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Abstract
Generating novel voices in speech synthesis is a challenging
task with potential for creating versatile voices that are needed
in entertainment and research. One of the primary obstacles in
this area is the lack of well-annotated voice descriptions for ex-
pressive speech corpora. Our research aims to address this issue
by representing speaker styles from vision. We introduce Stable
Diffusion-Enhanced Voice Generation (SD-EVG), which lever-
ages Stable Diffusion to generate imaginary facial images for
new voice generation. To create a reference set of facial images
based on realistic voices, SD-EVG employs a transformer en-
coder and a Stable Diffusion decoder to visualize the speaker’s
face. Subsequently, SD-EVG uses a KNN-based approach to
map facial features to speech style for voice generation. The ex-
periments demonstrate that the voices generated from the imag-
ined facial data have better potential at capturing speech style
than text-based methods for the same descriptions.1

Index Terms: speech recognition, human-computer interac-
tion, computational paralinguistics

1. Introduction
Text-to-speech (TTS) synthesis has witnessed significant ad-
vancements in recent years, fueled by the development of e-
merging applications such as audiobooks and virtual assis-
tants [1]. This evolution has spanned from modeling the speech
of individual speakers [2] to accommodating multi-speaker sce-
narios [3], with the naturalness and robustness of the generated
speech utterances being markedly enhanced by the advent of
larger model and dataset size [4, 5]. A notable milestone in
this progression is the modeling of speaker timbre, which has
evolved from utilizing singular speaker embeddings [6] to the
capability of customizing timbre with just a reference speech
utterance with transcription [7].

Despite advancements, natural language descriptions’ ap-
plication in specifying voice characteristics (e.g., pitch, gen-
der, race, emotion) faces a critical limitation due to the scarci-
ty of extensively annotated speech data [8]. This limitation
hinders the potential for generating novel, high-quality voice
timbres from text prompts. Given the rich and well-collected
image-text and audio-visual datasets [9, 10, 11, 12], explor-
ing alternative modalities such as vision for voice generation
becomes compelling. Thus, we propose an image-based ap-
proach to voice generation that capitalizes on the naturally oc-
curring synergy between facial images and voicesa rich yet un-
derutilized source for enhancing speaker style representation.
Unlike the text prompt method, which struggles to encapsu-
late the full spectrum of desired voice characteristics, leverag-

1A demo website featuring the generated face and speech utterances
is available at https://sd-evg.github.io.

ing high-quality images promises a more detailed representa-
tion of speaker styles. Our approach advocates the utilization
of 512 × 512 images, generated via image generative models
such as Stable Diffusion [13], to accurately capture and repre-
sent the speech style, thus facilitating a more effective bridge a-
mong textual description, visual representation, and vocal style
in TTS systems.

The overview of our proposed voice generation pipeline en-
hanced by Stable Diffusion (SD-EVG) is shown in Figure 1.
It uses Stable Diffusion as a bridge for three pipelines: voice-
to-face, prompt-to-face, and face-to-voice. The introduction of
an image generation model is twofold, as 1) some expressive
speech datasets do not include facial images for the speakers
in the recordings, so we need to use a voice-to-face model for
training data preparation, and 2) to realize the new voice genera-
tion, a prompt-to-face model is needed. And findings show that
Stable Diffusion, though initially designed for text-to-image, is
an ideal base model for realizing face generation from different
modalities [14]. Furthermore, SD-EVG can receive facial input
from sources beyond Stable Diffusion. This allows for potential
extensions to be implemented, including faces in the wild. The
main contributions of this paper are as follows:

• We propose a voice-to-face pipeline to augment existing
realistic speech corpora without the speaker’s facial in-
formation with an imaginary face in the training stage.

• We develop a face-to-speech pipeline that transforms fa-
cial features into speech style embedding using k-nearest
neighbors to bridge multiple modalities’ feature latent s-
paces.

• We evaluate the performance of SD-EVG within both
the voice-to-face and face-to-voice pipelines. We also
conduct a comparative analysis between our proposed
methodology, which involves a prompt-to-face approach
followed by face-based voice generation, and the direct
prompt-to-voice generation method through a case study.

2. Related Work
2.1. Stable Diffusion

Stable Diffusion is a set of latent diffusion models [13] that can
generate images given an image or text input due to its ability
to model conditional distributions in the form p(z|e), repre-
senting a significant advancement in generative models. We use
Equation (1) to abstract the model input and output:

x = G(z; e), (1)

where x is the synthesized image, z is a latent representation
vector, e is a guided embedding vector representing the con-
ditional information for image generation, and G is the Sta-
ble Diffusion model. Specifically, in the text-to-image pipeline
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Figure 1: Overview of Stable Diffusion-Enhanced Voice Generation.

of Stable Diffusion, z is a random latent variable and e is the
output of a transformer-based text encoder taking an input text
prompt. In terms of the text-guided image-to-image translation
pipeline [15], the initial latent z is the reference image added
with noise, while e is the same as in text-to-image pipeline.
Additionally, methodologies similar to those developed by Ope-
nAI [16] for transforming image embeddings back into images
allow Stable Diffusion to extend its capabilities to include pro-
cessing of image embeddings, extracted by foundation models,
through further fine-tuning.

2.2. Speech and Vision Alignment

In the field of multimodal learning, the integration of visual and
linguistic data through transformers, as exemplified by the Con-
trastive Language-Image Pre-training (CLIP) model [17], rep-
resents a significant advance in improving model performance
across a wide range of tasks. This methodological innovation
trains visual models for transfer learning using natural language
supervision derived from a large corpus of image-text pairs.
CLIP distinguishes itself by embedding images and text in a
shared semantic space and using contrastive learning to align
semantically similar pairs while discriminating dissimilar ones.
This strategy facilitates CLIP’s ability to apply its pre-trained
knowledge to various computer vision tasks with minimal addi-
tional supervision.

Although contrastive learning has been applied to align
speech and vision, this field is still emerging. SpeechCLIP, as
introduced by Shih et al. [18], pioneers the integration of speech
models with vision through the use of paired image-speech da-
ta, enhancing speech models with visual context. Building up-
on SpeechCLIP’s foundation, subsequent research has broad-
ened the scope to include multilingual speech-to-image retrieval
[19], image-to-speech captioning [20], and the enhancement of
speech systems with visual data [21]. Despite these advances,
there appears to be a gap in the literature regarding applying
contrastive learning to exploit facial identity and styling fea-
tures within CLIP’s image encoder for speech style extraction.
This gap underscores a compelling research opportunity further
to enhance the integration of speech and vision modalities.

3. Methodology
SD-EVG comprises three primary pipelines: voice-to-face,
face-to-voice, and prompt-to-voice. The voice-to-face pipeline
is used during the training phase to compensate for the absence
of facial images in speech datasets. The face-to-voice pipeline is
used both in the training and the inference stage, facilitating the
conversion from facial images to corresponding speech styles.
The prompt-to-voice pipeline is used naturally in the inference
stage, where it leverages Stable Diffusion’s text-to-image ca-
pability to generate a face image from a text prompt, which is
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Figure 2: Architecture of the Voice-to-Face Pipeline.

then used to guide the synthesis of speech. The voice-to-face
and face-to-voice pipelines are discussed in detail below.

3.1. Voice-to-Face Pipeline

In our approach to leveraging the capabilities of Stable Diffu-
sion model (G) for the generation of imaginary faces (F ) from
a realistic speech corpus (C), we focus on conditioning the
generative process on the timbre features of specific utterances
(u in C). To achieve this, we utilize WavLM [22] and emo-
tion2vec [23] for extracting the emotional and timbre features
from the utterances. These extracted features are then concate-
nated and input into a transformer encoder layer, which outputs
a vector representation Vstyle of the utterance. This speech-to-
vector transformation is represented by the equation:

Vstyle = Transformer(Eemotion(u) + Etimbre(u)). (2)

During training, as illustrated within the dashed lines of
Figure 2, both visual and auditory features are extracted using
their respective extractors, with the CLIP image encoder being
used for image feature extraction. The goal is to compute Vstyle

from both the image feature extractor and the speech-to-vector
process, which then serves as a crucial component for calcu-
lating the contrastive loss during training. This process aligns
multimodal data by contrasting pairs of related and unrelated
data. During inference, Vstyle directly guides the Stable Diffu-
sion in generating a facial image. This image, imagined from
the voice input, is regarded as a direct embodiment of the speak-
er’s speech style.

As described in Section 2.1, Stable Diffusion can simulta-
neously take in both image and text guidance input. To enhance
its capability to capture the speaker’s style with guided feature
descriptions and higher resolution, the pipeline’s decoder mod-
ule is designed to initially accept the inferred Vstyle from the
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transformer encoder, generating a pseudo facial image with a
guided prompt (“face” in our case) using a base-level Stable D-
iffusion model. This pseudo facial image can then undergo fur-
ther refinement through another iteration of Stable Diffusion,
guided by additional contextual inputs for enhanced resolution
and detailed feature expression.

3.2. Face-to-Voice Pipeline

Once a facial image representing the speaker’s speech style
has been generated (or is already available), a trained zero-shot
Text-to-Speech (TTS) system can be utilized. This system is ca-
pable of generating speech utterances from a reference speech
style embedding Vspeech. Therefore, the primary objective of the
face-to-voice pipeline is to translate the abundant style informa-
tion captured in the facial image into a corresponding speech
style embedding Vspeech.

The key idea of our proposed face-to-voice pipeline (Figure
3) begins with extracting face embeddings using a facial feature
extractor, thereby establishing a face latent space for reference.
Simultaneously, we employ a speech-style embedding extrac-
tor to infer paired speech styles from the face, constructing a
speech-style latent space. We hypothesize that faces positioned
closely within the face latent space are more likely to exhibit
similar vocal characteristics. For inference, k-nearest neighbors
(KNN) regression is used to achieve this mapping, employing a
strategy similar to that described in [24]. It is noteworthy that
this process is non-parametric, necessitating no further training.

Specifically, a facial feature extractor fθ : X → Rm maps
an input facial image x ∈ X to a face embedding z = fθ(x).
Given a set of face embeddings Z and corresponding speech
style embeddings v, KNN regression is employed to generate
the speech style embedding v corresponding to z. The KNN
method entails identifying the k nearest neighborsNk(z) ⊆ Z
using a distance metric d, acquiring their speech style embed-
dings Vk(z), and calculating a weighted sum:

V (z) =
k∑
i=1

wivi (3)

where wi = 1/d(z,zi)∑k
j=1 1/d(z,zj)

to ensure contributions are propor-

tional to the proximity of each neighbor.

4. Experiments
4.1. Experimental Setup

For the voice-to-face pipeline, the base version of emotion2vec
is utilized [23] and a speaker-verification-fine-tuned version of
WavLM is used [22], acting as the emotion and timbre feature
extractors for speech utterances. During training, the image
feature extractor employed uses CLIP’s ViT-L/14 Transformer
architecture2. For face generation, the unclip version of Sta-

2https://huggingface.co/openai/clip-vit-large-patch14

ble Diffusion 2.13 serves as the base model, and the SDXL-
turbo4 functions as the refiner model for enhanced detail. In
the face-to-voice pipeline, a pretrained Inception ResNet [25]
architecture-based face recognition system5 is adopted for fa-
cial feature extraction, while the style encoder module from
StyleTTS [26] is used to extract speech styles from utterances,
with its zero-shot TTS module facilitating voice synthesis.

We mainly use two datasets in the experiments, for voice-
to-face learning we use an audio-visual dataset VoxCeleb1 [11],
which contains 153516 utterances from 1,251 celebrities, and
for face-to-voice pipeline we use the VoxCeleb1, and the ES-
D dataset [27], which contains 5 different emotion categories,
each category containing 350 utterances, for a total of 17,500
utterances evenly distributed across 10 speakers, to test the a-
bility of SD-EVG in emotional speech generation. For all ex-
periments, the number of k-nearest neighbors is fixed at 4.

To assess our system’s efficacy, separate evaluations of the
voice-to-face and face-to-voice pipelines are conducted, fol-
lowed by a case study on emotional speech generation using
only prompt information, compared against the direct prompt-
to-voice method. Specifically, the evaluation of SD-EVG cov-
ers three distinct aspects, involving 30 participants recruited for
subjective assessments.

1. Voice-to-face fitness assessment. Evaluation involves
providing 20 diverse speech utterances from speakers in
VoxBlink [12], a recently introduced large-scale audio-
visual dataset from individuals on YouTube, and asking
participants to rank according to faces most likely to be
the speaker, from four other randomly generated faces.
This aims to test SD-EVG’s voice-to-face effectiveness
for public data.

2. Face-to-voice quality assessment. For the face-to-voice
pipeline comparison, the naturalness is evaluated against
other models that generate speech from face images.
Twelve unseen speakers’ faces are prepared, mirroring
the setting in [28]. Each speaker’s face generates a
speech utterance, and evaluators conduct a Mean Opin-
ion Score (MOS) test on a 5-point scale (ranging from 1
(unnatural, unable to hear clearly) to 5 (natural, human-
like speech)), and we also calculate the Word Error Rate
(WER) using Whisper [29]. This aims to test SD-EVG’s
face-to-voice quality in zero-shot scenarios.

3. Case study in emotional speech generation. For a
comprehensive evaluation of SD-EVG, the ESD dataset
serves as the sole reference dataset for the face-to-voice
pipeline in this test. Note that the ESD dataset only con-
tains speech data so we use the voice-to-face pipeline
first to generate the imaginary faces while the additional
context in Figure 2 is the emotion label. For compari-
son with the prompt-to-voice method, the original face
feature extractor is replaced by the base BERT model
[30] which, having 768 feature dimensions, exceeds the
512 dimensions of the face feature extractor, allowing for
prompt-based speech style generation. We use a prefer-
ence test for the comparison of the two systems, i.e., we
generate prompts describing the speaker’s emotion in the
ESD dataset and 20 test prompts by GPT 4 [31] and eval-
uators are asked to select the speech utterances generated
by the test prompts that best match the given emotion.

3https://huggingface.co/stabilityai/stable-diffusion-2-1-unclip
4https://huggingface.co/stabilityai/sdxl-turbo
5https://github.com/timesler/facenet-pytorch
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Figure 5: Generated faces from ESD dataset using the proposed
SD-EVG. Each row represents a different speaker.

4.2. Results and Discussion

Figure 4 illustrates SD-EVG’s ranking in the subjective evalu-
ation of voice-to-face fitness. In testing, more than 70% of the
generated faces were ranked first or second out of five, demon-
strating the alignment of the faces with the corresponding voic-
es. Table 1 presents the MOS scores and WER for the proposed
SD-EVG system alongside three recent face-to-voice models,
illustrating comparative face-to-voice quality. SD-EVG exhibit-
s a slightly lower MOS score than the highest baseline but sur-
passes others, and it demonstrates a lower WER compared to all
baselines, indicating its good performance in speech naturalness
and intelligibility. Also, it should be noted that due to the ex-
ploratory nature of this work, a KNN regressor is employed for
face-to-voice style mapping without further training, in contrast
to the baselines, which utilize well-trained face encoders.

Model MOS (↑) WER (↓)

Face-TTS [32] 2.62 (± 0.07) 0.125
Grad-StyleSpeech [33] 3.36 (± 0.06) 0.086
Face-StyleSpeech [28] 3.57 (± 0.06) 0.092
SD-EVG (proposed) 3.45 (± 0.06) 0.046

Table 1: MOS and WER of different face-to-voice models. 95%
confidence intervals of MOS are presented in parentheses.

As for the emotional speech generation, Figure 5 displays
the generated faces of two speakers by SD-EVG from the ESD
dataset, showcasing the same speaker under different speaking
emotions. It can be observed that while not explicitly indicating
the speaker’s gender, SD-EVG is able to generate facial images

61% 39%
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Figure 6: Face-text preference test.

that correspond to the speaker’s gender in most cases. The av-
erage cosine similarity of the extracted face embeddings within
each speaker across the ESD dataset is calculated to be 43%.
This suggests that SD-EVG can capture and preserve the speak-
er’s identity to a certain extent (given the imaginative nature of
Stable Diffusion, an accurate and consistent voice-to-face map-
ping cannot be guaranteed).

Figure 6 shows the preference rate of SD-EVG compared
to the text-based voice generation method in terms of emotion-
al voice generation. Although the text-based feature extractor
has more dimensions than the face-based one, the face-based
method outperforms the text-based method in voice generation.
We also note that stronger emotions such as sadness or surprise
perform much better than the text-based method. This suggests
that using facial cues in new voice generation enhances expres-
siveness by tapping into the unique style and emotional infor-
mation conveyed by faces, as well as leveraging the detailed and
rich facial data within Stable Diffusion.

4.3. Further Discussion

The results in Section 4.2 suggest SD-EVG’s competitive per-
formance in voice-to-face alignment and face-to-voice natural-
ness. Moreover, SD-EVG’s ability to capture and convey e-
motional features through facial cues highlights the potential of
image-based voice generation methodologies in enhancing ex-
pressiveness within TTS systems. The substantial model size
of Stable Diffusion and the utilization of the KNN approach for
face-to-voice style mapping enable the generation of a diverse
array of voices, tailored to specific facial features. Addition-
ally, further research on Stable Diffusion’s adaptability reveals
opportunities for other applications of SD-EVG, such as achiev-
ing identity-preserving speech style customization with Stable
Diffusion’s image-to-image translation capability.

5. Conclusion
Our proposed SD-EVG framework leverages the power of Sta-
ble Diffusion for the generation of new voices through voice-
to-face, face-to-voice, and prompt-to-voice pipelines. Our ap-
proach uniquely integrates visual cues in the form of generated
facial images to enhance the stylistic fidelity of voice genera-
tion, addressing the challenge of capturing nuanced timbre de-
scriptions textually. Experimental evaluations demonstrate the
effectiveness of SD-EVG in producing voices that accurately re-
flect desired emotional states and speech styles, and outperform
our baselines in terms of naturalness and intelligibility. By pi-
oneering the use of visual information from vision foundation
models in voice synthesis, SD-EVG marks an exploration to-
ward more authentic and versatile voice generation.
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