between enrollment
and testing audios.

Several datasets, such as CSLT-Chronos [15], CSLU [44],
and TRSD [45], have been collected to investigate the effects
of short-term time-varying variabilities. However, due to chal-
lenges in collecting time-varying data, most of these datasets
have a limited number of speakers, such as 60 speakers in [15],
91 speakers in [44], and 55 speakers in [45]. Moreover, these
datasets were recorded at specific time intervals rather than in
continuous, real-life scenarios that encompass the complexities
of varying conditions throughout the day. Additionally, while
there are speech datasets available with speaker identity in-
formation, they are typically recorded only once a day, such
as Automatic Speech Recognition (ASR) databases like Lib-
riSpeech [46], AISHELL-2 [47], and TIMIT [32]. This limited
temporal coverage may be one reason why the addition of ASR
data has shown limited improvement on the speaker verification
task [48], [49]. Therefore, there is a need for a dataset that covers
a multiple randomly prompted time slots in each day within
a continuous multi-month period from a large size cohort of
speakers, capturing various states in real life from waking up
to sleeping and aligning more closely with practical application
scenarios.

To mitigate the negative effects of time-varying variations,
red [15] proposed two modified acoustic features: pre-filtering
frequency warping and post-filtering filter-bank outputs weight-
ing, to alleviate the impact of time-varying factors. [50] proposed
setting a prior decision threshold for speaker verification and
provided examples of modifying the threshold during verifi-
cation process to improve performance. However, this method
requires continual operation for threshold tuning, which may not
be practical in real-world applications. [24] discussed the impact
of template aging in speaker verification and attempted to answer
how often voice biometric templates should be updated. This
viewpoint is similar to our proposed solution; however, due to
data limitations, the author did not delve into further exploration
and investigation.

Long-term time-varying speaker verification: [14] indicates
that voice changes over time and samples with long-term gaps
represent a challenge for speaker verification. To address this,
the TCDSA database was introduced in [22], which contains
long-term data from 18 speakers spanning a range of 30-60
years for each speaker. Based on the findings from TCDSA,
authors of [17], [22], [23], [51] have concluded that using a
decision threshold fixed at the time of enrollment results in a high
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classification error rate after only a few years. They also observe
that the issues of aging and quality variation are interconnected,
with the effect of aging increasing over time and variations in
quality becoming more likely. To address the associated vari-
ability from aging and quality, a verification decision boundary
is proposed in score-aging-quality space by combining aging in-
formation with quality measures and the scores from the GMM-
UBM system [51]. However, tuning the threshold lower may
result in a decline in the miss rate, but the false alarm rate will
rise, and vice versa. Although research on speaker verification
in the context of aging is limited, age-invariant representation
learning has been extensively studied in face recognition [39],
[40], [41], [42] using model-wise approaches. Given that the
aging process indeed increases intra-class variance, employing
angle margin-based loss functions [6], [52] is also a reasonable
method to handle it. However, age-relevant variabilities may not
be specifically emphasized in loss-wise approaches.

B. Tuask Introduction

The traditional ASV task involves determining whether the
claimed identity of an utterance matches a target identity. To
evaluate the performance of a speaker verification system, a
list of trial pairs is provided. Each trial pair consists of two
single speech segments, and the scoring of each trial pair is
independent. In the general task setting, as shown in Fig. 1(a),
the trials are symmetric, meaning that the order of enrollment
and test audio can be reversed without affecting the results.
However, since this paper focuses on time-varying speaker
verification, we take the chronological order into account when
constructing the trial files. Therefore, we introduce two types
of tasks: “Cross-age Single Pair-wise Speaker Verification” for
long-term scenarios and “Incremental Sequence-pair Speaker
Verification” for short-term scenarios of time-varying speaker
verification.

1) Cross-Age Single Pair-Wise Speaker Verification: The tra-
ditional ASV scenario is considered a form of “Single pairwise
speaker verification” where each trial consists of an enrollment
audio and a test audio. In this paper, we consider the time factor,
meaning that the enrollment audio is recorded earlier than the
test audio. In FFSVC-22 [9], we intentionally varied the time
intervals in test trials, where the first recording is used for en-
rollment and tested against the first, second, and third recordings.
The results showed that as the recorded time interval increases,
system performance decreases. Therefore, in this study, we aim
to investigate the effects of larger time intervals and propose the
“cross-age single pair-wise speaker verification task” as shown
in Fig. 1(b). In this task, each trial is single pair-wise, where the
positive pair of enrollment and test audio samples are selected in
strict chronological order. For example, in our specific example
(Fig. 1(b)), the test audio is captured at the present time, while
the enrollment audio is obtained from a recording made ten years
earlier.

2) Incremental Sequence-Pair Speaker Verification: The
previous works on short-term time-varying scenarios [15], [16],
[50] focused on the single pair-wise task. However, considering
the variation over time of speech signals, we propose a novel and
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Fig. 1. Task introduction and schematic diagram of different ASV tasks.
Different colored waveforms represent different speakers.

realistic task called “incremental sequence-pair speaker verifi-
cation (ISSV)” to investigate short-term time-varying scenarios
in speaker verification. Fig. 1(c) shows the form of the ISSV
task. Compared to the single pairwise trial, the ISSV introduces
two key differences. Firstly, each trial in ISSV consists of
one enrollment template and multiple test audios. These test
audios are sequentially presented to interact with the enrollment
template, and their scores are evaluated in a chronological
order. Secondly, the ISSV approach allows for performance
improvement by incrementally updating the enrollment template
during continuous interaction. Specifically, Fig. 1(d) illustrates a
trial instance. Initially, the enrollment template z{""°! is gener-
ated as the average embedding extracted from the enrollment
audios. This template embedding then interacts sequentially
with the chronological testing embeddings, forming a trajectory.
Within this trajectory, the template is scored against each test
embedding. Subsequently, the discriminator module makes an
identity decision based on the scores and updates the template
embedding accordingly. The objective of this task is to evaluate
the ASV systems’ ability to handle time-varying variabilities in
real-world application scenarios.
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III. LONG-TERM SPEAKER VERIFICATION
A. VoxCeleb Cross-Age Test Set

1) Construction Details: VoxCelebl [38] is a benchmark
dataset for speaker verification, consisting of the original Vox-
Celeb]1 original test set (Vox-0), the VoxCelebl extened test set
(Vox-E), and the VoxCelebl hard test set (Vox-H). Vox-E is an
evaluation protocol covering the entire dataset with 1,251 speak-
ers. Vox-H is another evaluation protocol in which all negative
pairs are from the same nationality and gender. We construct
the Cross-Age test sets on VoxCeleb, named Vox-CA, which
includes positive pairs with a large age gap and negative pairs
of the same nationality and gender. The construction pipeline
adopts the following steps:

e Gathering the face images from the meta-data of Vox-

Celeb1? and VoxCeleb2.?

¢ Estimating the age of each face image.

e Labeling the estimated age value for each audio utterance.

e Selecting positive pairs with a large age gap and negative

pairs with speakers of the same nationality and gender.

For clarity, the key stages are described as follows:

Estimating and labeling age for audio: We use Dex [53],* the
winner in visual age estimation track of the ChalLearn LAP2015
challenge [54], to estimate the age value for each face image. Fur-
thermore, as training set of Dex is derived from IMDB-WIKI and
overlaps with speakers in VoxCeleb, Dex based age prediction
is more accurate on VoxCeleb’s facial data. Since the audio of
each utterance corresponds to multiple face images, the average
age value of faces is used as the estimated age for this utterance.
In addition, all the utterances of the same video segment should
share the same age. Thus, the segment age, the average age
among all the utterances belonging to the same video segment, is
determined as the final age label. The estimated age distribution
is shown in Fig. 2(a). In our calculation, the correlation between
age labels in the Age-VOX-Celeb [36] dataset and our estimated
age values is 0.83, with a mean absolute error (MAE) of 7.74.
The 0.83 correlation coefficient result indicates that the predicted
ages aligns well with the trend of actual ages. Although our
estimated ages tend to be slightly older than the actual age
values but the relative age gap and age range information are
still captured. We create trials up to 20 years gap which could
greatly tolerate the error in speaker age estimation.

Forming positive/negative pairs: Since the VoxCeleb2 dataset
is typically used for training in most ASV system, the entire
VoxCelebl dataset contributes to the construction of the cross-
age test set with the following rules.

First, positive pairs must involve speakers from different age;
i.e., the pair audios cannot be from the same video segment. We
count the maximum age gap® of each speaker and present the

2[Online]. Available: https://www.robots.ox.ac.uk/\, vgg/research/
CMBiometrics/

3[Online]. Available: https://www.robots.ox.ac.uk/\,vgg/data/voxceleb/
vox2.html

4[Online]. Available: https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/

>maximum age gap of one speaker indicates the difference between the largest
estimated age value and the smallest estimated age value among all audio files
of this speaker
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Fig. 2. Statistics of speaker age and maximum age gap information in the
VoxCeleb1&2 dataset based on the estimated age values.

distribution in Fig. 2(b). It is observed that the largest age gap for
most speakers is between 0 and 20 years in VoxCelebl, and only
a few speakers have an age gap greater than 20 years. However,
using too few speakers may affect the accuracy of the evaluation
system, so the number of evaluation speakers must be taken into
account when constructing the test set.

Second, following the Vox-H setting, we construct all negative
pairs within the same nationality and gender. We maintain the
same setting as Vox-H, where each nationality-gender combi-
nation has at least five individuals.

According to the rules mentioned above, we construct four
Vox-CA sets according to different age-gap categories:

® Vox-CAS5: The age gap of the positive pair is at least 5
years, and the candidate speakers must have more than 7
years of max age-gap data.

® Vox-CA10: The age gap of the positive pair is at least 10
years, and the candidate speakers must have more than 12
years of max age-gap data.

® Vox-CAlS5: The age gap of the positive pair is at least 15
years, and the candidate speakers must have more than 17
years of max age-gap data.

e Vox-CA20: The age gap of the positive pair is at least 20
years, and the candidate speakers must have more than 22
years of max age-gap data.

The Vox-CA test sets exhibit a progressive overlapping re-

lationship, wherein Vox-CAS5 may include speakers from Vox-
CA10 and even Vox-CA20, thereby potentially encompassing
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TABLE I
THE STATISTICS OF THE VOXCELEB1 TEST SET AND VOX-CA

Test set Spk. Num.  Trials Num. Age-gap
Positive Negative

Vox-0 40 37611 2.68 + 2.88 15.50 + 12.46
Vox-E 1251 579818 3.14 + 3.48 12.05 + 9.81
Vox-H 1190 550894 3.14 + 3.47 11.27 + 9.42
Vox-CA5 971 370540 9.98 + 3.94 12.36 + 9.58
Vox-CA10 506 151384 15.29 + 3.44 14.66 + 9.93
Vox-CAl5 215 54608 20.39 + 3.38 16.63 + 10.24
Vox-CA20 85 18888 25.28 + 2.87 18.42 + 10.58

Trials Num. and Spk. Num. Describe the number of trials and enrollment speakers, respectively. The
column of positive and negative present the mean and standard deviation of age-gap values in
corresponding pairs.

speakers with significant age gaps. However, it is essential to
note that the construction process for Vox-CAS5/10/15/20 is
entirely independent and does not deliberately involve overlap.
All the trials mentioned above have been released.® The Vox-CA
provides a challenging task that covering cross-age, same nation-
ality and same gender cases. In addition, we also implement the
single variable test set, including but not limited to: 1) test set
within the cross-age; 2) test set within the same nation; 3) test set
within the same gender; 4) test set within the intra-segment, to
observe the effect of various factors on verification. The results
are reported in Section V-B1.

2) Comparison of Vox-E, Vox-H and Vox-CA: In this part,
we compare the difference of Vox-E, Vox-H and Vox-CA from
various aspects.

Positive pair within the cross-age and intra-segment: The av-
erage age gap of the VoxCelebl test set is approximately 3 years,
as shown in Table I. Considering the error in age estimation,
most positive trails are from the similar period. The positive
pairs in the VoxCelebl test set are chosen randomly from the
same person without considering the age gap. However, Vox-CA
intentionally selects pair audio from larger age-gap segments.
The other extreme is when the pair of audios are chosen from the
same video segment, resulting in a higher successful verification
rate [43].

Negative pair within the same nationality and gender: Both
Vox-H and Vox-CA take nationality and gender into account
when constructing negative pairs. In contrast, Vox-E randomly
selects pairs from the entire dataset. Thus, the Vox-H and Vox-
CA sets are more challenging.

Overall, the Vox-CA test sets provide a more challenging eval-
uation for speaker verification systems by introducing larger age
gaps, while also considering nationality and gender constraints
for negative pairs. This enables a comprehensive assessment of
the system’s performance under cross-age, same nationality, and
same gender scenarios.

B. Learning Age-Invariant Speaker Embedding

1) Toy Experiment: The results of the cross-age scenario
(only-CA) in Table V present that as the time gap increases, the
performance decrease. This observation leads to the research

[Online].
Verification
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Fig. 3. An overview of the proposed ADAL structure. The AISR denotes the

age-invariant speaker representation. GSP is denoted as global statistic pooling
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question of whether speaker embedding contains age informa-
tion. To investigate this, a toy experiment is conducted by using
a pre-trained ASV system to extract speaker embeddings and
predict the speaker age. The age classifier is employed to classify
the age into 7 groups: 0-20, 21-30, 31-40,41-50, 51-60, 61-70,
and 70-100. The speaker embeddings are fed into a linear layer
for age class prediction, achieving an accuracy of 82.01%. This
high accuracy indicates that speaker embeddings indeed contain
age information. Therefore, the goal is to learn an age-invariant
speaker embedding to mitigate the negative effect of age.

2) Decoupling Age-Related Component: The assumption is
made that the speaker embedding consists of identity and age
information driven by their respective tasks. To decouple the
age information from the identity features, a linear model is
designed. Specifically, the feature embedding z € R%, a d-
dimensional vector extracted from an input audio, is assumed to
be the sum of the identity component z;; and the age component
Zage [40];

Z:Zid+zage (D

An Age-Related Extractor (ARE) module is introduced to
extract age-related information from the high-level feature maps
x € REXFXT where C, F, and T indicate the dimensions
of the channel, frequency and temporal domains, respectively.
The ARE module, utilizing the attention mechanism, includes
a pooling layer (pool), a fully connected layer (fc), and an
attention module denoted by . The age-related embedding with
d-dimensions is obtained by applying pooling, linear transfor-
mation, and attention to the output of the attention module, as
expressed by the following equations:

Zage = ARE(x) = fc(pool(x @ o(x))) (2)

Here, Attentive Statistical Pooling (ASP) [55] is utilized to
perform the pool(x ® o(x)) operation. The purpose of pooling
is to transform variable-length speech features into fixed-length
vector representations along the temporal direction.

Then, the age-related component z,4, is subtracted from z,
effectively reducing the age-related information for supervision
by an age classifier.

3) Multi-Task Learning: Fig. 3 provides a detailed overview
of the proposed network structure. We adopt multi-task learning,
which involves three supervised tasks: identity classification,
age classification, and age adversarial learning.

Identity classification: We adopt the Identity Classifier layer
(IC) to guide the z;4 to represent the identity information.
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To account for speaker aging and the resulted large intra-class
variance in CA-SV, ArcFace is employed as the identity loss
function to reduce intra-class distance.

Age classification: To decouple the age information from
the speaker embedding, an age classifier A is employed to
supervise the learning of age-related embeddings. In general, the
combination of age-classification and regression loss is adopted
as loss function for age estimation. However, since age values
are estimated by faces and not directly obtained from ground
truth, the estimated age labels contain noise. Therefore, an age
group classifier is used, where the age groups correspond to the
ones used in Section III-B1.

Age adversarial learning: To further reduce the age informa-
tion contained in the identity embedding z;4, an additional age
classifier with gradient reversal layer (GRL) [56] is applied upon
the z;4.

The proposed method is named as Age Decoupling Adver-
sarial Learning (ADAL). The final loss function for the method
is formulated as follows:

Zid(zid) = lee(1C(2ia), Yia) (3)
Lage(Zage) = lee(A(Zage): Yage) “4)

£ = gid(zid) + Aage-zage(zage) + )"grl-zage (GRL(sz))
Q)

where ;4 € {0,1,..., N}and yu4. € {0,1,...,6} are the out-
put labels of identity and age estimation tasks, respectively. /..
denotes the cross-entropy loss, and A,4. and A4, are scalars
used to balance different loss terms.

IV. SHORT-TERM TIME-VARYING SPEAKER VERIFICATION
A. SMIIP-TimeVarying Dataset

The SMIIP-TimeVarying Dataset (SMIIP-TV), is a speaker
verification dataset designed for research purposes that focuses
on short-term time-varying of speaker verification. The record-
ings language is mandarin. The dataset contains recordings from
373 speakers who provided utterances over 90 consecutive days,
in which each speaker needs to record multiple utterances at
varying time slots in each day. To ensure that recording time
spans the full day without location limitations, we developed an
Android application, which randomly assigns recording tasks
in five different time slots: 6:00-8:00, 9:00-11:00, 12:00-14:00,
17:00-19:00, and 20:00-22:00, as shown in Fig. 4(a). In each
time slot, speakers provide three utterances, including both text-
dependent and text-independent speech samples. Table II shows
the contents of the recording. Additional meta information such
as speaker region (in total 27 provinces, China), age, and cell-
phone type were collected. Additionally, speakers were asked to
report details on their physical state (in total 7 types, including
normal, sleepy, eating, sore throat, exercise, cold/fever, others),
recording environment (in total 16 scenes) and the degree of
noise (in total 4 levels, including quiet, normal, noisy, extremely
noisy), all were manually reviewed. The dataset statistics are
presented in Fig. 4. The majority of speakers in the dataset
are college students and their families from Shanxi Province,
China, and the gender distribution is balanced (171 males:202
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TABLE II
THE CONTENT STATISTICS OF THE SMIIP-TV DATASET

Content Num. Average Duration (w/o VAD)
'ni hao, mi ya’ 27138 1.86s
’xiao le, xiao le’ 26923 1.88s
'xiao ai tong xue’ 27227 1.92s
‘tian mao jing ling’ 27076 1.91s
‘tong li tong i’ 26972 1.88s
free text 189713 4.45s
total 325049 3.38s

Content and Num. describe text content and its corresponding utterance number,
respectively.

females). Most recordings were made indoors, with majority of
the noise and physical conditions being normal. Speakers were
also encouraged to report various scenes with different physical
conditions. Due to the challenge of continuously recording for
90 days, some speakers were unable to provide recordings for
the entire duration. Finally, 133 speakers recorded for the entire
90-day period, and we selected 58 of them as the SMIIP-TV test
set, and the remaining speaker data (315 speakers) is adopted
as the training set. The entire dataset is available’ for publicly
releasing.

B. Analysis of Time Varying

The aim of this study is to examine speaker variability over
several days, which is referred to as Short-term Time-varying
Speaker Verification. First, the enrollment template embedding
of each speaker is the average of embeddings from correspond-
ing audio samples of the first day, which is then tested against
audio samples from the second, third, and subsequent days up to
the N;;, day. By analyzing the changes in EER and scores curve

"https://github.com/qinxiaoyi/Time Varying_ASV
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Fig. 5. Results in each day scenario. “Average” indicates the average value of
all test speakers in each day. Three subfigures share one legend.

for each individual on a daily basis, insights can be gained into
the temporal dynamics of speaker verification. However, due to
the requirement of a large number of positive and negative trial
scores for calculating EER, and on average only 14.7 speech
samples are available for each speaker per day in our test set,
there are significant fluctuations for both positive trial scores and
EER as shown in Fig. 5.

Therefore, we propose two metrics for analyzing time vary-
ing: the Time-delay Score (TDS) curve and the Time-delay EER
(TD-EER) curve. The TDS is the average scores of current day
and previous days, and the TD-EER computes the EER based
on the positive and negative TDS. These metrics are combined
with the overall EER to evaluate the impact of time varying. The
specific definitions are as follows:

First, we make a definition that in a given set A € R, the
average of set A is denoted as

Then, set S; ; is a subset of trial scores from the j;;, speaker on
the 74, day (total N speaker with M days). The set of all scores
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up to k day is denoted as
TDk = Uigk,jgNSi,j

The set of positive TDS (T'DSP) of the j;, speaker can be
formulated as

TDS;’(k) = TDi,j

The subset of TDp = U< kS where trial ground truths are
positive. The superscnpt p and ™ indicates the positive and
negative trail scores, respectively.

TDSP(k)and TDS™ (k) denote the collections of all positive
trial scores and all negative trial scores up to the k;;, day, respec-
tively. TDSP and T'DS™ curves against the time information
are presented in Fig. 6(a) and (b).

Therefore, the curve function of TD-EER (shown in Fig. 6(c))
can be formulated as :

TD — EER(k) = EER(TDS?(k), TDS™(k))  (6)

Additionally, we plot the sliding window EER (SW-EER) curve
in Fig. 6(d), which computes the EER based on the positive and
negative trial scores over a window period that slide along the
time axis to observe the short-time system performance. We use
a window length of 10 days and a hop length of 1 d in this study.

The results depicted in Fig. 6 indicate a gradual decline trend
in the T'DSP curve and a slowly increasing trend in the TD-
EER curve, indicating a degrading pattern in term of system
performance over time. These trends are in line with the findings
in[15]. Moreover, the negative trial score (7'D S™) curve exhibits
fluctuations within a limited range, indicating that time varying
has little impact on negative samples.

Based on the aforementioned observations and analyses, we
can conclude that there is a slow effect of time varying on positive
trial scores, while negative trials are relatively unaffected. As the
positive trial scores decline over time, the system performance
will also degrade. This raises the question of how to maintain
or even enhance the performance of the speaker verification
systems over time when we continuously use it, e.g. mobile
phone login.

C. Instance-Wise Template Updating

The analysis of short-term time varying (depicted in Fig. 6)
indicates a noticeable decline in performance within a three-
month period. To address this issue, we propose an instance-
wise template updating approach that updates the template after
each validation, reducing the need for long-term storage and
personalized model creation. This method is particularly suitable
for situations where privacy concern associated with storing
audio samples over extended periods is an issue or developing
customized models for individual users is challenging.

1) Fixed-Weight Template Updating Method: Firstly, we in-
troduce a fixed-weight template updating method (FixW-TU)
that updates the enrollment template sequentially when the test
audio progresses, as described in Section II-B2. The updating
method is introduced in [20]:

enroll

o (1 o Oé) Zenroll +oax ztest (7)
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Fig. 6. Results of TDS curves, TD-EER, and SW-EER on the SMIIP-TV test
set. The exemplar speakers are randomly sampled from the test set, with the
“average” curve representing the average results across all 58 individuals in the
test set.

where o represents a predefined updating weight, and z°""°!

and z?*** are d-dimensional enrollment template and test em-
bedding, respectively. The template updating is triggered when
the similarity score between enrollment and test embedding
exceeds the predetermined updating threshold. The threshold is
determined through multiple manual evaluations. Algorithm 1
provides details of the FixW-TU method.

2) Reinforcement Learning Based Template Updating
Method: The FixW-TU approach is limited by the need of
manual calibration to identify appropriate values for the up-
dating threshold 5 and the update weight . Although we can
achieve relatively good results in a specific scenario through
manually tuning the parameters, the optimal parameters might
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Algorithm 1: FixW-TU With Thresholding.

//nitialization

1. Enrollment template: Random sample K embeddings

zgnm”i e RK*4 from a speaker and calculating the average

to obtain the template z&"" /L.

2. Test set: Randomly sampling negative samples and
sequentially sampling positive samples, forming a T-length
sequence Z'®! = zée”_p,zien’",...,Z?Z_si_p} The ratio of
positive and negative samples is 1:1.

3. Fixed weight: a € {0.05,0.1,0.15,0.2,0.3,0.4,0.5}

/1 Implementation

4. Determine updating threshold : $=0.51 (empirical value)
5. Terminated=0

6. while not Terminated do

v = costne(ze"m” est)
ifve>p then

| Z‘;ﬂ”” (1-a) *zenroll +a *zl{est
else

L Zenroll enroll

Terminated=1 1f t+1==T

vary in different setups and using cases. Therefore, we are
motivated to explore adaptive updating methods where the up-
dating decision and the updating weight can be automatically
calculated in a customized manner. We found that template
updating is a sequential decision-making problem with the goal
of maximizing long-term benefits. Therefore, we propose a
Deep Reinforcement Learning-based template updating (DRL-
TU) method that formulates the problem of finding suitable
thresholds and weights as a Markov Decision Process (MDP),
described by (&, ./, 7, R) as the states, actions, transitions,
and rewards. Our approach adopts the Proximal Policy Opti-
mization (PPO) [57] strategy to optimize an agent and aims to
achieve durable verification benefits for the overall system. In
this paper, we propose two DRL-based template updating meth-
ods, namely DRL Adaptive Weighted Template Updating with
thresholding (DRL-TU-AdW) and DRL Multi-Head Template
Updating (DRL-TU-MH). Next, we will present the interaction
environment and the algorithm in details.

3) Interaction Environment: Our proposed DRL-TU meth-
ods operate within an interaction environment consisting of
States, Actions, Transitions, and Rewards, as illustrated in Fig. 7.

States: The input state s; € & for the agent is composed
of {zgnroll ztesty where z{"°! and z!®*! is d-dimensional
enrollment and test speaker embeddings, respectively.

Actions and transitions: For the DRL-TU-MH method, in
every state, the agent can take two actions: the binary updating
decisions a%° and the corresponding updating weight a!"**9"".
The weight a"**?" is a scalar that provides the updating weight
for the test embedding. The updating decision a%“* belongs to
the set {0, 1}, where a¢“* == 1 indicates that the template needs
to be updated, while a‘tm == () indicates that it does not need
to be updated. On the other hand, the DRL-TU-AdW method
only predicts the updating weight a“"", and the updating
decision is made by setting a threshold. Before the termination
of each trajectory, the agent transits to the next state based on
the transition distribution J(s¢41]s¢, at).
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Fig. 7. The brief training structure of our DRL based template updating
method. This figure presents the pipeline of the DRL-TU-MH method. The
left part signifies the forward direction in one training iteration. The enrollment
embedding and randomly selected test audio embedding are concatenated to
form a state. This state undergoes state transition through the agent, resulting
in an action. Following the action, a new enrollment embedding is obtained,
constituting the new state in next stage.

TABLE III
REWARD MATRIX IN ALGORITHM 2

a?t‘[ —1 a(t/lct —
Label==1 | r’“'"+ i +0.5 PP peen
Label==0 P41 05

Rewards The reward function of DRL-TU-MH is consisted
of three parts: the accuracy of the updating decisions rfec,
cosine similarity between the updated enrollment embedding
and the next-stat test embedding r?*", and the cosine similarity
between the updated enrollment embedding and the speaker
center embedding ;™. The reward r, for each action is provided
in Table III.

The r?*" and r¢°" are formulated as follows:

U = cos(a!, 215) ®
,rgen _ COb(Zgiqoll7Zcen) (9)

where cos(+) indicates the cosine similarity between two in-
put embeddings, and z°°" represents the average embedding
of samples collected over a 90-day period for the enrollment
speaker. The zf"ﬁ"” represents that the embedding has been
updated using (7). Since the updating decision of DRL-TU-AdW
is made by setting a threshold, reward function only adopts
the 7pqir and 7cep to guide the agent. Therefore, the T-length
trajectory in each episode can be indicated as the iteration set
of {(s¢,at, St4+1,7¢)}. The interaction details of training are
summarized in Algorithm 2.

4) PPO Based Template Updating: The PPO algorithm is
used to develop an optimal updating policy for the agent to
create an enrollment template that can adapt automatically for
better short- and long-term benefits. It is well known that super-
vised learning may not be suitable for the sequential stochastic
and decision-making problem involved in template updating.
Therefore, we employe DRL to address this issue. We have
explored Deep Deterministic Policy Gradient (DDPG) [58] and
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Algorithm 2: DRL-TU Interaction Environment Under the
Training Stage.

/1 Initialization

1. Enrollment template: Random sample K embeddings
S"m”i e RK*4 from a speaker and calculating the average

to obtain the template zS"”’l g

2. Test set: Randomly sampling negative samples and
sequentially sampling positive samples, and forming a
T-length sequential test set

Ztest — Ztest P’Ziest—n’ Lz ;esi p
{lo,l1,..., l7—1}.

// Implementation of DRL-TU-AdW

3a. Determine threshold of updating: f=0.51

4a. Terminated=0

5a. while not Terminated do

v = COSlne(Ze”m” test)

if v,>p then

} with its labels

’ ar =mg "o 215T) a = sample(a;), where
o2 enroll enroll test
~ A, 0%) 2717 =1 -a) xz) taxz,
else
L zenroll enroll

= RewardMatrix(st,at, Iy)
L Terrninated:l if t+1==

/1 Implementation of DRL-TU-MH
3b. Terminated=0

4b. while not Terminated do

weight
a?ct’at 8 =g (Zenroll test)
actlon—sample(a““)
wezght

a=sample(a, ), where ay ~ A (i, 02)

if action==1 then

enroll _ enroll test
| z/ =(1- )*z taxz,
else
L Zenroll enroll

—RewardMatrix(st,at,l;)
L Terminated:l if t+1==

Advantage Actor Critic (A2C) [59] to predict the updating
weight and make updating decision, respectively. But the train-
ing process is unstable and the results are even worse than the
FixW-TU baseline. Hence, we adopt the PPO strategy to train
the policy-based agent in learning continuous and discrete action
spaces. Here, we provide the details of two DRL-based methods:
DRL-TU-AdW and DRL-TU-MH.

DRL-based Adaptive Weighted Template Updating with
Thresholding (DRL-TU-AdW): This method utilizes DRL to pre-
dict the updating weight for each verification objective function.
The weight is determined using a clipped version of PPO [57]:

271V (9) = min(ry(0) Ay, clip(re(0),1 — £, 1+ £) A;) (10)
wherer;(0) = % The policy 7y is implemented using a
old \“t1°t

neural network (NN)-based agent, and A, denotes the estimator
of the advantage function at time step ¢. As PPO is an actor-
critic algorithm which combines elements of both value-based
methods (critic) and policy-based methods (actor) to improve the
efficiency and stability of learning [57], [60], the final objective
function of DRL-TU-AdW is a combination of policy and value
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network, defined as follows:
gPPO(G) _ ‘gpolicy(g) + Clgualue (U)) (11)

where £°4“¢(w) represents the mean squared error (MSE) loss
of the state-value function, and ¢; is a coefficient.

DRL based Multi-head Template Updating (DRL-TU-MH)
improves upon the threshold-based DRL-TU-AdW method,
which only considers values within boundary limits, thereby
limiting the explorability of intra-class space and causing tem-
plate trends to move towards the initial embeddings center. To
address this issue, we adopt the Hybrid Action Space PPO [61],
which can handle both continuous and discrete action spaces
ar € {ag°t, a*"9"} . Specifically, we use a multi-head agent
where the first action head outputs a categorical decision that de-
termines whether to update the template or not. This output then
feeds into subsequent action heads to learn the updating weight
with a normal distribution. The objective function includes the
entropy loss for both the categorical and normal distributions:®

gentropy(e) = Hdiscrete(ﬂ'gis(st))

+ Hcontinue (779 (3t7 a;wt ))

where Hgiserete(-) and Heontinue(.) are the Shannon entropy
and differential entropy, respectively. ﬂ'd”( ¢) indicates the
categorical output of first action head, while 75°" (s;, af“") is
normal output of the section action head. The final objective
function is:

zPPO(e)

12)

_ gpolicy (9) + 02$value (U)) o ngentropy (9)
(13)

In contrast to DRL-TU-AdW, DRL-TU-MH adopts a
two-stage training approach: a) supervised pre-training and
b)reinforcement learning based fine-tuning. First, we use su-
pervised pre-training to set the initial agent parameters. The
input feature is the concatenation of two speaker embeddings
(extracted by pre-trained model). The first head is a binary
classifier that determine whether two embeddings are from the
same person. The second head is aregression task and we setting
the ground truth as a = 0.15, which is the empirical value from
the FixW-TU method. In the fine-tuning stage, we optimize the
pre-trained model parameters using the PPO algorithm.

The design of the reward function and the weights of the
objective function in DRL are determined through multiple trials
on the development set of our dataset.

V. EXPERIMENTAL RESULTS OF CA-ASV
A. Implementation Details

1) Network: For the baseline system, termed ResNet34-
ArcFace, we adopt the ResNet34 [62] as the backbone. The
widths (channels number) of the residual blocks are {32, 64, 128,
256}. The global statistic pooling (GSP) layer, which computes
the mean and standard deviation of the output feature maps,
can project the variable length input to the fixed-length vector.
The output of a fully connected layer with 128 dim followed
after the pooling layer is adopted as the speaker embedding

8Implementation of multi_action_head_PPO github repository
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TABLE IV
THE PERFORMANCE OF DIFFERENT SPEAKER VERIFICATION SYSTEMS IN TERMS OF EER

Model Vox-E Vox-H Cross-age Cross-age & Same nationality & Same gender
Only-CA5 Only-CA10  Only-CA15 Only-CA20 Vox-CA5 Vox-CAl0 Vox-CAl5 Vox-CA20

ResNet34-Softmax  2.798% 4.806% 4.310% 6.004% 8.019% 9.308% 7.366% 9.215% 12.405% 14.888%
ResNet34-ArcFace 1.094% 1.939% 1.953% 3.437% 5.927% 8.185% 3.407% 4.974% 8.028% 10.419%
+ GRL 1.122% 1.934% 2.021% 3.579% 6.036% 8.566% 3.405% 4.949% 8.017% 10.610%
+ Age Residual 1.121% 1.960% 2.040% 3.536% 5.871% 7.864% 3.499% 5.078% 8.039% 10.229%

+ ARE (ours) 1.108% 1.951% 1.980% 3.345% 5.719% 7.803% 3.431% 4.814% 7.786% 9.911%

+ ADAL (ours) 1.121% 1.974% 1.991% 3.330% 5.540% 7.442% 3.441% 4.822% 7.515% 9.519%

The model with GRL describes the simplest adversarial learning that uses GRL upon the z vector to perform the age classification task, which makes the speaker embedding less correlated to age. In the

age residual method, z,, is the residual part between z and Zyge» the z
classification without age adversarial learning.

age

layer. The ArcFace-based classifier [6] (s=64,m=0.2), which
increase intra-speaker distances while ensuring inter-speaker
compactness, is used to the identity classification. In addition,
we also provide the Softmax classifier as a comparison. For the
ADAL method, the ASP system is adopted as the ARE module
to extract the z,4. vector. For the age classification, we stack
FC-ReLU-FC structure upon z,4. and z;q to predict the age
group value.

2) Data Processing: The acoustic features are 80-dimen-
sional log Mel-filterbank energies with a frame length of 25 ms
and hop size of 10 ms. We adopt the on-the-fly data aug-
mentation [63] to diversify training samples. Four types of
augmentation methods were adopted: 1) adding noise using
MUSAN [64] dataset; 2) adding convolutional reverberation
using RIR Noise [65] datasets; 3) changing amplification, and
4) changing audio speed (pitch remains untouched).

3) Training Details: The SGD optimizer is employed to up-
date the model parameters. We adopt the multi-step learning rate
(LR) scheduler with 0.1 initial LR; the decay step and factor
are 10 and 0.1, respectively. We adopt the linear warmup from
0.0 to 0.1 LR in the first two epochs to prevent the training
instability and speed up model convergence. Training stopped
after LR dropped to le-5. In order to ensure that the model
remains primarily focused on the task of speaker identity without
compromising performance, the hyper-parameters in loss are set
as following: A4 = 0.1 and A4,; = 0.1. We experimented with
different coefficients, namely 0.5, 0.3, and 0.1, and observed that
as the coefficient increased, the model’s performance deterio-
rated on the general test sets Vox-E and Vox-H, while showing
limited improvement on Vox-CA.

4) Evaluation Measures: Cosine similarity is used for trial
scoring. Verification performances are measured by EER and
the minimum normalized detection cost function (mDCF) with
Ptarget =102 and Cra = Cmiss = 1.

B. Experimental Results and Analysis

1) Experimental Results of the Baseline Method: In this part,
we adopt ResNet34-GSP-ArcFace as our baseline system. We
compare the baseline performance on Vox-O, Vox-E, Vox-H and
our proposed Vox-CA. Table V reports the corresponding results
which confirms the difficulty of the Vox-CA test set.

First, by observing the performance on our-E and our-H (our
implemented following the VoxCeleb rules), the results are simi-
lar to Vox-E and Vox-H results, that demonstrate the correctness

is extracted from z and supervised by age classification. The model equipped with ARE indicates the Zge is also supervised by age

TABLE V
RESULTS ON DIFFERENT TEST SETS BASED ON THE RESNET-GSP-ARCFACE
MODEL
Test set Variable EER[%] mDCF o;
Vox official
Vox-O random 0.962% 0.100
Vox-E random 1.094% 0.122
Vox-H nation&gender 1.939% 0.200
our proposed
our-E random 1.202% 0.123
our-H nation & gender 2.044% 0.192
only-N nation 1.568% 0.164
only-G gender 1.534% 0.146
only-I intra-segment 0.227% 0.015
only-CA5 age 1.953% 0.177
only-CA10 age 3.437% 0.272
only-CA15 age 5.927% 0.352
only-CA20 age 8.185% 0.464
Vox-CA5 age & nation & gender  3.407% 0.300
Vox-CA10 age & nation & gender 4.974% 0.370
Vox-CAl5 age & nation & gender  8.028% 0.481
Vox-CA20 age & nation & gender  10.419% 0.646

"Only" indicates that a trial is created by only considering a single variable.

of our dataset construction. Then, by controlling a single vari-
able, the negative effect of cross-age (only-CA) is larger than the
same nationality (only-N) and gender (only-G) matching. When
we combine these variabilities, the performances of Vox-CA
drops dramatically with the age gap increasing. The Vox-CA
not only provides a new hard scenario but also proposes a new
benchmark for cross-age scenarios. In addition, the result of the
intra-segment case is considerably lower than other test sets. The
validation of intra-segment pairs is too easy, which can lead to
misjudgment of the actual performance of the system.

2) Experimental Results of AISR: Table IV presents the
performance of our proposed methods and related methods on
different test sets. First, we compare different metric learning
methods, namely Softmax and ArcFace. We can find that the
ArcFace outperforms its counterpart, especially in cross-age
scenarios. Besides, by comparing the results on cross-age test
sets, we can observe that the verification performance degrades
significantly with age-gap increasing. Using the ArcFace based
system, we mount the GRL or Age Residual module as compar-
ison. The model with GRL is an adversarial learning method
which is the combination of identity classification and age
adversarial learning in Section. The model with Age Residual
module is the combination of identity classification and age
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classification, but the z,4. is extracted from the z. However,
these methods have little improvement on cross-age scenarios.
We think the limitation of both methods is that operations are
performed on the embedding level. Since the embedding is a
compact representation vector generated by the encoder layer,
resulting in limited operational margins, thus the improvement
is moderate. In contrast with these methods, the z,4. of ADAL
are extracted from high-level feature maps, and age information
is further reduced by the age adversarial learning classifier.
In contrast to the baseline system, the ADAL achieves 10%
relative improvement on the Vox-CA20 test set. Furthermore,
the results show that the performance improves with larger age
gaps. Finally, we utilized the embeddings learned by ADAL for
age class prediction again, observing a decrease in the accuracy
of age identification from 82.01% (as reported in Section I1I-B1)
to 72.44%. This suggests that the embeddings learned by ADAL
have diminished age-related information.

VI. EXPERIMENTAL RESULTS OF STTV-ASV
A. Implementation Details

1) Network: To perform template updating on the embedding
level, we use the same pre-trained baseline model (ResNet34-
ArcFace) as in CA-ASV and fine-tuned it with the SMIIP-TV
training set. Specially, we divide the SMIIP-TV set into training
and test sets. We randomly select 58 speakers who completed the
entire recording as the test set to construct the sequential trials,
and the data of the remaining speakers as the training set. The
data processing is the same as CA-SV. The training set is divided
into 5 folds for cross-validation to tune the decision threshold,
determine hyper-parameters, and assess the performance of the
DRL-TU system. The final system for speaker embedding ex-
traction is based on fine-tuning a pre-trained ResNet34-ArcFace
model using the Vox2dev and SMIIP-TV training sets.

For the DRL-TU-MH method, we employed a two-layer fully
connected structure for the agent model, which is pre-trained
with supervision on the SMIIP-TV training dataset. During the
fine-tuning stage of DRL, we optimize the agent parameters
using Adam with a learning rate of 2e — 5. The coefficient of
the objective function was ¢2 = 0.5 and ¢3 = 0.05.

2) Task Setting: To evaluate the performance of STTV-ASV
for incremental sequence-pair speaker verification task, we sim-
ulate real-life interactive environments by configuring various
parameters such as time intervals, number of daily test sessions,
and sequence length. We design five scenarios to evaluate the
performance, including one random scenario and four controlled
scenarios.

® Random gap limited-audio scenario: On the first day, we

randomly selected embeddings from 5 utterances as initial
templates, followed by randomized day interval testing.
The testing intervals ranged from 1 to 20 days, and 1 to 5
audios were randomly selected per day.

® ] d gap all-audio scenario: On the first day, we randomly

selected 5 utterance embeddings as templates for each
speaker, followed by testing every 1 day. The testing data
include all audio files available on the day.
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TABLE VI
RESULTS IN THE RANDOM GAP LIMITED-AUDIO SCENARIO
Method Paramaters  EER[%] minDCFg g1
Baseline (w/o updating) 3.92 0.434
a=0.05 3.12 0.363
a=0.1 2.48 0.319
. a=0.15 2.20 0.310
IZEXYXE,TS =02 2.10 0311
- a=0.3 2.16 0.315
a=0.4 2.42 0.338
a=0.5 2.73 0.354
AdW 131k 1.99 0.283
DRL-TU AdW + GT 131k 1.68 0.274
(proposed)  AdW + Binary 132k 4.35 0.409
Multi-Head (MH) 132k 1.81 0.297

+GT and +binary indicate that updating decision are determined by the ground truth label and
supervised pre-trained binary action head, respectively.

® 3 d gap all-audio scenario: Same setting as 1 d gap all-
audio scenario, but the testing is conducted every 3 days.
® 5 d gap all-audio scenario: Same as 1 d gap all-audio
scenario, but the testing is conducted every 5 days.
® J0 d gap all-audio scenario: Same as 1 d gap all-audio
scenario, but the testing is conducted every 10 days.
Additionally, we conduct four challenging controlled scenar-
ios (1/3/5/10 d gap one-audio scenario), where the testing data
only includes one audio per day, to evaluate the performance of
DRL-based template updating. We adopt the overall EER as the
primary metric, and the results of TD-EER curve and TDS curve
are provided as auxiliary metrics.

B. Experimental Results and Analysis

The baseline system is a one-time enrollment template with-
out any updates. Our evaluation on the random gap limited-audio
scenario in Table VI demonstrates that template updating meth-
ods improve system performance significantly compared to the
baseline. In particular, the DRL-TU method outperforms the
FixW-TU method due to its ability to adjust weights adaptively
based on each test audio, resulting in long-term benefits.

It is worth noting that the DRL-TU method indeed uses
more parameters to build the model and there are also hyper-
parameters in training this DRL model as discussed in the end
of Section III.C.4. For some cases where the frequency of each
target user’s login event is similar, it is more convenient to use
the Fix-TU method as there are only two parameters to tune.
However, once the DRL model is trained, it can automatically
make adaptive updating and merging decisions for each testing
sample which is more robust. While the updating thresholds
and weights in the FixW-TU baseline are fixed for all testing
samples.

Initially, we propose the DRL-TU-AdW method with a pre-set
updating threshold. However, this decision-making approach
often rejected positive samples and falsely accepted negative
samples. Therefore, we opt to employ the ground truth (GT) as
the updating decision for DRL-TU-AdW in order to investigate
the impact of the updating decision. In this case, a positive
sample signifies an update, while a negative sample indicates
no update. The AdW-GT results show that a correct decision
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(a) All-audio scenario, which refers to the scenario where all available audio
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(b) One-audio scenario, which refers to the scenario where only one audio
sample from the day is utilized for testing.

Fig. 8.  System performance of different template updating methods in terms
of EER under various scenarios defined in Section VI-A2.

can improve the EER by up to 15% relatively. To further
improve performance, we develop the DRL-TU-MH method,
which addresses both updating decisions and weight prediction.
We utilize the pre-trained binary action head of DRL-TU-MH
for DRL-TU-AdW, replacing the threshold-based method for
decision updates, which we term AdW+Binary. The results of
AdW-+Binary show a significant degradation in system perfor-
mance. We think that the updated template is characterized by
high variability, the probability of misjudgment increases with
the accumulation of changes, resulting in significant perfor-
mance degradation. To overcome this limitation, we utilized the
multi-head PPO algorithm for fine-tuning, which ultimately led
to superior performance on EER.

Moreover, we conducted a quantitative analysis of the changes
in system performance at different time intervals in Fig. 8.
Notably, in one-audio scenario with more than 3 days’ gap,
the DRL-TU-MH method is even better than GT version of
DRL-TU-AdW, particularly in large time intervals as shown
in Fig. 8(b). We think this situation could result from two
aspects. Firstly, the weights predicted by DRL-TU-AdW may
not necessarily be optimal. Secondly, even positive samples
can potentially have bad cases. The combination of these two
scenarios might lead to a bias in the template embedding, result-
ing in subpar outcomes. This implies that the update decision
of DRL-TU-MH is not a binary classification but selecting
meaningful test samples for updating.
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In order to further evaluate the effectiveness of our proposed
method, we present results of auxiliary metrics obtained from
the one-day gap all-audio scenario in Fig. 9. In contrast to
baseline, the trend of TD-EER and T'DS? curves for template
updating methods changes slowly and gradually stabilizes over
time. Although the changes in SW-EER and SW .SP curves are
more intense due to small sample size within each window, they
also gradually stabilize as template updates accumulate. The
DRL-TU based methods also achieve the best performance in
the auxiliary metrics, with 7D SP curves being more stable from
start to end.

Furthermore, combining the results in Figs. 8(a) and 9,
we found that the performances of FixW-TU with a =
0.05/0.1/0.15 are comparable to our proposed DRL-TU method
in one-day gap all-audio scenario. However, in other scenarios,
FixW-TU exhibits significantly poorer performance compared
to DRL-TU based models. Therefore, we attribute the difference
in performance to the slow start-up of FixW-TU, which requires
a significant amount of accumulation to achieve optimal results.

Consequently, Fig. 10 illustrates performance under the one-
day gap one-audio scenario to observe the variation trends of
FixW-TU. Under the one-audio scenario, FixW-TU with a small
weight needs about 10-30 days to start-up, while the FixW-TU
with a large weight only needs a few days. In comparison, by
comparing T'D.SP (Fig. 10(b)) and SW S? (Fig. 10(d)) curves, it
can be observed that DRL starts quickly and stabilizes rapidly.
Furthermore, considering TD-EER (Fig. 10(a)) and SW-EER
curves (Fig. 10(c)), DRL not only exhibits fast adaptation but
also achieves good performance in less than 10 days and main-
tains it consistently. Therefore, our proposed method is a fast
response method. Moreover, as shown in Fig. 8(b), when the
number of gap days becomes larger, the advantage of FixW-TU
with a large updating weight is more clear. To sum up, our
proposed DRL-TU method adapts quickly and achieves the best
performance in most experimental scenarios.

C. Ablation Experiments

Considering that FixW-TU requires a significant amount of
manual tuning, we conducted experiments to search for the
optimal values of the decision threshold () and weight up-
date (o). The results are shown in Fig. 11. We performed a
grid search for the update weight and threshold values within
the ranges [0.1, 0.5] and [0.05, 0.9], respectively. Ultimately,
we found that FixW-TU achieved the best performance when
B =0.51,a = 0.2 in the random gap limited-audio scenario.
In contrast, our DRL-TU-MH method can adaptively determine
the updating decision which is more robust in scenarios with
different or random gap days as shown in Fig. 8.

VII. DISCUSSIONS

This paper introduces novel datasets and corresponding solu-
tions for short-term and long-term time varying speaker verifica-
tion. However, the analysis of short-term time-varying scenarios
reveals that the temporal changes in a speaker’s voice are grad-
ual. Therefore, solutions designed for long-term time variations
are not suitable for short-term scenarios, as networks struggle
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to differentiate such fine-grained changes on a daily basis. On
the other hand, due to the absence of a large-scale speaker
recognition database continuously recorded everyday over more
than a decade, applying short-term time-varying solutions to
long-term scenarios is also challenging. However, if we have
a continuously recorded long-term time-varying database, we
believe that performance in cross-age speaker verification can
also be improved through template updating or multi-template
fusion methods. In future research, we will mine continuously
recorded long-term time-varying data through online broadcast-
ing channels.

There are potential issues that may arise in the practical
use of DRL-TU algorithms. We think that DRL-TU-AdW en-
sures the stability of template updates by employing threshold
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limitations but may not achieve the optimal performance. On
the other hand, the DRL-TU-MH approach, where template
updates are fully determined by agent, may potentially lead
to better performance but with higher risks. The risk is from
the potential accumulation of bad cases. If the errors increases
along each template update, there is a risk of the template
deteriorating over time, leading to a performance degradation
in the usage. Therefore, in both FixW-TU and DRL-TU-AdW
methods, we impose a minimum threshold to ensure that the
updated templates do not degrade excessively. While DRL-
TU-MH does not have this threshold constraint, the decision-
making process is trained through supervised learning based
on speaker discrimination, aiming to filter out poor positive
samples.
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Due to the limit of databases, the age distributions of Vox-
Celeb and SMIIP-TV are quite skewed towards young adults.
However, addressing the challenge of temporal variations is not
only crucial for the elderly speakers but also presents a sig-
nificant challenge for adolescents going through voice changes
and even children. It indeed needs a large amount of data to
comprehensively study and address this issue. In our future
research, we plan to enrich the age distribution of speakers,
particularly focusing on the elderly people and the children, to
further enhance our understanding and solutions for temporal
variations across diverse age groups.

VIII. CONCLUSION

This paper proposes novel benchmarks and solutions to ad-
dress the challenges of long-term and short-term time-varying
speaker verification. For long-term speaker verification, we mine
age information from the VoxCeleb dataset and introduce the
Vox-CA test set as a benchmark for cross-age ASV tasks.
Our proposed ADAL method effectively learns age-invariant
speaker representation. For short-term speaker verification, we
introduce the SMIIP-TV dataset to investigate the challenge. We
propose an incremental sequence-pair speaker verification task
and adopt a template updating method to mitigate the impact
of time varying. We formulate the template updating process
as a Markov Decision Process and suggest a deep reinforce-
ment learning-based method with multi-head PPO strategy to
predict the updating decision and weight. Experimental results
demonstrate significant improvement achieved by our DRL-TU
method. Our proposed methods and released datasets contribute
to robust speaker verification that can better handle time-varying
scenarios.
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