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Investigating Long-term and Short-term
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Abstract—The performance of speaker verification systems
can be adversely affected by time domain variations. However,
limited research has been conducted on time-varying speaker
verification due to the absence of appropriate datasets. This
paper aims to investigate the impact of long-term and short-
term time-varying in speaker verification and proposes solution-
s to mitigate these effects. For long-term speaker verification
(i.e., cross-age speaker verification), we introduce an age-
decoupling adversarial learning method to learn age-invariant
speaker representation by mining age information from the
VoxCeleb dataset. For short-term speaker verification, we collect
the SMIIP-TimeVarying (SMIIP-TV) Dataset, which includes
recordings at multiple time slots every day from 373 speakers
for 90 consecutive days and other relevant meta information.
Using this dataset, we analyze the time-varying of speaker
embeddings and propose a novel but realistic time-varying
speaker verification task, termed incremental sequence-pair
speaker verification. This task involves continuous interaction
between enrollment audios and a sequence of testing audios
with the aim of improving performance over time. We introduce
the template updating method to counter the negative effects
over time, and then formulate the template updating processing
as a Markov Decision Process and propose a template updating
method based on deep reinforcement learning (DRL). The policy
network of DRL is treated as an agent to determine if and
how much should the template be updated. In summary, this
paper releases our collected database, investigates both the
long-term and short-term time-varying scenarios and provides
insights and solutions into time-varying speaker verification.
The source code and data resources are available on http-
s://github.com/qinxiaoyi/TimeVarying_ASV.

Index Terms—speaker verification, time-varying, cross-age,
reinforcement learning, template updating

I. INTRODUCTION

Automatic Speaker Verification (ASV) has made remark-
able advancements in recent years, largely due to the
application of deep learning techniques such as X-vector
[1] and its variant [2]–[4], which extract a fixed-dimensional
discriminative feature from variable-length audio inputs.
Margin-based loss functions such as SphereFace [5] and
ArcFace [6], have also been adopted to train ASV system
with large-scale databases, which effectively reduces the
intra-speaker variability and increasing the inter-speaker
distance. However, the current performance of ASV systems
falls short of the standards required for certain applica-
tions. Several challenges and limitations exist that impede
the reliability and accuracy of ASV in practical scenarios.
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We categorize these challenges into speaker intrinsic and
extrinsic variations. Speaker intrinsic variations consist of
variations in individual’s speech and vocal characteristics,
such as changes in the human voice due to aging, emotions,
and physiological state. Speaker external variabilities also
include various factors that can affect ASV performance.
These factors include but not limited to low-quality data
characterized by low signal-to-noise ratio (SNR), reverbera-
tion, distortion, and far-field recording. Additionally, cross-
domain scenarios, such as cross-lingual and cross-channel
conditions, can further degrade the ASV performance. While
many research works have been devoted to speaker external
factors [7]–[12], limited attention has been given to speaker
intrinsic variations due to challenges in simulating intrin-
sic changes and a scarcity of relevant data. However, in
practical applications, voice characteristics of an individual
can naturally vary over time, potentially leading to errors
in speaker verification systems crossing a certain period
of time [13]–[17]. Therefore, this paper focuses on the
time-varying effects in speaker verification. We divide time-
varying speaker verification into three subproblems 1:

• Intra-day variation speaker verification (IDV-SV) for
variations across different times of the day;

• Short-term time-varying speaker verification (STTV-
SV) for variations across times of the year;

• Long-term time-varying speaker verification or cross-
age speaker verification (CA-SV) for variations across
ages.

We focus on the solutions of STTV-SV and CA-SV. [18]
introduces that the biometric template aging problem is
typically addressed in the following ways: (1)frequent (and
forced) template updates; (2)use of age invariant biometric
features; (3)simulation of aging effects; (4)age progression
compensation methods. Considering the time-varying s-
peaker characteristics of human speech signal, we adopt
different strategies to handle different types of speaker
time-varying challenges: proposing a template updating
strategy to deal with short-term time-varying variabilities
and learning age-invariant speaker representations to ad-
dress long-term time-varying effects.

For STTV-SV scenarios, previous studies have shown that
speaker verification systems can experience degraded per-
formance over just a few months or even days [9], [16], [19].
However, existing short-term time-varying speaker verifica-
tion datasets often have limited speakers and specific time

1The definition of time-varying scenarios in this paper is slightly differ-
ent from [14], which defines the short-term as different times of the day,
medium-term as times of the year, and long-term as changes with age.
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intervals, and most of them are recorded in lab settings.
Consequently, they may not fully capture the complexity
of real-life scenarios and their proposed methods may lack
robustness. Additionally, it is worth noting that some of
these datasets were recorded decades ago, using a relatively
low sampling rate of 8 kHz. To overcome these limitations
and further investigate short-time time-varying speaker
verification, we collect the SMIIP-TimeVarying (SMIIP-TV)
dataset and publicly release it in this paper. The SMIIP-TV
dataset comprises continuous recordings of 373 speakers
over a span of 90 days. This dataset also includes meta-
information associated with each recording. In real-world
usage scenarios, enrollment templates interact with pos-
itive or negative samples at various time periods. There-
fore, we propose a novel time-varying speaker verification
task called Incremental Sequence-pair Speaker Verification
(ISSV), where enrollment template interacts with testing
audios in chronological order, ASV system can continue
updating templates in the interactive process of a sequential
trial to counteract the effects of time-varying. In this task,
we propose a template updating method that leverages
deep reinforcement learning (DRL) to replace the fix-weight
template updating approach [20], in which the updating
thresholds and weights are pre-determined and fixed.

For CA-SV scenarios, also known as long-term time-
varying speaker verification, early research focus on small-
scale datasets due to the challenges in collecting cross-
age speech data, which is time-consuming and expensive
[21]–[24]. Some recent works have analyzed the influence
of age on speaker verification [25] and diarization [26].
However, the evaluation sets in these datasets do not
include the cross-age speaker verification scenario. Some
studies [27]–[31] also experimented on NIST SRE and TIMIT
[32] datasets to estimate speaker age, but each speaker’s
data only cover one age point. [33] studied the impact of
demographic imbalance on group fairness in speaker recog-
nition, taking into account age influence. [34] establishes
a quantitative measure between aging and ASV scores in
VoxCeleb and LCFSH. [35] proposed an aging calibration
method to compensate for the detrimental impact of aging
on speaker verification performance. However, there is no
large-scale dataset available for CA-SV studies. Currently,
we found that celebrity audio-visual resource is inherently
cross-age. Therefore, we mine cross-age test sets based
on the VoxCeleb dataset. [36], [37] gathered age informa-
tion from VoxCeleb, with [37] reporting 14,247 videos with
age labels in VoxCeleb2, and [36] reporting 21,678 videos
with age labels in VoxCeleb2 as well. However, considering
the total number of videos in VoxCeleb2 development set
(143,124 videos) and VoxCeleb 1 (22,496 videos), [36], [37]
only cover a very small portion. This limitation prevents for
sufficient model training, especially when compared with
the current published studies that were trained on Vox2dev
and evaluated on VoxCeleb1. Therefore, we employ a facial
age estimation method to label all videos in VoxCeleb1 &
2. Specifically, the paper constructs multiple cross-age test
sets on VoxCeleb1 (Vox-CA), deliberately selecting positive
trials with significant age gaps. The baseline system’s perfor-

mance experienced a noticeable drop from a 1.939% Equal
Error Rate (EER) on the Vox-H [38] test set to 10.419% on
the Vox-CA20 test set, as detailed in SectionV-B1. Inspired
by related works of face recognition [39]–[42], we propose
the Age Decoupling Adversarial Learning (ADAL) module
to encourage speaker identity features to have smaller
intra-class variations and be less correlated with the age
information.

This paper builds on our previous work on cross-age
speaker verification [43], while also introducing a nov-
el short-term time-varying speaker verification task. Our
previous work focused on the construction of the Vox-
CA benchmark and the description of the learning age-
invariant representation method, but due to space con-
straints, we were unable to provide comprehensive experi-
mental details. In this paper, we provide more experimental
details to fully present our findings of CA-SV and propose a
new task with its corresponding solutions of STTV-SV. Our
main contributions are as follows:

• A systematic discussion of time-varying speaker ver-
ification, including both short-term time-varying and
cross-age speaker verification.

• Providing additional design details of the previously
proposed cross-age speaker verification scenario.

• Releasing the SMIIP-TV dataset, which focuses on the
short-term time-varying speaker verification. Based on
this dataset, we propose time-delay score and time-
delay EER as auxiliary metrics to evaluate the ASV
system over time.

• Introducing the incremental sequence-pair speaker
verification task in the short-term time-varying sce-
nario.

• Formulating the template updating process as a
Markov Decision Process and using a deep reinforce-
ment learning-based mechanism to determine the up-
dating strategy.

The remaining paper is organized as follows. We discuss
related works and introduce time-varying speaker verifi-
cation tasks in Section II. Section III describes cross-age
speaker verification task and proposed methods. Section
IV presents the SMIIP-TV dataset and our proposed deep
reinforcement learning based template updating method.
Section V and VI provides the experimental setup and
results analysis for CA-SV and STTV-SV, respectively. Finally,
our conclusions are presented in Section VIII.

II. RELATED WORKS AND TASK INTRODUCTION

A. Related works

In this part, we provide a brief overview of time-varying
speaker verification, focusing on two categories: short-term
and long-term time-varying speaker verification.

Short-term time-varying speaker verification. Early re-
search has raised concerns about the impact of time-
varying effects on speaker verification. [13] observed a
decline in performance as the time gap between training
and test data increased. [16] demonstrated that system
performance dropped by nearly 50% when the time interval
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between enrollment and testing increased from 10 minutes
to 2 months. Similarly, DeepSpeaker [19] reported a de-
crease in performance from 2.11% Equal Error Rate (EER) to
2.50% and 2.76% when the enrollment and testing intervals
vary from 1 week to 1 month and 3 months, respectively.
In our summary report of Far-field Speaker Verification
Challenge 2022 (FFSVC2022) [9], we also reported a sig-
nificant performance decline with longer intervals between
enrollment and testing audios.

Several datasets, such as CSLT-Chronos [15], CSLU [44],
and TRSD [45], have been collected to investigate the effects
of short-term time-varying variabilities. However, due to
challenges in collecting time-varying data, most of these
datasets have a limited number of speakers, such as 60
speakers in [15], 91 speakers in [44], and 55 speakers in
[45]. Moreover, these datasets were recorded at specific
time intervals rather than in continuous, real-life scenarios
that encompass the complexities of varying conditions
throughout the day. Additionally, while there are speech
datasets available with speaker identity information, they
are typically recorded only once a day, such as Automatic
Speech Recognition (ASR) databases like LibriSpeech [46],
AISHELL-2 [47], and TIMIT [32]. This limited temporal
coverage may be one reason why the addition of ASR data
has shown limited improvement on the speaker verification
task [48], [49]. Therefore, there is a need for a dataset that
covers a multiple randomly prompted time slots in each
day within a continuous multi-month period from a large
size cohort of speakers, capturing various states in real life
from waking up to sleeping and aligning more closely with
practical application scenarios.

To mitigate the negative effects of time-varying variations,
red [15] proposed two modified acoustic features: pre-
filtering frequency warping and post-filtering filter-bank
outputs weighting, to alleviate the impact of time-varying
factors. [50] proposed setting a prior decision threshold for
speaker verification and provided examples of modifying
the threshold during verification process to improve perfor-
mance. However, this method requires continual operation
for threshold tuning, which may not be practical in real-
world applications. [24] discussed the impact of template
aging in speaker verification and attempted to answer how
often voice biometric templates should be updated. This
viewpoint is similar to our proposed solution; however, due
to data limitations, the author did not delve into further
exploration and investigation.

Long-term time-varying speaker verification. [14] indi-
cates that voice changes over time and samples with long-
term gaps represent a challenge for speaker verification. To
address this, the TCDSA database was introduced in [22],
which contains long-term data from 18 speakers spanning a
range of 30-60 years for each speaker. Based on the findings
from TCDSA, authors of [17], [22], [23], [51] have concluded
that using a decision threshold fixed at the time of enroll-
ment results in a high classification error rate after only a
few years. They also observe that the issues of aging and
quality variation are interconnected, with the effect of aging
increasing over time and variations in quality becoming

(a) General speaker verification task (single pair-wise task). Time-invariant
on the horizontal axis.

(b) Cross-age speaker verification task (single pair-wise task). Time axis is
represented on the horizontal axis.

(c) Incremental Sequence-pair speaker verification task. Time axis is repre-
sented on the horizontal axis.

(d) Brief pipeline of Incremental Sequence-pair speaker verification task. The
ztest

n,m ∈Rd and vn,m ∈R1 indicate the d-dimensional test embedding vector
and scalar score of the m th test in the n th episode, respectively. Moreover,
zenr ol

i represents the template embedding after the i th update.

Fig. 1. Task introduction and schematic diagram of different ASV tasks.
Different colored waveforms represent different speakers.

more likely. To address the associated variability from aging
and quality, a verification decision boundary is proposed in
score-aging-quality space by combining aging information
with quality measures and the scores from the GMM-UBM
system [51]. However, tuning the threshold lower may result
in a decline in the miss rate, but the false alarm rate
will rise, and vice versa. Although research on speaker
verification in the context of aging is limited, age-invariant
representation learning has been extensively studied in face
recognition [39]–[42] using model-wise approaches. Given
that the aging process indeed increases intra-class variance,
employing angle margin-based loss functions [6], [52] is also
a reasonable method to handle it. However, age-relevant
variabilities may not be specifically emphasized in loss-wise
approaches.

B. Task introduction

The traditional ASV task involves determining whether
the claimed identity of an utterance matches a target iden-
tity. To evaluate the performance of a speaker verification
system, a list of trial pairs is provided. Each trial pair
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consists of two single speech segments, and the scoring of
each trial pair is independent. In the general task setting, as
shown in Fig.1(a), the trials are symmetric, meaning that the
order of enrollment and test audio can be reversed without
affecting the results. However, since this paper focuses on
time-varying speaker verification, we take the chronological
order into account when constructing the trial files. There-
fore, we introduce two types of tasks: "Cross-age Single
Pair-wise Speaker Verification" for long-term scenarios and
"Incremental Sequence-pair Speaker Verification" for short-
term scenarios of time-varying speaker verification.

1) Cross-age Single Pair-wise Speaker Verification: The
traditional ASV scenario is considered a form of "Single
pairwise speaker verification" where each trial consists
of an enrollment audio and a test audio. In this paper,
we consider the time factor, meaning that the enrollment
audio is recorded earlier than the test audio. In FFSVC-
22 [9], we intentionally varied the time intervals in test
trials, where the first recording is used for enrollment and
tested against the first, second, and third recordings. The
results showed that as the recorded time interval increases,
system performance decreases. Therefore, in this study, we
aim to investigate the effects of larger time intervals and
propose the "cross-age single pair-wise speaker verification
task" as shown in Fig.1(b). In this task, each trial is single
pair-wise, where the positive pair of enrollment and test
audio samples are selected in strict chronological order. For
example, in our specific example (Fig.1(b)), the test audio
is captured at the present time, while the enrollment audio
is obtained from a recording made ten years earlier.

2) Incremental Sequence-pair Speaker Verification: The
previous works on short-term time-varying scenarios [15],
[16], [50] focused on the single pair-wise task. However,
considering the variation over time of speech signals, we
propose a novel and realistic task called "incremental
sequence-pair speaker verification (ISSV)" to investigate
short-term time-varying scenarios in speaker verification.
Fig. 1(c) shows the form of the ISSV task. Compared
to the single pairwise trial, the ISSV introduces two key
differences. Firstly, each trial in ISSV consists of one enroll-
ment template and multiple test audios. These test audios
are sequentially presented to interact with the enrollment
template, and their scores are evaluated in a chronological
order. Secondly, the ISSV approach allows for performance
improvement by incrementally updating the enrollment
template during continuous interaction. Specifically, Fig.
1(d) illustrates a trial instance. Initially, the enrollment
template zenr ol l

0 is generated as the average embedding
extracted from the enrollment audios. This template em-
bedding then interacts sequentially with the chronological
testing embeddings, forming a trajectory. Within this trajec-
tory, the template is scored against each test embedding.
Subsequently, the discriminator module makes an identity
decision based on the scores and updates the template
embedding accordingly. The objective of this task is to
evaluate the ASV systems’ ability to handle time-varying
variabilities in real-world application scenarios.

III. LONG-TERM SPEAKER VERIFICATION

A. VoxCeleb Cross-age test set

(a) Distribution of estimated speaker ages among all
segments in VoxCeleb 1&2

(b) Distribution of maximum age gap in terms of
estimated ages among all speakers in VoxCeleb 1&2

Fig. 2. Statistics of speaker age and maximum age gap information in the
VoxCeleb1&2 dataset based on the estimated age values.

1) Construction Details: VoxCeleb1 [38] is a benchmark
dataset for speaker verification, consisting of the original
VoxCeleb1 original test set (Vox-O), the VoxCeleb1 extened
test set (Vox-E), and the VoxCeleb1 hard test set (Vox-
H). Vox-E is an evaluation protocol covering the entire
dataset with 1,251 speakers. Vox-H is another evaluation
protocol in which all negative pairs are from the same
nationality and gender. We construct the Cross-Age test
sets on VoxCeleb, named Vox-CA, which includes positive
pairs with a large age gap and negative pairs of the same
nationality and gender. The construction pipeline adopts
the following steps:

• Gathering the face images from the meta-data of Vox-
Celeb12 and VoxCeleb23.

• Estimating the age of each face image.
• Labeling the estimated age value for each audio utter-

ance.
• Selecting positive pairs with a large age gap and neg-

ative pairs with speakers of the same nationality and
gender.

For clarity, the key stages are described as follows:
Estimating and labeling age for audio. We use Dex [53] 4,
the winner in visual age estimation track of the ChaLearn

2https://www.robots.ox.ac.uk/∼vgg/research/CMBiometrics/
3https://www.robots.ox.ac.uk/∼vgg/data/voxceleb/vox2.html
4https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/

https://www.robots.ox.ac.uk/~vgg/research/CMBiometrics/
https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox2.html
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
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LAP2015 challenge [54], to estimate the age value for each
face image. Furthermore, as training set of Dex is derived
from IMDB-WIKI and overlaps with speakers in VoxCeleb,
Dex based age prediction is more accurate on VoxCeleb’s
facial data. Since the audio of each utterance corresponds
to multiple face images, the average age value of faces is
used as the estimated age for this utterance. In addition,
all the utterances of the same video segment should share
the same age. Thus, the segment age, the average age
among all the utterances belonging to the same video
segment, is determined as the final age label. The estimated
age distribution is shown in Fig. 2(a). In our calculation,
the correlation between age labels in the Age-VOX-Celeb
[36] dataset and our estimated age values is 0.83, with a
mean absolute error (MAE) of 7.74. The 0.83 correlation
coefficient result indicates that the predicted ages aligns
well with the trend of actual ages. Although our estimated
ages tend to be slightly older than the actual age values
but the relative age gap and age range information are still
captured. We create trials up to 20 years gap which could
greatly tolerate the error in speaker age estimation.
Forming positive/negative pairs. Since the VoxCeleb2
dataset is typically used for training in most ASV system,
the entire VoxCeleb1 dataset contributes to the construction
of the cross-age test set with the following rules.

First, positive pairs must involve speakers from different
age; i.e., the pair audios cannot be from the same video
segment. We count the maximum age gap 5 of each speaker
and present the distribution in Fig.2(b). It is observed that
the largest age gap for most speakers is between 0 and 20
years in VoxCeleb1, and only a few speakers have an age
gap greater than 20 years. However, using too few speakers
may affect the accuracy of the evaluation system, so the
number of evaluation speakers must be taken into account
when constructing the test set.

Second, following the Vox-H setting, we construct all
negative pairs within the same nationality and gender. We
maintain the same setting as Vox-H, where each nationality-
gender combination has at least five individuals.

According to the rules mentioned above, we construct
four Vox-CA sets according to different age-gap categories:

• Vox-CA5. The age gap of the positive pair is at least
5 years, and the candidate speakers must have more
than 7 years of max age-gap data.

• Vox-CA10. The age gap of the positive pair is at least
10 years, and the candidate speakers must have more
than 12 years of max age-gap data.

• Vox-CA15. The age gap of the positive pair is at least
15 years, and the candidate speakers must have more
than 17 years of max age-gap data.

• Vox-CA20. The age gap of the positive pair is at least
20 years, and the candidate speakers must have more
than 22 years of max age-gap data.

The Vox-CA test sets exhibit a progressive overlapping rela-
tionship, wherein Vox-CA5 may include speakers from Vox-

5maximum age gap of one speaker indicates the difference between the
largest estimated age value and the smallest estimated age value among
all audio files of this speaker

TABLE I
THE STATISTICS OF THE VOXCELEB1 TEST SET AND VOX-CA. Trials Num. AND

Spk. Num. DESCRIBE THE NUMBER OF TRIALS AND ENROLLMENT SPEAKERS,
RESPECTIVELY. THE COLUMN OF positive AND negative PRESENT THE MEAN

AND STANDARD DEVIATION OF AGE-GAP VALUES IN CORRESPONDING PAIRS.

Test set Spk. Num. Trials Num.
Age-gap

Positive Negative

Vox-O 40 37611 2.68 ± 2.88 15.50 ± 12.46
Vox-E 1251 579818 3.14 ± 3.48 12.05 ± 9.81
Vox-H 1190 550894 3.14 ± 3.47 11.27 ± 9.42

Vox-CA5 971 370540 9.98 ± 3.94 12.36 ± 9.58
Vox-CA10 506 151384 15.29 ± 3.44 14.66 ± 9.93
Vox-CA15 215 54608 20.39 ± 3.38 16.63 ± 10.24
Vox-CA20 85 18888 25.28 ± 2.87 18.42 ± 10.58

CA10 and even Vox-CA20, thereby potentially encompassing
speakers with significant age gaps. However, it is essential
to note that the construction process for Vox-CA5/10/15/20
is entirely independent and does not deliberately involve
overlap. All the trials mentioned above have been released6.
The Vox-CA provides a challenging task that covering cross-
age, same nationality and same gender cases. In addition,
we also implement the single variable test set, including but
not limited to: 1) test set within the cross-age; 2) test set
within the same nation; 3) test set within the same gender;
4) test set within the intra-segment, to observe the effect
of various factors on verification. The results are reported
in Section.V-B1.

2) Comparison of Vox-E, Vox-H and Vox-CA: In this part,
we compare the difference of Vox-E, Vox-H and Vox-CA from
various aspects.

Positive pair within the cross-age and intra-segment.
The average age gap of the VoxCeleb1 test set is approxi-
mately 3 years, as shown in Table.I. Considering the error in
age estimation, most positive trails are from the similar pe-
riod. The positive pairs in the VoxCeleb1 test set are chosen
randomly from the same person without considering the
age gap. However, Vox-CA intentionally selects pair audio
from larger age-gap segments. The other extreme is when
the pair of audios are chosen from the same video segment,
resulting in a higher successful verification rate [43].

Negative pair within the same nationality and gender.
Both Vox-H and Vox-CA take nationality and gender into
account when constructing negative pairs. In contrast, Vox-
E randomly selects pairs from the entire dataset. Thus, the
Vox-H and Vox-CA sets are more challenging.

Overall, the Vox-CA test sets provide a more challenging
evaluation for speaker verification systems by introducing
larger age gaps, while also considering nationality and
gender constraints for negative pairs. This enables a com-
prehensive assessment of the system’s performance under
cross-age, same nationality, and same gender scenarios.

B. Learning Age-invariant Speaker Embedding

1) Toy experiment: The results of the cross-age scenario
(only-CA) in Table.V present that as the time gap increases,

6https://github.com/qinxiaoyi/Cross-Age_Speaker_Verification
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Fig. 3. An overview of the proposed ADAL structure. The AISR denotes the
Age-Invariant Speaker Representation. GSP is denoted as Global Statistic
Pooling layer.

the performance decrease. This observation leads to the
research question of whether speaker embedding contains
age information. To investigate this, a toy experiment is
conducted by using a pre-trained ASV system to extract
speaker embeddings and predict the speaker age. The age
classifier is employed to classify the age into 7 groups:
0-20, 21-30, 31-40, 41-50, 51-60, 61-70, and 70-100. The
speaker embeddings are fed into a linear layer for age
class prediction, achieving an accuracy of 82.01%. This high
accuracy indicates that speaker embeddings indeed contain
age information. Therefore, the goal is to learn an age-
invariant speaker embedding to mitigate the negative effect
of age.

2) Decoupling Age-related component: The assumption
is made that the speaker embedding consists of identity
and age information driven by their respective tasks. To
decouple the age information from the identity features,
a linear model is designed. Specifically, the feature embed-
ding z ∈Rd , a d-dimensional vector extracted from an input
audio, is assumed to be the sum of the identity component
zi d and the age component zag e [40]:

z = zi d +zag e (1)

An Age-Related Extractor (ARE) module is introduced to
extract age-related information from the high-level feature
maps x ∈ RC×F×T , where C , F , and T indicate the dimen-
sions of the channel, frequency and temporal domains,
respectively. The ARE module, utilizing the attention mech-
anism, includes a pooling layer (pool ), a fully connected
layer ( f c), and an attention module denoted by σ. The
age-related embedding with d-dimensions is obtained by
applying pooling, linear transformation, and attention to
the output of the attention module, as expressed by the
following equations:

zag e = ARE(x) = fc(pool(x¯σ(x))) (2)

Here, Attentive Statistical Pooling (ASP) [55] is utilized to
perform the pool(x¯σ(x)) operation. The purpose of pooling
is to transform variable-length speech features into fixed-
length vector representations along the temporal direction.

Then, the age-related component zag e is subtracted from
z, effectively reducing the age-related information for super-
vision by an age classifier.

3) Multi-task Learning: Fig. 3 provides a detailed
overview of the proposed network structure. We adopt
multi-task learning, which involves three supervised tasks:

identity classification, age classification, and age adversarial
learning.

Identity classification. We adopt the Identity Classifier
layer (IC ) to guide the zi d to represent the identity infor-
mation. To account for speaker aging and the resulted large
intra-class variance in CA-SV, ArcFace is employed as the
identity loss function to reduce intra-class distance.

Age classification. To decouple the age information from
the speaker embedding, an age classifier A is employed
to supervise the learning of age-related embeddings. In
general, the combination of age-classification and regres-
sion loss is adopted as loss function for age estimation.
However, since age values are estimated by faces and not
directly obtained from ground truth, the estimated age
labels contain noise. Therefore, an age group classifier is
used, where the age groups correspond to the ones used in
Section III-B1.

Age adversarial learning To further reduce the age
information contained in the identity embedding zi d , an
additional age classifier with gradient reversal layer (GRL)
[56] is applied upon the zi d .

The proposed method is named as Age Decoupling Ad-
versarial Learning (ADAL). The final loss function for the
method is formulated as follows:

Li d (zi d ) = lce (IC (zi d ), yi d ) (3)

Lag e (zag e ) = lce (A(zag e ), yag e ) (4)

L =Li d (zi d )+λag eLag e (zag e )+λg r l Lag e (GRL(zi d )) (5)

where yi d ∈ {0,1, . . . , N } and yag e ∈ {0,1, . . . ,6} are the out-
put labels of identity and age estimation tasks, respectively.
lce denotes the cross-entropy loss, and λag e and λg r l are
scalars used to balance different loss terms.

IV. SHORT-TERM TIME-VARYING SPEAKER VERIFICATION

A. SMIIP-TimeVarying Dataset

The SMIIP-TimeVarying Dataset (SMIIP-TV), is a speaker
verification dataset designed for research purposes that
focuses on short-term time-varying of speaker verification.
The recordings language is mandarin. The dataset contains
recordings from 373 speakers who provided utterances over
90 consecutive days, in which each speaker needs to record
multiple utterances at varying time slots in each day. To
ensure that recording time spans the full day without
location limitations, we developed an Android application,
which randomly assigns recording tasks in five different
time slots: 6:00-8:00, 9:00-11:00, 12:00-14:00, 17:00-19:00,
and 20:00-22:00, as shown in Fig.4(a). In each time slot,
speakers provide three utterances, including both text-
dependent and text-independent speech samples. Table
II shows the contents of the recording. Additional meta
information such as speaker region (in total 27 provinces,
China), age, and cellphone type were collected. Additionally,
speakers were asked to report details on their physical
state (in total 7 types, including normal, sleepy, eating, sore
throat, exercise, cold/fever, others), recording environment
(in total 16 scenes) and the degree of noise (in total 4 levels,
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(a) Reported time distribution (b) Age distribution

(c) Reported noise distribution (d) Reported state distribution

Fig. 4. Facts of the SMIIP-TV dataset in terms of data collection time,
speaker age, background noise and user states.

TABLE II
THE CONTENT STATISTICS OF THE SMIIP-TV DATASET. Content AND Num.
DESCRIBE TEXT CONTENT AND ITS CORRESPONDING UTTERANCE NUMBER,

RESPECTIVELY.

Content Num. Average Duration (w/o VAD)

’ni hao, mi ya’ 27138 1.86s
’xiao le, xiao le’ 26923 1.88s
’xiao ai tong xue’ 27227 1.92s
’tian mao jing ling’ 27076 1.91s
’tong li tong li’ 26972 1.88s
free text 189713 4.45s

total 325049 3.38s

including quiet, normal, noisy, extremely noisy), all were
manually reviewed. The dataset statistics are presented in
Fig.4. The majority of speakers in the dataset are college
students and their families from Shanxi Province, China,
and the gender distribution is balanced (171 males:202
females). Most recordings were made indoors, with majority
of the noise and physical conditions being normal. Speakers
were also encouraged to report various scenes with different
physical conditions. Due to the challenge of continuously
recording for 90 days, some speakers were unable to provide
recordings for the entire duration. Finally, 133 speakers
recorded for the entire 90-day period, and we selected 58 of
them as the SMIIP-TV test set, and the remaining speaker
data (315 speakers) is adopted as the training set. The entire
dataset is available7 for publicly releasing.

B. Analysis of time varying

The aim of this study is to examine speaker variability
over several days, which is referred to as Short-term Time-
varying Speaker Verification. First, the enrollment template

7https://github.com/qinxiaoyi/TimeVarying_ASV

(a) Positive trial score curve of each day from 5 random
speakers.

(b) Negative trial score curve of each day from 5 random
speakers.

(c) EER curve of each day from 5 random speakers

Fig. 5. Results in each day scenario. "Average" indicates the average value
of all test speakers in each day. Three subfigures share one legend.

embedding of each speaker is the average of embeddings
from corresponding audio samples of the first day, which is
then tested against audio samples from the second, third,
and subsequent days up to the Nth day. By analyzing the
changes in EER and scores curve for each individual on a
daily basis, insights can be gained into the temporal dynam-
ics of speaker verification. However, due to the requirement
of a large number of positive and negative trial scores for
calculating EER, and on average only 14.7 speech samples
are available for each speaker per day in our test set, there
are significant fluctuations for both positive trial scores and
EER as shown in Fig.5.

Therefore, we propose two metrics for analyzing time
varying: the Time-delay Score (TDS) curve and the Time-
delay EER (TD-EER) curve. The TDS is the average scores of
current day and previous days, and the TD-EER computes
the EER based on the positive and negative TDS. These
metrics are combined with the overall EER to evaluate
the impact of time varying. The specific definitions are as
follows:

First, we make a definition that in a given set A ∈R, the
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average of set A is denoted as

A = 1

|A|
∑

a∈A
a

Then, set Si , j is a subset of trial scores from the jth speaker
on the ith day (total N speaker with M days). The set of
all scores up to k day is denoted as

T Dk :=Ui≤k, j≤N Si , j

The set of positive TDS (T DSp ) of the jth speaker can be
formulated as

T DSp
j (k) = T Dp

k, j

The subset of T Dp
k, j := Ui≤k Sp

i , j where trial ground truths
are positive. The superscript p and n indicates the positive
and negative trail scores, respectively.

T DSp (k) and T DSn(k) denote the collections of all
positive trial scores and all negative trial scores up to the
kth day, respectively. T DSp and T DSn curves against the
time information are presented in Fig. 6 (a) and (b).

Therefore, the curve function of TD-EER (shown in
Fig.6(c)) can be formulated as :

T D −EER(k) = EER(T DSp (k),T DSn(k)) (6)

Additionally, we plot the sliding window EER (SW-EER)
curve in Fig. 6(d), which computes the EER based on the
positive and negative trial scores over a window period that
slide along the time axis to observe the short-time system
performance. We use a window length of 10 days and a hop
length of 1 day in this study.

The results depicted in Fig. 6 indicate a gradual decline
trend in the T DSp curve and a slowly increasing trend in
the TD-EER curve, indicating a degrading pattern in term
of system performance over time. These trends are in line
with the findings in [15]. Moreover, the negative trial score
(T DSn) curve exhibits fluctuations within a limited range,
indicating that time varying has little impact on negative
samples.

Based on the aforementioned observations and analyses,
we can conclude that there is a slow effect of time varying
on positive trial scores, while negative trials are relatively
unaffected. As the positive trial scores decline over time,
the system performance will also degrade. This raises the
question of how to maintain or even enhance the perfor-
mance of the speaker verification systems over time when
we continuously use it, e.g. mobile phone login.

C. Instance-Wise Template Updating

The analysis of short-term time varying (depicted in
Fig.6) indicates a noticeable decline in performance within
a three-month period. To address this issue, we propose
an instance-wise template updating approach that updates
the template after each validation, reducing the need for
long-term storage and personalized model creation. This
method is particularly suitable for situations where privacy
concern associated with storing audio samples over extend-
ed periods is an issue or developing customized models for
individual users is challenging.

(a) T DSp curve of 10 random speakers.

(b) T DSn curve of 10 random speakers.

(c) TD-EER (d) SW-EER 10 days window with 1
day hop.

Fig. 6. Results of TDS Curves, TD-EER, and SW-EER on the SMIIP-TV
test set. The exemplar speakers are randomly sampled from the test set,
with the “Average” curve representing the average results across all 58
individuals in the test set.

1) Fixed-Weight Template Updating Method: Firstly, we
introduce a fixed-weight template updating method (FixW-
TU) that updates the enrollment template sequentially
when the test audio progresses, as described in Section
II-B2. The updating method is introduced in [20]:

zenr ol l
t+1 = (1−α)∗zenr ol l

t +α∗ztest
t (7)

where α represents a predefined updating weight, and
zenr ol l and ztest are d-dimensional enrollment template
and test embedding, respectively. The template updating
is triggered when the similarity score between enrollment
and test embedding exceeds the predetermined updating
threshold. The threshold is determined through multiple
manual evaluations. Algorithm 1 provides details of the
FixW-TU method.
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Algorithm 1: FixW-TU with thresholding [20]

//Initialization
1. Enrollment template: Random sample K embeddings
zenr ol li

0 ∈RK×d from a speaker and calculating the average

to obtain the template zenr ol l
0 .

2. Test set: Randomly sampling negative samples and
sequentially sampling positive samples, forming a T -length

sequence Ztest =
{

z
test−p
0 ,ztest−n

1 , . . . ,z
test−p
T−1

}
The ratio of

positive and negative samples is 1 : 1.
3. Fixed weight: α ∈ {0.05,0.1,0.15,0.2,0.3,0.4,0.5}
// Implementation
4. Determine updating threshold : β=0.51 (empirical value)
5. Terminated=0
6. while not Terminated do

vt = cosi ne(zenr ol l
t ,ztest

t )
if vt >β then

zenr ol l
t+1 = (1−α)∗zenr ol l

t +α∗ztest
t

else
zenr ol l

t+1 = zenr ol l
t

Terminated=1 if t+1==T

2) Reinforcement learning based template updating
method: The FixW-TU approach is limited by the need of
manual calibration to identify appropriate values for the
updating threshold β and the update weight α. Although
we can achieve relatively good results in a specific scenario
through manually tuning the parameters, the optimal pa-
rameters might vary in different setups and using cases.
Therefore, we are motivated to explore adaptive updating
methods where the updating decision and the updating
weight can be automatically calculated in a customized
manner. We found that template updating is a sequential
decision-making problem with the goal of maximizing long-
term benefits. Therefore, we propose a Deep Reinforcement
Learning-based template updating (DRL-TU) method that
formulates the problem of finding suitable thresholds and
weights as a Markov Decision Process (MDP), described by
(S ,A ,T ,R) as the states, actions, transitions, and rewards.
Our approach adopts the Proximal Policy Optimization
(PPO) [57] strategy to optimize an agent and aims to
achieve durable verification benefits for the overall system.
In this paper, we propose two DRL-based template updating
methods, namely DRL Adaptive Weighted Template Updat-
ing with thresholding (DRL-TU-AdW) and DRL Multi-Head
Template Updating (DRL-TU-MH). Next, we will present the
interaction environment and the algorithm in details.

3) Interaction Environment: Our proposed DRL-TU
methods operate within an interaction environment con-
sisting of States, Actions, Transitions, and Rewards, as
illustrated in Fig. 7.

States. The input state st ∈S for the agent is composed
of

{
zenr ol l

t ,ztest
t

}
, where zenr ol l

t and ztest
t is d-dimensional

enrollment and test speaker embeddings, respectively.
Actions and transitions. For the DRL-TU-MH method,

in every state, the agent can take two actions: the binary
updating decisions aact

t and the corresponding updating

weight awei g ht
t . The weight awei g ht

t is a scalar that provides
the updating weight for the test embedding. The updating

Fig. 7. The brief training structure of our DRL based template updating
method. This figure presents the pipeline of the DRL-TU-MH method.
The left part signifies the forward direction in one training iteration. The
enrollment embedding and randomly selected test audio embedding are
concatenated to form a state. This state undergoes state transition through
the Agent, resulting in an action. Following the action, a new enrollment
embedding is obtained, constituting the new state in next stage.

TABLE III
REWARD MATRIX IN ALGORITHM 2

aact
t == 1 aact

t == 0

Label==1 r
pai r
t + r cen

t +0.5 r
pai r
t + r cen

t

Label==0 −r
pai r
t −1 0.5

decision aact
t belongs to the set {0,1}, where aact

t == 1
indicates that the template needs to be updated, while
aact

t == 0 indicates that it does not need to be updated.
On the other hand, the DRL-TU-AdW method only predicts
the updating weight awei g ht

t , and the updating decision is
made by setting a threshold. Before the termination of each
trajectory, the agent transits to the next state based on the
transition distribution T (st+1|st , at ).

Rewards. The reward function of DRL-TU-MH is consist-
ed of three parts: the accuracy of the updating decisions
r dec

t , cosine similarity between the updated enrollment

embedding and the next-stat test embedding r pai r
t , and the

cosine similarity between the updated enrollment embed-
ding and the speaker center embedding r cen

t . The reward
rt for each action is provided in Table III.

The r pai r
t and r cen

t are formulated as follows:

r pai r
t = cos(zenr ol l

t+1 ,ztest
t+1 ) (8)

r cen
t = cos(zenr ol l

t+1 ,zcen) (9)

where cos(·) indicates the cosine similarity between two
input embeddings, and zcen represents the average em-
bedding of samples collected over a 90-day period for the
enrollment speaker. The zenr ol l

t+1 represents that the em-
bedding has been updated using Eq.7. Since the updating
decision of DRL-TU-AdW is made by setting a threshold,
reward function only adopts the rpai r and rcen to guide
the agent. Therefore, the T -length trajectory in each episode
can be indicated as the iteration set of {(st , at , st+1,rt )}. The
interaction details of training are summarized in Algorithm
2.
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Algorithm 2: DRL-TU interaction environment under
the training stage.

// Initialization
1. Enrollment template: Random sample K embeddings
zenr ol li

0 ∈RK×d from a speaker and calculating the average

to obtain the template zenr ol l
0 .

2. Test set: Randomly sampling negative samples and
sequentially sampling positive samples, and forming a
T -length sequential test set

Ztest =
{

z
test−p
0 ,ztest−n

1 , . . . ,z
test−p
T−1

}
with its labels

{l0, l1, . . . , lT−1}.
// Implementation of DRL-TU-AdW
3a. Determine threshold of updating: β=0.51
4a. Terminated=0
5a. while not Terminated do

vt = cosi ne(zenr ol l
t ,ztest

t )
if vt >β then

at =πθ(zenr ol l
t ,ztest

t ) α= sample(at ), where
at ∼N (µ, σ2) zenr ol l

t+1 = (1−α)∗zenr ol l
t +α∗ztest

t
else

zenr ol l
t+1 = zenr ol l

t

rt = Rew ar d M atr i x(st , at , lt )
Terminated=1 if t +1 == T

// Implementation of DRL-TU-MH
3b. Terminated=0
4b. while not Terminated do

aact
t , a

wei g ht
t =πθ(zenr ol l

t ,ztest
t )

acti on = sample(aact
t )

α= sample(a
wei g ht
t ), where at ∼N (µ, σ2)

if acti on == 1 then
zenr ol l

t+1 = (1−α)∗zenr ol l
t +α∗ztest

t
else

zenr ol l
t+1 = zenr ol l

t

rt = Rew ar d M atr i x(st , at , lt )
Terminated=1 if t +1 == T

4) PPO based template updating: The PPO algorithm is
used to develop an optimal updating policy for the agent to
create an enrollment template that can adapt automatically
for better short- and long-term benefits. It is well known
that supervised learning may not be suitable for the sequen-
tial stochastic and decision-making problem involved in
template updating. Therefore, we employe DRL to address
this issue. We have explored Deep Deterministic Policy
Gradient (DDPG) [58] and Advantage Actor Critic (A2C) [59]
to predict the updating weight and make updating decision,
respectively. But the training process is unstable and the
results are even worse than the FixW-TU baseline. Hence,
we adopt the PPO strategy to train the policy-based agent
in learning continuous and discrete action spaces. Here,
we provide the details of two DRL-based methods: DRL-
TU-AdW and DRL-TU-MH.

DRL-based Adaptive Weighted Template Updating with
Thresholding (DRL-TU-AdW). This method utilizes DRL to
predict the updating weight for each verification objective
function. The weight is determined using a clipped version
of PPO [57]:

L poli c y (θ) = min(rt (θ)Ât ,clip(rt (θ),1−ε,1+ε)Ât ) (10)

where rt (θ) = πθ(at |st )
πθol d

(at |st ) . The policy πθ is implemented us-

ing a neural network (NN)-based agent, and Ât denotes the
estimator of the advantage function at time step t . As PPO is
an actor-critic algorithm which combines elements of both
value-based methods (critic) and policy-based methods
(actor) to improve the efficiency and stability of learning
[57], [60], the final objective function of DRL-TU-AdW is
a combination of policy and value network, defined as
follows:

L PPO(θ) =L poli c y (θ)+ c1L
value (w) (11)

where L value (w) represents the mean squared error (MSE)
loss of the state-value function, and c1 is a coefficient.

DRL based Multi-head Template Updating (DRL-TU-
MH) improves upon the threshold-based DRL-TU-AdW
method, which only considers values within boundary lim-
its, thereby limiting the explorability of intra-class space
and causing template trends to move towards the initial
embeddings center. To address this issue, we adopt the
Hybrid Action Space PPO [61], which can handle both
continuous and discrete action spaces at ∈ {aact

t , awei g ht
t }.

Specifically, we use a multi-head agent where the first
action head outputs a categorical decision that determines
whether to update the template or not. This output then
feeds into subsequent action heads to learn the updating
weight with a normal distribution. The objective function
includes the entropy loss for both the categorical and
normal distributions8:

L entr opy (θ) =Hdi scr ete (πdi s
θ (st ))+

Hconti nue (πcon
θ (st , aact

t ))
(12)

where Hdi scr ete (.) and Hconti nue (.) are the Shannon en-
tropy and differential entropy, respectively. πdi s

θ
(st ) indi-

cates the categorical output of first action head, while
πcon
θ

(st , aact
t ) is normal output of the section action head.

The final objective function is:

L PPO(θ) =L poli c y (θ)+ c2L
value (w)− c3L entr opy (θ) (13)

In contrast to DRL-TU-AdW, DRL-TU-MH adopts a two-
stage training approach: a) supervised pre-training and
b)reinforcement learning based fine-tuning. First, we use
supervised pre-training to set the initial agent parameters.
The input feature is the concatenation of two speaker em-
beddings (extracted by pre-trained model). The first head is
a binary classifier that determine whether two embeddings
are from the same person. The second head is a regression
task and we setting the ground truth as α= 0.15, which is
the empirical value from the FixW-TU method. In the fine-
tuning stage, we optimize the pre-trained model parameters
using the PPO algorithm.

The design of the reward function and the weights of the
objective function in DRL are determined through multiple
trials on the development set of our dataset.

8Implementation of multi_action_head_PPO github repository

https://github.com/henrycharlesworth/multi_action_head_PPO
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TABLE IV
THE PERFORMANCE OF DIFFERENT SPEAKER VERIFICATION SYSTEMS IN TERMS OF EER. THE MODEL WITH GRL DESCRIBES THE SIMPLEST ADVERSARIAL

LEARNING THAT USES GRL UPON THE z VECTOR TO PERFORM THE AGE CLASSIFICATION TASK, WHICH MAKES THE SPEAKER EMBEDDING LESS CORRELATED TO

AGE. IN THE AGE RESIDUAL METHOD, Zi d IS THE RESIDUAL PART BETWEEN z AND Zag e , THE Zag e IS EXTRACTED FROM Z AND SUPERVISED BY AGE

CLASSIFICATION. THE MODEL EQUIPPED WITH ARE INDICATES THE Zag e IS ALSO SUPERVISED BY AGE CLASSIFICATION WITHOUT AGE ADVERSARIAL LEARNING.

Model Vox-E Vox-H
Cross-age Cross-age & Same nationality & Same gender

Only-CA5 Only-CA10 Only-CA15 Only-CA20 Vox-CA5 Vox-CA10 Vox-CA15 Vox-CA20

ResNet34-Softmax 2.798% 4.806% 4.310% 6.004% 8.019% 9.308% 7.366% 9.215% 12.405% 14.888%
ResNet34-ArcFace 1.094% 1.939% 1.953% 3.437% 5.927% 8.185% 3.407% 4.974% 8.028% 10.419%

+ GRL 1.122% 1.934% 2.021% 3.579% 6.036% 8.566% 3.405% 4.949% 8.017% 10.610%
+ Age Residual 1.121% 1.960% 2.040% 3.536% 5.871% 7.864% 3.499% 5.078% 8.039% 10.229%
+ ARE (ours) 1.108% 1.951% 1.980% 3.345% 5.719% 7.803% 3.431% 4.814% 7.786% 9.911%
+ ADAL (ours) 1.121% 1.974% 1.991% 3.330% 5.540% 7.442% 3.441% 4.822% 7.515% 9.519%

V. EXPERIMENTAL RESULTS OF CA-ASV

A. Implementation Details

1) Network: For the baseline system, termed ResNet34-
ArcFace, we adopt the ResNet34 [62] as the backbone. The
widths (channels number) of the residual blocks are {32,
64, 128, 256}. The global statistic pooling (GSP) layer, which
computes the mean and standard deviation of the output
feature maps, can project the variable length input to the
fixed-length vector. The output of a fully connected layer
with 128 dim followed after the pooling layer is adopted as
the speaker embedding layer. The ArcFace-based classifier
[6] (s=64,m=0.2), which increase intra-speaker distances
while ensuring inter-speaker compactness, is used to the
identity classification. In addition, we also provide the
Softmax classifier as a comparison. For the ADAL method,
the ASP system is adopted as the ARE module to extract the
zage vector. For the age classification, we stack FC-ReLU-FC
structure upon zage and zid to predict the age group value.

2) Data Processing: The acoustic features are 80-
dimensional log Mel-filterbank energies with a frame length
of 25ms and hop size of 10ms. We adopt the on-the-fly
data augmentation [63] to diversify training samples. Four
types of augmentation methods were adopted: 1) adding
noise using MUSAN [64] dataset; 2) adding convolutional
reverberation using RIR Noise [65] datasets; 3) changing
amplification, and 4) changing audio speed (pitch remains
untouched).

3) Training Details: The SGD optimizer is employed to
update the model parameters. We adopt the multi-step
learning rate (LR) scheduler with 0.1 initial LR; the decay
step and factor are 10 and 0.1, respectively. We adopt the
linear warmup from 0.0 to 0.1 LR in the first two epochs
to prevent the training instability and speed up model
convergence. Training stopped after LR dropped to 1e-
5. In order to ensure that the model remains primarily
focused on the task of speaker identity without compro-
mising performance, the hyper-parameters in loss are set as
following: λag e = 0.1 and λg r l = 0.1. We experimented with
different coefficients, namely 0.5, 0.3, and 0.1, and observed
that as the coefficient increased, the model’s performance
deteriorated on the general test sets Vox-E and Vox-H, while
showing limited improvement on Vox-CA.

4) Evaluation Measures: Cosine similarity is used for
trial scoring. Verification performances are measured by
EER and the minimum normalized detection cost function
(mDCF) with Ptarget = 10−2 and CFA =CMiss = 1.

B. Experimental results and analysis

1) Experimental results of the baseline method: In this
part, we adopt ResNet34-GSP-ArcFace as our baseline sys-
tem. We compare the baseline performance on Vox-O, Vox-
E, Vox-H and our proposed Vox-CA. Table.V reports the
corresponding results which confirms the difficulty of the
Vox-CA test set.

First, by observing the performance on our-E and our-
H (our implemented following the VoxCeleb rules), the
results are similar to Vox-E and Vox-H results, that demon-
strate the correctness of our dataset construction. Then, by
controlling a single variable, the negative effect of cross-
age (only-CA) is larger than the same nationality (only-N)
and gender (only-G) matching. When we combine these
variabilities, the performances of Vox-CA drops dramatically
with the age gap increasing. The Vox-CA not only provides
a new hard scenario but also proposes a new benchmark
for cross-age scenarios. In addition, the result of the intra-
segment case is considerably lower than other test sets. The
validation of intra-segment pairs is too easy, which can lead
to misjudgment of the actual performance of the system.

2) Experimental results of AISR: Table.IV presents the
performance of our proposed methods and related methods
on different test sets. First, we compare different metric
learning methods, namely Softmax and ArcFace. We can
find that the ArcFace outperforms its counterpart, especially
in cross-age scenarios. Besides, by comparing the results
on cross-age test sets, we can observe that the verification
performance degrades significantly with age-gap increasing.
Using the ArcFace based system, we mount the GRL or Age
Residual module as comparison. The model with GRL is
an adversarial learning method which is the combination
of identity classification and age adversarial learning in
Section. The model with Age Residual module is the com-
bination of identity classification and age classification, but
the zag e is extracted from the z. However, these methods
have little improvement on cross-age scenarios. We think
the limitation of both methods is that operations are per-
formed on the embedding level. Since the embedding is a



12

TABLE V
RESULTS ON DIFFERENT TEST SETS BASED ON THE RESNET-GSP-ARCFACE

MODEL."ONLY" INDICATES THAT A TRIAL IS CREATED BY ONLY CONSIDERING A

SINGLE VARIABLE.

Test set Variable EER[%] mDCF0.01

Vox official
Vox-O random 0.962% 0.100
Vox-E random 1.094% 0.122
Vox-H nation&gender 1.939% 0.200

our proposed
our-E random 1.202% 0.123
our-H nation & gender 2.044% 0.192
only-N nation 1.568% 0.164
only-G gender 1.534% 0.146
only-I intra-segment 0.227% 0.015
only-CA5 age 1.953% 0.177
only-CA10 age 3.437% 0.272
only-CA15 age 5.927% 0.352
only-CA20 age 8.185% 0.464
Vox-CA5 age & nation & gender 3.407% 0.300
Vox-CA10 age & nation & gender 4.974% 0.370
Vox-CA15 age & nation & gender 8.028% 0.481
Vox-CA20 age & nation & gender 10.419% 0.646

compact representation vector generated by the encoder
layer, resulting in limited operational margins, thus the
improvement is moderate. In contrast with these methods,
the zag e of ADAL are extracted from high-level feature
maps, and age information is further reduced by the age
adversarial learning classifier. In contrast to the baseline
system, the ADAL achieves 10% relative improvement on
the Vox-CA20 test set. Furthermore, the results show that
the performance improves with larger age gaps. Finally, we
utilized the embeddings learned by ADAL for age class pre-
diction again, observing a decrease in the accuracy of age
identification from 82.01% (as reported in Section III-B1)
to 72.44%. This suggests that the embeddings learned by
ADAL have diminished age-related information.

VI. EXPERIMENTAL RESULTS OF STTV-ASV

A. Implementation details

1) Network: To perform template updating on the em-
bedding level, we use the same pre-trained baseline model
(ResNet34-ArcFace) as in CA-ASV and fine-tuned it with
the SMIIP-TV training set. Specially, we divide the SMIIP-
TV set into training and test sets. We randomly select 58
speakers who completed the entire recording as the test
set to construct the sequential trials, and the data of the
remaining speakers as the training set. The data processing
is the same as CA-SV. The training set is divided into 5 folds
for cross-validation to tune the decision threshold, deter-
mine hyper-parameters, and assess the performance of the
DRL-TU system. The final system for speaker embedding
extraction is based on fine-tuning a pre-trained ResNet34-
ArcFace model using the Vox2dev and SMIIP-TV training
sets.

For the DRL-TU-MH method, we employed a two-layer
fully connected structure for the agent model, which is pre-
trained with supervision on the SMIIP-TV training dataset.
During the fine-tuning stage of DRL, we optimize the agent

TABLE VI
RESULTS IN THE RANDOM GAP LIMITED-AUDIO SCENARIO. +GT AND

+Bi nar y INDICATE THAT UPDATING DECISION ARE DETERMINED BY THE

GROUND TRUTH LABEL AND SUPERVISED PRE-TRAINED BINARY ACTION HEAD,
RESPECTIVELY.

Method Paramaters EER[%] minDCF0.01

Baseline (w/o updating) - 3.92 0.434

FixW-TU
(β=0.51)

α= 0.05

-

3.12 0.363
α= 0.1 2.48 0.319
α= 0.15 2.20 0.310
α= 0.2 2.10 0.311
α= 0.3 2.16 0.315
α= 0.4 2.42 0.338
α= 0.5 2.73 0.354

DRL-TU
(proposed)

AdW 131k 1.99 0.283
AdW + GT 131k 1.68 0.274
AdW + Binary 132k 4.35 0.409
Multi-Head (MH) 132k 1.81 0.297

parameters using Adam with a learning rate of 2e −5. The
coefficient of the objective function was c2 = 0.5 and c3 =
0.05.

2) Task setting: To evaluate the performance of STTV-ASV
for incremental sequence-pair speaker verification task, we
simulate real-life interactive environments by configuring
various parameters such as time intervals, number of daily
test sessions, and sequence length. We design five scenarios
to evaluate the performance, including one random scenari-
o and four controlled scenarios.

• Random gap limited-audio scenario. On the first day,
we randomly selected embeddings from 5 utterances as
initial templates, followed by randomized day interval
testing. The testing intervals ranged from 1 to 20 days,
and 1 to 5 audios were randomly selected per day.

• 1 day gap all-audio scenario. On the first day, we ran-
domly selected 5 utterance embeddings as templates
for each speaker, followed by testing every 1 day. The
testing data include all audio files available on the day.

• 3 day gap all-audio scenario. Same setting as 1 day gap
all-audio scenario, but the testing is conducted every
3 days.

• 5 day gap all-audio scenario. Same as 1 day gap all-
audio scenario, but the testing is conducted every 5
days.

• 10 day gap all-audio scenario. Same as 1 day gap all-
audio scenario, but the testing is conducted every 10
days.

Additionally, we conduct four challenging controlled s-
cenarios (1/3/5/10 day gap one-audio scenario), where the
testing data only includes one audio per day, to evaluate the
performance of DRL-based template updating. We adopt
the overall EER as the primary metric, and the results of TD-
EER curve and TDS curve are provided as auxiliary metrics.

B. Experimental results and analysis

The baseline system is a one-time enrollment template
without any updates. Our evaluation on the random gap
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limited-audio scenario in Table VI demonstrates that tem-
plate updating methods improve system performance sig-
nificantly compared to the baseline. In particular, the DRL-
TU method outperforms the FixW-TU method due to its
ability to adjust weights adaptively based on each test
audio, resulting in long-term benefits.

It is worth noting that the DRL-TU method indeed uses
more parameters to build the model and there are also
hyper-parameters in training this DRL model as discussed
in the end of Section III.C.4. For some cases where the
frequency of each target user’s login event is similar, it is
more convenient to use the Fix-TU method as there are only
two parameters to tune. However, once the DRL model is
trained, it can automatically make adaptive updating and
merging decisions for each testing sample which is more
robust. While the updating thresholds and weights in the
FixW-TU baseline are fixed for all testing samples.

Initially, we propose the DRL-TU-AdW method with a
pre-set updating threshold. However, this decision-making
approach often rejected positive samples and falsely ac-
cepted negative samples. Therefore, we opt to employ the
ground truth (GT) as the updating decision for DRL-TU-
AdW in order to investigate the impact of the updating
decision. In this case, a positive sample signifies an update,
while a negative sample indicates no update. The AdW-GT
results show that a correct decision can improve the EER
by up to 15% relatively. To further improve performance,
we develop the DRL-TU-MH method, which addresses both
updating decisions and weight prediction. We utilize the
pre-trained binary action head of DRL-TU-MH for DRL-
TU-AdW, replacing the threshold-based method for decision
updates, which we term AdW+Binary. The results of Ad-
W+Binary show a significant degradation in system perfor-
mance. We think that the updated template is characterized
by high variability, the probability of misjudgment increases
with the accumulation of changes, resulting in significan-
t performance degradation. To overcome this limitation,
we utilized the multi-head PPO algorithm for fine-tuning,
which ultimately led to superior performance on EER.

Moreover, we conducted a quantitative analysis of the
changes in system performance at different time intervals
in Fig.8. Notably, in one-audio scenario with more than 3
days’ gap, the DRL-TU-MH method is even better than GT
version of DRL-TU-AdW, particularly in large time intervals
as shown in Fig.8(b). We think this situation could result
from two aspects. Firstly, the weights predicted by DRL-
TU-AdW may not necessarily be optimal. Secondly, even
positive samples can potentially have bad cases. The com-
bination of these two scenarios might lead to a bias in the
template embedding, resulting in subpar outcomes. This
implies that the update decision of DRL-TU-MH is not a
binary classification but selecting meaningful test samples
for updating.

In order to further evaluate the effectiveness of our
proposed method, we present results of auxiliary metrics
obtained from the one-day gap all-audio scenario in Fig.
9. In contrast to baseline, the trend of TD-EER and T DSp

curves for template updating methods changes slowly and

(a) All-audio scenario, which refers to the scenario where all available audio
samples from the day are utilized for testing.

(b) One-audio scenario, which refers to the scenario where only one audio
sample from the day is utilized for testing.

Fig. 8. System performance of different template updating methods in
terms of EER under various scenarios defined in Section VI-A2

gradually stabilizes over time. Although the changes in SW-
EER and SW Sp curves are more intense due to small sam-
ple size within each window, they also gradually stabilize as
template updates accumulate. The DRL-TU based methods
also achieve the best performance in the auxiliary metrics,
with T DSp curves being more stable from start to end.

Furthermore, combining the results in Fig.8(a) and Fig.9,
we found that the performances of FixW-TU with α =
0.05/0.1/0.15 are comparable to our proposed DRL-TU
method in one-day gap all-audio scenario. However, in
other scenarios, FixW-TU exhibits significantly poorer per-
formance compared to DRL-TU based models. Therefore,
we attribute the difference in performance to the slow start-
up of FixW-TU, which requires a significant amount of
accumulation to achieve optimal results.

Consequently, Fig. 10 illustrates performance under the
one-day gap one-audio scenario to observe the variation
trends of FixW-TU. Under the one-audio scenario, FixW-
TU with a small weight needs about 10-30 days to start-up,
while the FixW-TU with a large weight only needs a few
days. In comparison, by comparing T DSp (Fig.10(b)) and
SW Sp (Fig.10(d)) curves, it can be observed that DRL starts
quickly and stabilizes rapidly. Furthermore, considering TD-
EER (Fig.10(a)) and SW-EER curves (Fig.10(c)), DRL not only
exhibits fast adaptation but also achieves good performance
in less than 10 days and maintains it consistently. Therefore,
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(a) TD-EER (b) T DSp curve

(c) SW-EER (d) SW Sp curve

Fig. 9. System performance of different template updating methods with curves of TD-EER, T DSp , SW-EER and SW Sp in the 1 day gap all-audio
scenario defined in Section VI-A2.

(a) TD-EER (b) T DSp curve (c) SW-EER (d) SW Sp curve

Fig. 10. System performance of different template updating methods with curves of TD-EER, T DSp , SW-EER and SW Sp in the 1 day gap one-audio
scenario defined in Section VI-A2.

our proposed method is a fast response method. Moreover,
as shown in Fig. 8(b), when the number of gap days
becomes larger, the advantage of FixW-TU with a large
updating weight is more clear. To sum up, our proposed
DRL-TU method adapts quickly and achieves the best
performance in most experimental scenarios.

C. Ablation experiments

Considering that FixW-TU requires a significant amount
of manual tuning, we conducted experiments to search
for the optimal values of the decision threshold (β) and
weight update (α). The results are shown in Figure 11.
We performed a grid search for the update weight and
threshold values within the ranges [0.1, 0.5] and [0.05, 0.9],

respectively. Ultimately, we found that FixW-TU achieved
the best performance when β= 0.51,α= 0.2 in the random
gap limited-audio scenario. In contrast, our DRL-TU-MH
method can adaptively determine the updating decision
which is more robust in scenarios with different or random
gap days as shown in Fig 8.

VII. DISCUSSIONS

This paper introduces novel datasets and corresponding
solutions for short-term and long-term time varying speak-
er verification. However, the analysis of short-term time-
varying scenarios reveals that the temporal changes in a
speaker’s voice are gradual. Therefore, solutions designed
for long-term time variations are not suitable for short-
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Fig. 11. Results for different β and α values in the FixW-TU under the
random gap limited-audio scenario. The y-axis represents the results of
EER, while the x-axis represents the values of the update weight.

term scenarios, as networks struggle to differentiate such
fine-grained changes on a daily basis. On the other hand,
due to the absence of a large-scale speaker recognition
database continuously recorded everyday over more than a
decade, applying short-term time-varying solutions to long-
term scenarios is also challenging. However, if we have a
continuously recorded long-term time-varying database, we
believe that performance in cross-age speaker verification
can also be improved through template updating or multi-
template fusion methods. In future research, we will mine
continuously recorded long-term time-varying data through
online broadcasting channels.

There are potential issues that may arise in the practical
use of DRL-TU algorithms. We think that DRL-TU-AdW
ensures the stability of template updates by employing
threshold limitations but may not achieve the optimal per-
formance. On the other hand, the DRL-TU-MH approach,
where template updates are fully determined by agent, may
potentially lead to better performance but with higher risks.
The risk is from the potential accumulation of bad cases.
If the errors increases along each template update, there
is a risk of the template deteriorating over time, leading
to a performance degradation in the usage. Therefore, in
both FixW-TU and DRL-TU-AdW methods, we impose a
minimum threshold to ensure that the updated templates
do not degrade excessively. While DRL-TU-MH does not
have this threshold constraint, the decision-making process
is trained through supervised learning based on speaker
discrimination, aiming to filter out poor positive samples.

Due to the limit of databases, the age distributions of Vox-
Celeb and SMIIP-TV are quite skewed towards young adults.
However, addressing the challenge of temporal variations is
not only crucial for the elderly speakers but also presents
a significant challenge for adolescents going through voice
changes and even children. It indeed needs a large amount
of data to comprehensively study and address this issue. In
our future research, we plan to enrich the age distribution
of speakers, particularly focusing on the elderly people and

the children, to further enhance our understanding and
solutions for temporal variations across diverse age groups.

VIII. CONCLUSIONS

This paper proposes novel benchmarks and solutions to
address the challenges of long-term and short-term time-
varying speaker verification. For long-term speaker verifica-
tion, we mine age information from the VoxCeleb dataset
and introduce the Vox-CA test set as a benchmark for
cross-age ASV tasks. Our proposed ADAL method effectively
learns age-invariant speaker representation. For short-term
speaker verification, we introduce the SMIIP-TV dataset
to investigate the challenge. We propose an incremental
sequence-pair speaker verification task and adopt a tem-
plate updating method to mitigate the impact of time
varying. We formulate the template updating process as a
Markov Decision Process and suggest a deep reinforcement
learning-based method with multi-head PPO strategy to
predict the updating decision and weight. Experimental
results demonstrate significant improvement achieved by
our DRL-TU method. Our proposed methods and released
datasets contribute to robust speaker verification that can
better handle time-varying scenarios.
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