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Leveraging ASR Pretrained Conformers for
Speaker Verification through
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Abstract—This paper focuses on the application of Conformers
in speaker verification. Conformers, initially designed for Auto-
matic Speech Recognition (ASR), excel at modeling both local
and global contexts within speech signals effectively. Previous
research has established that ASR and speaker verification tasks
can naturally complement each other. Building on this synergistic
relationship, this study introduces three strategies for leveraging
ASR-pretrained Conformers in speaker verification: (1) Transfer
learning: We use a pretrained ASR Conformer encoder to
initialize the speaker embedding network, thereby enhancing
model generalization and mitigating the risk of overfitting. (2)
Knowledge distillation: We distill the complex capabilities of
an ASR Conformer into a speaker verification model. This
not only allows for flexibility in the student mode’s network
architecture but also incorporates frame-level ASR distillation
loss as an auxiliary task to reinforce speaker verification. (3)
Parameter-efficient transfer learning with speaker adaptation: A
lightweight speaker adaptation module is proposed to convert
ASR-derived features into speaker-specific embeddings, without
altering the core architecture of the original ASR Conformer.
This strategy facilitates the concurrent execution of ASR and
speaker verification tasks within a singular model. Experiments
were conducted on VoxCeleb datasets. The results are compelling:
models employing ASR pretraining and knowledge distillation
significantly outperform standard Conformers. Specifically, the
best model using the ASR pretraining method achieved a 0.43%
equal error rate (EER) on the VoxCeleb1-O test trial, while
the knowledge distillation approach yielded a 0.38% EER.
Furthermore, by adding a mere 4.92 million parameters to a
130.94 million-parameter ASR Conformer encoder, the speaker
adaptation approach achieved a 0.45% EER, enabling parallel
speech recognition and speaker verification within a single ASR
Conformer encoder. Overall, our techniques successfully transfer
rich ASR knowledge to advanced speaker modeling.

Index Terms—Speaker recognition, automatic speech recogni-
tion, Conformer, transfer learning, knowledge distillation

I. INTRODUCTION

SPEAKER verification, which analyzes speech signals to
verify the speaker’s identity, has many applications, from

voice assistants to security systems. Over the past five years,
the performance of speaker verification systems has improved
remarkably due to the application of deep neural networks
(DNN) [1], [2]. Numerous innovations have been introduced
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in network architecture [3], [4], [5], [6], training objectives [7],
[8], [9], and training strategies [10], [11] specifically tailored
to speaker verification models.

Prevalent network architectures in speaker verification sys-
tems are convolutional neural networks (CNNs) and time-
delay neural networks (TDNNs). The key strength of CNNs
and TDNNs lies in their ability to model local feature patterns
effectively, which is crucial in identifying speaker-specific
vocal traits. These networks have been further advanced
through variants of CNN and TDNN that incorporate residual
connections [12], squeeze and excitation operations [13], [6],
Res2Net blocks [14], [5], [6], and ResNeXt blocks [15],
[5]. These modifications have significantly improved speaker
verification performance.

Despite their successful applications, TDNNs, CNNs, and
their variants face limitations in extracting long-range global
context, especially without deep layers. As an alternative,
Transformers, with their multi-head attention mechanism,
have demonstrated a more robust ability to capture global
context with less fine-grained local patterns [16]. To bridge
this gap, Conformer combines the convolution module with
Transformer to effectively capture local and global contextual
information, leading to promising results in end-to-end auto-
matic speech recognition (ASR) [17]. Recently, Zhang et al.
introduced multi-scale feature aggregation Conformer (MFA-
Conformer) for speaker verification [18]. MFA-Conformer
concatenates frame-level outputs from all Conformer blocks to
enhance speaker trait extraction in speaker verification. Liao
et al. equipped the Conformer encoder with length-scaled at-
tention and sharpness-aware minimization training for speaker
verification [19]. However, despite their strengths, Conformers
are susceptible to overfitting, particularly when faced with
limited data or when employing large model parameters. This
challenge is acute in speaker verification, where the diversity
and amount of training data may be constrained [18], [20].

The Conformer model’s ability to capture both local and
global contexts is leveraged in ASR and speaker verifica-
tion. ASR focuses on recognizing the linguistic content of
the speech, with a higher emphasis on frame-level details.
In contrast, speaker verification targets identifying speaker-
specific traits derived from the speech, centering on utterance-
level context. Despite these differences, the two tasks can
complement each other. For instance, the frame-level phoneme
modeling undertaken in ASR could support speaker veri-
fication by aiding the detection of unique speaker-specific
articulation patterns. Prior studies provide evidence of this
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synergy, showing that phoneme modeling improves speaker
verification in speaker embedding networks [21] as well as
the i-vector statistical model [22], [23].

In light of the above, our research aims at leveraging ASR
Conformers for speaker verification in three distinct ways. This
builds upon our prior research on transfer learning using a
pretrained ASR Conformer, which forms our first proposed
method in this paper [20]. The technique involves initializing
the speaker embedding network with a Conformer pretrained
on a large-scale ASR dataset. This approach addresses the
tendency of Conformers to overfit with limited data [18], [20]
by leveraging a model pretrained on extensive ASR data.
The pretrained ASR Conformer, which learns rich features
from a large ASR dataset, reduces the data requirements
for the speaker verification task and enhance the model’s
generalization ability. Experimental results indicate that our
ASR-pretrained method outperforms alternatives across var-
ious model sizes. Notably, the best system with ASR pre-
training achieved an EER of 0.48% on the VoxCeleb 1-O
trials, marking a 50% relative improvement compared to its
counterpart without ASR pretraining.

Second, we propose using knowledge distillation [24] to
transfer knowledge from the ASR task to the speaker verifica-
tion task. One challenge with straightforward transfer learning
is its inherent constraint on network architecture. When using
a pretrained ASR Conformer for speaker verification, the
speaker model is often constrained to adopt the same network
architecture as the pretrained ASR model. To overcome this
limitation, we use knowledge distillation. In this process,
a student model, a simpler neural network, is trained to
mimic the behavior of the more complex, pretrained teacher
ASR Conformer. Rather than directly replicating weights
and structure, knowledge distillation transfers the functional
knowledge from the teacher to the student model. This not only
retains the flexibility of network architecture for the speaker
verification model but also harnesses the rich information in
the pretrained ASR Conformers. Furthermore, our tailored
knowledge distillation procedure, bridging ASR to speaker
verification, integrates phoneme recognition as an auxiliary
task. This alignment reinforces the synergy between ASR and
speaker verification tasks, ensuring the speaker verification
model captures the nuanced phonetic differences recognized
by the ASR Conformer. Experimental results prove the efficacy
of our method: it consistently improves speaker verification
performance over the baseline method across various architec-
tures and frequently surpasses the ASR-pretrained approach.

Finally, we propose an adaptation mechanism to unify the
tasks of ASR and speaker verification within a single Con-
former model. The motivation for this approach lies in tackling
the inherent inefficiency of maintaining separate models for
ASR and speaker verification tasks. Such a unified Conformer
has diverse applications. For example, our unified model
streamlines the process in scenarios where ASR and speaker
verification are sequentially needed, such as voice assistants
authenticating a user and then transcribing their commands.
To achieve this goal, we introduce the speaker adaptation
method to transform the features learned from the ASR task
into those suitable for speaker verification without changing

the inputs and outputs of the ASR Conformer. The viability
of this approach is supported by the speaker information
preserved in the layer outputs of the ASR Conformer encoder.
Our exploratory linear probe experiments indicate that the
lower layers of the ASR Conformer retain more speaker
information than the upper layers. This speaker adaptation
approach, therefore, represents a resource-efficient strategy
that allows for the simultaneous and efficient execution of both
ASR and speaker verification tasks using a single Conformer.
Experiments demonstrate that incorporating a speaker adapta-
tion module (4.92 million parameters) into a pretrained ASR
Conformer encoder (130.94 million parameters) allows for par-
allel execution of speech recognition and speaker verification,
achieving an EER of 0.45%.

II. RELATED WORKS

A. Pretrained models for speaker verification

Several studies have explored the application of self-
supervised pretrained Transformers for speaker verification
tasks. Fan et al. [25], and Vaessen et al. [26] adopted a direct
fine-tuning approach on the pretrained model by incorporating
an additional pooling layer on top of the model’s output.
However, this method did not surpass the performance of
CNN- or TDNN-based speaker verification models, which
typically have fewer parameters than the pretrained Trans-
former. Novoselov et al. [27] fine-tuned wav2vec 2.0 by
integrating two simple TDNN layers and a statistic pooling
layer. Their findings suggested that utilizing the entire deep
pretrained encoder architecture was unnecessary, as earlier
layers potentially provided more speaker information.

Another prevalent method replaces the handcrafted feature
with the pretrained frame-level feature to train TDNN- or
CNN-based speaker embedding networks [28], [29]. This
approach, employing a layer-wise weighted average to aggre-
gate features from different Transformer layers, has improved
performance over models using handcrafted spectral features.
However, this comes at the cost of using a large number of
pretrained parameters alongside a full TDNN- or CNN-based
speaker embedding network. Expanding on the concept of
layer-wise weighted average as a feature aggregation method,
Peng et al. [30] proposed multi-head factorized attentive pool-
ing, which can be viewed as a fusion of layer-wise weighted
average and multi-head attentive pooling.

In this paper, instead of self-supervised pretrained Trans-
formers, an ASR-pretrained Conformer is used as the network
backbone for the speaker embedding network since there are
already many large-scale publicly open ASR datasets avail-
able. We directly apply to fine-tune the pretrained Conformer
with a multi-scale feature aggregation module, eliminating the
need for an additional TDNN- or CNN-based speaker network.
This transfer learning strategy allows the knowledge learned
from ASR to be effectively transferred to speaker verification
tasks.

B. ASR guided speaker verification

ASR or phonetic information plays an essential role in
speaker verification. In the statistical i-vector framework,
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substituting a Gaussian mixture model (GMM) with an ASR-
trained DNN to gather sufficient statistics for i-vector extrac-
tion results in significant performance improvement [23], [31].
Alternatively, some researchers utilize a tandem feature that
merges spectral and ASR-derived features for GMM modeling
[22], [32].

In the realm of deep learning, the integration of ASR
and phoneme information into speaker verification is gaining
increasing attention. Three main strategies have been investi-
gated for such integration, each with merits and challenges.

The first strategy involves applying frame-level phonetic
features from an ASR to a speaker verification model. In this
context, Rahman et al. used bottleneck phonetic features from
an ASR acoustic model to replace spectral features in speaker
network training, indicating the potential of phonetic features
to carry speaker-specific information [33]. In similar efforts,
researchers have also incorporated phonetic features alongside
spectral features for speaker modeling. Zheng et al. used
separate network stems to model these two types of features
[34], while Zhou et al. processed these features jointly by con-
catenating them [21]. Depending on the modeling stage, pho-
netic features can be incorporated at the input of the speaker
network [34], [21] or before the pooling layer [21], [35].
These research indicate that incorporating auxiliary phoneme
information benefits speaker modeling. Besides, Chen et al.
proposed to model speaker characteristics in phoneme units,
termed as phoneme-unit-specific network [36]. This method
can be considered as modeling speaker characteristics using
multi-phonetic-head attention, which has the attention weight
of phoneme posterior probability.

The second strategy employs a multi-task learning approach,
leveraging phoneme recognition as an auxiliary task alongside
the primary task of speaker recognition. Studies have shown
that frame-level phoneme modeling enhances speaker verifi-
cation performance [35], [37], [38].

The last strategy involves employing phonetic information
as a guided signal to be removed from speaker modeling. A
study by Wang et al. suggested that adversarial training to
remove phonetic information at the segment level can boost
speaker verification performance [38]. In contrast, Tawara et
al. found that removing phonetic information at the frame level
is beneficial for extremely short utterances of less than 1.4 sec-
onds [39]. Hong et al. introduced a self-constraint learning and
reconstruction strategy that eliminates phonetic information in
lower layers, thereby allowing subsequent layers to capture
speaker-specific features more efficiently [40].

In our study, we extend the benefits of the second approach
through knowledge distillation from the ASR Conformer to
the speaker verification model. This method aligns with the
recognized advantages of employing phoneme recognition as
an auxiliary task, thus aiming to improve speaker verification
performance.

C. Parameter-efficient transfer learning with adaptors

The concept of adaptors stems from the idea of fine-
tuning large pre-trained models using lightweight neural mod-
ules, which can be considered a parameter-efficient transfer

learning technique [41]. This approach incorporates trainable
lightweight neural modules into a large pre-trained model
while keeping the pre-trained parameters frozen during fine-
tuning. This technique has seen successful applications across
various domains, including computer vision [42], natural lan-
guage processing [41], [43], and machine translation [44].

While adaptors have been successful in different domains,
their integration into speech-processing tasks presents multi-
ple applications. For example, adaptors are applied to self-
supervised pre-trained models for speech recognition [45]. In
the context of multilingual ASR, language-specific adaptors
have been used to adapt a pre-trained ASR model to various
languages [46], [47]. In speech translation, adaptors enable
a pre-trained model to specialize in specific language pairs
[48]. Additionally, adaptors have been employed to connect
an ASR encoder with a multilingual denoising auto-encoder
for multilingual speech translation [48]. Other applications
of adaptors include speaker verification [49], [50] and other
speech processing tasks [50].

Most existing applications of adaptors focus on self-
supervised pre-trained models for specific downstream tasks
[41], [43], [49], [50]. Moreover, adaptors have been employed
to perform domain adaptation for the same task, as seen in
multilingual ASR [46], [47] and multilingual speech transla-
tion [48]. These methods usually incorporate adaptor modules
within the network architecture, altering the output of the pre-
trained model.

In contrast, our study motivated from the application of
the adaptor mechanism. We apply a similar idea to trans-
fer knowledge across different tasks: from ASR to speaker
verification. We uniquely position an adaptation module on
top of the original model, ensuring that the output of the
ASR Conformer remains unchanged. This design enables the
simultaneous execution of ASR and speaker verification tasks
within a single Conformer model.

III. METHODS

Our research explores three distinct approaches for lever-
aging an ASR Conformer in speaker verification. First, we
utilize a pre-trained ASR Conformer to initialize the speaker
embedding network, which mitigates the risk of overfitting and
enhances generalization in the speaker Conformer. Second, we
employ knowledge distillation from the ASR Conformer to the
speaker verification model. Lastly, we introduce an adaptation
mechanism that unifies ASR and speaker verification tasks
within a single Conformer model. The adaptation efficiently
transforms features learned by the ASR to suit speaker verifi-
cation tasks, all without altering the original ASR Conformer
outputs. This section elaborates on these three methodologies,
starting with the architecture of the Conformer encoder.

A. Conformer

Developed primarily for ASR tasks, the Conformer encoder
is adept at modeling both local and global dependencies within
speech signals [17]. It improves upon the Transformer encoder
[16] by incorporating a CNN to capture local spectral feature
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Fig. 1. Conformer encoder architecture (left) and a Conformer building block
(right) [17].

information. The Conformer consists of a convolutional sub-
sampling layer, which reduces the length of input sequences,
and a series of Conformer blocks that transform the input
signal into higher-level representations. Fig. 1 presents the
Conformer encoder structure.

A Conformer block consists of two feed-forward networks
(FFNs) flanked by a multi-head self-attention (MHSA) module
and a convolution (Conv) module. In the Conformer, the
MHSA employs relative sinusoidal positional encoding [51],
allowing for efficient sequence handling at unseen lengths.
The convolutional module features a point-wise convolu-
tion followed by a gated linear unit, succeeded by a one-
dimensional depthwise convolution. Batch normalization and
Swish activation are subsequently applied. The feed-forward
network contains two linear layers separated by a nonlinear
activation, with dropout applied after each linear transforma-
tion. As illustrated in Fig. 1, residual connections are used
between the modules, while half-step residual connections
are utilized within feed-forward modules, akin to a Macaron-
Net [52]. Layer normalization is applied prior to the output.
Mathematically, for a given input hi−1 ∈ Rd×T , the output
hi ∈ Rd×T of the i-th Conformer block is represented as
follows:

h′
i = hi−1 +

1

2
FFN(hi−1)

h′′
i = h′

i +MHSA(h′
i)

h′′′
i = h′′

i +Conv(h′′
i )

hi = LayerNorm(h′′′
i +

1

2
FFN(h′′′

i ))

(1)

where d denotes the dimension of the input and the output
sequences, and T represents the length of the time sequence.

B. MFA-Conformer for speaker verification

Multi-scale feature aggregation (MFA) is a technique that
concatenates output feature maps from all frame-level model-
ing modules in a speaker embedding network before utterance-
level pooling. This approach has been shown to improve per-
formance for TDNN-based networks, suggesting that lower-
level features can contribute useful speaker information [6].

To apply the Conformer encoder in the speaker verification
task, MFA-Conformer proposed to integrate an MFA module
into the Conformer encoder [18]. Specifically, this MFA mod-
ule concatenates the frame-level outputs from all Conformer
blocks prior to the pooling layer:

H′ = Concat(h1,h2, · · · ,hL)

H = LayerNorm(H′)
(2)

where L is the number of Conformer blocks in the Conformer
encoder, and H,H′ ∈ RD×T with D = L× d.

With this concatenated frame-level feature map H, attentive
statistics pooling is applied to produce an utterance-level
representation [53]. Finally, the speaker embedding is ex-
tracted by applying batch normalization and a fully-connected
layer to this utterance-level representation. During training, an
additional fully-connected layer is applied to classify speakers
in the training set from speaker embeddings.

C. Transfer learning with the ASR pretrained Conformer

While deeper Transformers are known to yield superior
results as more training data become available [29], [54],
training these models from scratch often requires large datasets
[55]. Further, research indicates that increasing the number of
layers in Conformer architectures can result in a performance
drop in speaker verification tasks, suggesting potential issues
of overfitting [18].

To mitigate the risks of overfitting, we employ an ASR
pretrained Conformer to initialize the MFA-Conformer-based
speaker embedding network. The pretraining on ASR tasks
affords several advantages, such as faster convergence and
enhanced generalization capabilities in the speaker verification
domain.

In our approach, the parameters of the ASR pretrained
Conformer encoder are used to initialize the MFA-Conformer
speaker embedding network. During the early training phases,
we keep these encoder parameters frozen and allow only the
pooling and subsequent linear layers to be updated for a few
epochs. In later stages, we proceed to fine-tune the parameters
across the entire MFA-Conformer architecture to better align
it with the specific needs of speaker verification. By limiting
updates to the pooling and linear layers initially, these layers
are tailored to adapt the frame-level feature maps derived
from the ASR model to the speaker verification objective.
This structured training approach ensures that the pretrained
Conformer transitions smoothly to the speaker verification
objective without being significantly disrupted by the random
initialization of these layers.
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Fig. 2. Knowledge distillation from a pretrained ASR Conformer model to
a MFA-Conformer-based speaker verification model.

D. Knowledge distillation from ASR to speaker verification

Knowledge distillation involves training a “student” model
to reproduce the behavior of a more complex “teacher” model
[24]. In our setting, an ASR pretrained Conformer acts as
the teacher model, guiding the learning process of the MFA-
Conformer-based speaker verification model, which serves as
the student.

Given a speaker recognition dataset D, the objective of
a speaker verification model is to minimize the difference
between its predictions and the ground-truth speaker labels.
The loss function Lspk can be expressed as:

Lspk = E(x,y)∼D [ℓspk(f(x), y)] (3)

Here, f(·) is the MFA-Conformer speaker verification model,
f(x) is the Conformer’s prediction for the input spectral
sequence x, and y is the speaker label. The speaker classi-
fication loss ℓspk commonly adopts a cross-entropy format or
an angular-softmax variant [7].

For distillation, the speaker MFA-Conformer student is
trained to align its outputs with the ASR teacher model, as
described in the loss Ldistill:

Ldistill = Ex∼D [ℓdistill(fstudent(x), fteacher(x))] (4)

In this setting, fstudent(·) refers to the MFA-Conformer cou-
pled with an ASR decoder, while fteacher(·) is the ASR
model. In the distillation process, the loss function Ldistill is
formulated based on the Kullback-Leibler (KL) divergence,
which quantify the divergence between the student and teacher
frame-level logits outputs.
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Fig. 3. Linear probe accuracy across Conformer layers for speaker identifi-
cation.

The ultimate training objective combines both the speaker
classification and the distillation losses:

L = Lspk + αLdistill (5)

where α is a hyperparameter determining the strength of the
distillation effect. Fig. 2 illustrates the knowledge distillation
process from ASR to speaker verification.

Our approach harnesses the strengths of both knowledge
distillation and multi-task learning, offering advantages for
speaker verification. Firstly, it enables the speaker verification
model to utilize robust feature representations from an ASR-
pretrained model, enhancing performance without extensive
ASR data. This method, diverging from traditional knowledge
distillation, incorporates the ASR model’s outputs as an auxil-
iary objective, enriching phonetic feature learning in a multi-
task framework. Secondly, this synergy improves speaker
discrimination by leveraging nuanced phonetic information.
Lastly, our method with knowledge distillation offers more
architectural flexibility, allowing for optimized designs that
can cater to the specific requirements of both ASR and speaker
verification tasks.

E. Speaker adaptation module: unifying ASR and speaker
verification

To leverage the versatility of Conformer encoders across
multiple tasks, this section explores the possibility of crafting
a unified model that serves both ASR and speaker verification
objectives.

1) Inherent speaker-specific information in ASR Conform-
ers: Conformer encoders, originally tailored for ASR, possess
innate adaptability. This flexibility is attributed to their multi-
layered structure, capturing a hierarchical abstraction of speech
signals. Essentially, the lower layers of the ASR Conformer
capture diverse attributes of speech, such as speaker char-
acteristics, linguistic patterns, emotional tones, and phonetic
variations. In contrast, the upper layers prioritize phonetic and
contextual specifics, driven by the ASR objectives.

To empirically validate this layer-wise specialization, we
employed a linear probe to measure the speaker-specific infor-
mation within different layers of a pretrained ASR Conformer
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Fig. 4. Design variants of the proposed speaker adaptation module to unify ASR and speaker verification in one Conformer model.

encoder. A detailed description of the models used for this
probing is provided later in section IV-C. Each Conformer
layer’s output was first subjected to two linear fully-connected
layers, followed by average pooling to derive speaker em-
beddings. These embeddings are further processed by an
additional linear layer to perform speaker classification on
the VoxCeleb 1 development set [56]. The results, illustrated
in Fig. 3, confirm that lower layers inherently possess rich
speaker-specific information. As we progress toward the upper
layers, the specificity of the ASR task intensifies, diluting the
speaker-specific traits.

2) Motivation for a unified Conformer model: The layer-
wise investigation into Conformer encoders revealed an in-
triguing fact: despite being primarily trained for ASR, even
the initial layers possess striking proficiency in speaker recog-
nition. Remarkably, the fifth layer of a large pretrained
ASR Conformer displayed an impressive training accuracy
of 99.65% for speaker recognition, suggesting that ASR-
trained features can effectively be used for speaker verification.
This compelling evidence motivates our pursuit of a unified
Conformer model that seamlessly transitions between ASR
and speaker verification tasks.

3) Speaker adaptation module: To bridge the gap between
ASR and speaker verification and unify the Conformer en-
coder, we introduce the speaker adaptation method. Concep-
tually, the speaker adaptation module is a lightweight trainable
module integrated into a large-scale pretrained model [41]. Our

design operates on the intermediate representations, leaving
the pretrained model’s output unchanged.

Fig. 4 visualizes the design of our proposed speaker adap-
tation module. It consists of three parts: L layer adaptors, K
trainable Conformer layers, and a combination of a pooling
layer and a subsequent fully connected layer for speaker
embedding derivation.

a) Layer adaptors: These components work on fine-
tuning the outputs from each layer of the pretrained ASR
Conformer model, aligning them more closely with the objec-
tives of speaker verification. Specifically, for a pretrained ASR
Conformer, the frame-level output from the i-th Conformer
layer, denoted as hi ∈ Rd×T , is transformed by the layer
adaptor Ai:

h′
i = Ai(hi) (6)

Our layer adaptors consist of two linear layers interleaved
with layer normalization and an activation function. Given
our observation that deeper layers retain less speaker-centric
information, these adaptors are applied only to the first L
layers of the pretrained ASR Conformer.

b) Trainable Conformer layers: To enhance speaker fea-
ture extraction, we incorporate K additional lightweight, train-
able Conformer layers within the speaker adaptation module.
Inputs to these layers come from one of the two following
distinct options:

• Frame-level outputs from the L-th Conformer layer of the
ASR model, as illustrated in Fig. 4a.
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TABLE I
THREE ASR CONFORMER ENCODERS OF DIFFERENT SIZES

Model layers dim heads hidden units parameters

Small1 16 176 4 704 15.88M
Medium2 18 256 4 1024 35.26M
Large3 18 512 8 2048 130.94M

• Concatenated outputs from the first L layers of the
pretrained ASR Conformer encoder, with a linear layer
to reduce the feature dimension, as illustrated in Fig. 4b.

To maintain the efficiency of the speaker adaptation mod-
ule, these trainable Conformer layers are designed to be
lightweight, with reduced hyper-parameters of dimensions and
hidden units.

c) Speaker embedding extraction: After the transforma-
tions brought by the layer adaptors and the trainable Con-
former layers, the frame-level features are fed into the MFA
module:

H′ = Concat[A1(h1), · · · ,AL(hL), h̃1, · · · , h̃K ]

H = LayerNorm(H′)
(7)

Here, h̃k denotes the output from the k-th trainable Conformer
layer. K represents the number of these layers. By design,
K can be zero, indicating the absence of any new train-
able Conformer layers. With these concatenated frame-level
representations derived from the pretrained ASR Conformer
encoder, a standard speaker verification procedure with an
utterance-level pooling layer and a subsequent linear layer is
used for speaker embedding extraction.

During the training phase, the pretrained ASR Conformer is
kept frozen. Only speaker adaptation module components, in-
cluding layer adaptors, lightweight Conformer layers, pooling,
and the following linear layers, are trained under the speaker
verification objective.

IV. EXPERIMENTAL SETUPS

A. Dataset

The experiments are conducted on VoxCeleb [56], [57].
For model training, we opted to employ the development set
from VoxCeleb 2. This training dataset encompasses 1,092,009
audio recordings from a diverse set of 5,994 distinct speakers.

For the evaluation phase, we use both the development and
test sets from VoxCeleb 1. We present the speaker verification
performances based on three predefined trial lists as described
in [57]:

• VoxCeleb 1-O: This represents the original trial list
associated with VoxCeleb 1, encompassing 37,720 trials
derived from 40 speakers.

• VoxCeleb 1-E: An expanded trial list that comprises
581,480 trials sourced from 1,251 speakers.

• VoxCeleb 1-H: A more challenging trial list with 552,536
trials from 1,190 speakers. All test pairings within this list
share the same linguistic background and gender.

B. Data Augmentation

To enhance the robustness and versatility of our model, we
integrated various data augmentation methodologies. First, we
apply speed perturbation to the audio samples by accelerat-
ing or decelerating the content by factors of 1.1 and 0.9,
respectively [58], [59]. As a result, this approach produced
two supplementary replicas of each original audio, expanding
the entire training dataset to include 17,982 distinct speakers
and 3,276,027 unique utterances.

For the enlarged training dataset, two primary strategies
were utilized:

• Additive noise augmentation: The MUSAN dataset [60]
served as our noise source, enabling us to add ambient
noise, musical sounds, and babble noise onto our audio
files. The babble noise was generated by merging between
three to eight separate speech files in the MUSAN dataset.
The signal-to-noise ratios (SNR) range from 0 to 20 dB.

• Convolutional reverberation noise augmentation: We em-
ployed the collection of 40,000 simulated room impulse
responses (RIR) from the study in [61]. Only simulated
RIRs originating from small to medium-sized rooms are
used.

To maintain variability during training epochs, we integrated
on-the-fly data augmentation, applying the aforementioned
noise augmentations with a likelihood of 0.6 for each training
speech.

C. Pretrained ASR Conformer

We utilize pretrained ASR models from the NEMO toolkit
[62]. The choice of the Conformer model from NEMO was
driven by its performance and generalization capabilities, as
demonstrated in various benchmarks. This ASR Conformer
adopts the same encoder architecture as illustrated in [17]
but uses a linear decoder and the connectionist temporal
classification (CTC) for decoding.

In our experiments, we use three sizes of the NEMO ASR
Conformer: small, medium, and large. Despite variations in
size, each of these models shares a convolution subsampling
rate of 1

4 , along with a consistent kernel size of 31 for their
convolution modules. Table I shows the differences in Con-
former layer numbers, encoder dimensions, attention heads,
and linear hidden units across the three Conformer encoders.

According to the NEMO toolkit documentation, each
Conformer-CTC model is trained on English corpora collated
from 10 distinct datasets.4 In total, this collection spans
approximately 10,000 hours of speech data.5

1https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt en
conformer ctc small

2https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt en
conformer ctc medium

3https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt en
conformer ctc large

4These datasets include Librispeech, Fisher Corpus, Switchboard-1, WSJ-0
and WSJ-1, National Speech Corpus (Part 1, Part 6), VCTK, VoxPopuli (EN),
Europarl-ASR (EN), Multilingual Librispeech (MLS EN 2,000 hours subset),
and Mozilla Common Voice (v7.0).

5This estimate is derived from the training data descriptions provided at
the mentioned link in the previous footnote.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_small
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_small
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_medium
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_medium
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_large
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_large


8

TABLE II
SPEAKER VERIFICATION PERFORMANCE OF ASR PRETRAINED MFA-CONFORMER ON VOXCEBLEB 1.

Model Size Pretrained VoxCeleb 1-O VoxCeleb 1-E VoxCeleb 1-H

EER[%] minDCF EER[%] minDCF EER[%] minDCF

ECAPA-TDNN [11] 46.6M × 0.68 0.0753 0.91 0.1006 1.72 0.1695
HuBERT Large [28] 316.61M+

√
0.72 - 0.70 - 1.32 -

Wav2Vec2.0 Large (XLSR) [28] 317.38M+
√

0.73 - 0.68 - 1.23 -
UniSpeech-SAT Large [28] 316.61M+

√
0.63 - 0.63 - 1.29 -

WavLM Large + QMF [29] 316.62M+
√

0.38 - 0.48 - 0.99 -

NEMO Small 15.88M × 0.88 0.1367 1.08 0.1342 2.20 0.2245
NEMO Medium 35.26M × 0.94 0.1200 1.26 0.1487 2.41 0.2398
NEMO Large 130.94M × 0.96 0.1375 1.22 0.1391 2.35 0.2278

NEMO Large first 4 layers 35.02M × 0.86 0.1051 1.03 0.1188 1.97 0.1920
NEMO Large first 6 layers 48.72M × 0.80 0.1101 1.04 0.1202 2.04 0.2012
NEMO Large first 8 layers 62.42M × 0.81 0.1121 1.00 0.1183 1.93 0.1904

NEMO Small 15.88M
√

0.74 0.1101 0.90 0.1054 1.90 0.1893
NEMO Medium 35.26M

√
0.61 0.0946 0.78 0.0891 1.67 0.1649

NEMO Large 130.94M
√

0.48 0.0673 0.71 0.0785 1.54 0.1538
+ QMF 0.43 0.0623 0.66 0.0709 1.35 0.1350

NEMO Large first 4 layers 35.02M
√

0.77 0.1065 1.04 0.1159 1.95 0.1862
NEMO Large first 6 layers 48.72M

√
0.58 0.0618 0.84 0.0937 1.62 0.1571

NEMO Large first 8 layers 62.42M
√

0.64 0.0982 0.86 0.0944 1.77 0.1732

D. Implementation details

Speech utterances are cropped to 2 seconds for training
the speaker embedding network. We use a logarithmic Mel-
spectrogram with 80 frequency bins as the acoustic feature,
computed over Hamming windows of 20ms with a 10ms shift.

During training, the Additive angular margin (AAM) loss
[7] is employed with a re-scaling factor of 32 and an angular
margin of 0.2 to learn discriminative representations. The
speaker embedding dimension is set to 256. We utilize the
AdamW optimizer, beginning with a learning rate of 0.001.
Additionally, we implement a cosine annealing learning rate
scheduler, incorporating a warm-up phase spanning one train-
ing epoch. Our chosen batch size is 512, with a weight decay
of 10−7.

After convergence, we employ large margin fine-tuning
(LMFT) [11]. Speech segments are expanded to 6 seconds,
and the angular margin in the AAM loss is increased to 0.5.
We turn off speed perturbation data augmentation, reverting
the training data to its original set.

E. Evaluation

To generate speaker verification scores, we apply the
adapted score normalization [63] after cosine similarity on two
given speaker embeddings. In adapted score normalization,
we utilize an imposter cohort randomly chosen from 30,000
training utterances, with an adapted cohort size of 700.

Although our standard procedure involves only this score
normalization, we further calibrate the verification scores
using the Quality Measure Function (QMF) [64], [11] for
specific systems as per their requirements. The calibration
model is trained on 30,000 trials generated from the VoxCeleb
2 development set. This model incorporates several quality
metrics including the duration and SNR of the enrollment and
testing utterances, the magnitudes of the embeddings, and the
verification score itself.

We evaluate speaker verification performance using two
metrics: (1) Equal Error Rate (EER): This denotes the error
rate at the point where the false acceptance rate equals the
false rejection rate. (2) Minimum Detection Cost (minDCF):
This represents the minimal value of a detection cost function.
The function is a weighted sum of false-reject and false-alarm
error rates for a given decision threshold [65]. The parameters
for this function are set as follows: CMiss = 1, CFA = 1, and
PTarget = 0.01.

V. EXPERIMENTAL RESULTS

A. Transfer learning with the ASR pretrained Conformer

In this subsection, we present speaker verification results us-
ing our first proposed method. Specifically, we explore the ef-
ficacy of initializing the MFA-Conformer speaker verification
model with a pretrained ASR Conformer. The performance of
various MFA-Conformer speaker embedding networks, both
with and without ASR pretraining, are detailed in Table II.

1) MFA-Conformer’s performance without ASR pretrain-
ing: We first analyze the performance of the MFA-Conformer
model without integrating ASR pretraining. The results indi-
cate that increasing the trainable parameters does not yield
improved speaker verification performance. Specifically, upon
increasing model parameters by a factor of eight (from 15.88
million to 130.94 million), the EERs observe a decrease
ranging from 7% to 13% across the three testing trials. This
suggests that MFA-Conformers tend to overfit, especially in
scenarios with limited data availability.

2) MFA-Conformer’s performance with ASR pretraining:
Integrating ASR pretraining into the MFA-Conformer model
leads to significant improvements across all evaluated model
sizes. For example, the small MFA-Conformer with ASR
pretraining recorded a relative reduction in EER of 15.9%
on the VoxCeleb 1-O trails compared to its non-pretrained
counterpart. This relative reduction was even more significant
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TABLE III
COMPARSION OF ASR PRETRAINING METHOD AND SSL AS FRONT-END MODULE METHOD. PERFORMANCE ARE REPORTED ON EER (%).

Pretrained Model Speaker Model LMFT QMF Vox1-O Vox1-E Vox1-H
Model Size Training Data Usage

HuBERT Base [29] 94.7M 960 hr front-end module ECAPA-TDNN × × 0.989 1.068 2.216
HuBERT Large [29] 316.6M 60k hr front-end module ECAPA-TDNN × × 0.808 0.822 1.678
HuBERT Large [29] 316.6M 60k hr front-end module ECAPA-TDNN

√ √
0.585 0.654 1.342

WavLM Base+ [29] 94.7M 94k hr front-end module ECAPA-TDNN × × 0.84 0.928 1.758
WavLM Large [29] 316.6M 94k hr front-end module ECAPA-TDNN × × 0.617 0.662 1.318
WavLM Large [29] 316.6M 94k hr front-end module ECAPA-TDNN

√ √
0.383 0.480 0.986

Conformer Medium 35.3M 10k hr parameter initialization pretrained Conformer × × 0.78 0.97 2.04
Conformer Medium 35.3M 10k hr parameter initialization pretrained Conformer

√
× 0.61 0.78 1.67

Conformer Medium 35.3M 10k hr parameter initialization pretrained Conformer
√ √

0.52 0.72 1.48

Conformer Large 130.9M 10k hr parameter initialization pretrained Conformer × × 0.74 0.91 1.91
Conformer Large 130.9M 10k hr parameter initialization pretrained Conformer

√
× 0.48 0.71 1.54

Conformer Large 130.9M 10k hr parameter initialization pretrained Conformer
√ √

0.43 0.66 1.35

for larger models, with the large MFA-Conformer recording
a 50% reduction on the same trail. These results confirm
the benefits of leveraging ASR pretraining with 10k hours
of speech data for speaker verification models, particularly
for larger Conformer models, where the risk of overfitting is
higher.

3) Benchmarking against large self-supervised speech mod-
els: Large self-supervised speech models for speaker veri-
fication are used as feature extractors to replace the hand-
crafted feature with an additional speaker embedding model
append. Compared to larger self-supervised pretrained models
with more than 300 million parameters (HuBERT Large,
Wav2Vec2.0 Large, UniSpeech-SAT Large), the ASR pre-
trained MFA-Conformers achieve comparable or even better
verification performance on VoxCeleb 1-O trials. For instance,
while the UniSpeech-SAT large model (with 316.62 million
parameters) achieved an EER of 0.63% on VoxCeleb 1-O
trials, the large ASR pretrained MFA-Conformer (with 130.94
million parameters) recorded an EER of 0.48%. Such results
emphasize the efficiency of ASR pretraining on the speaker
MFA-Conformer model.

However, MFA-Conformers do not outperform large self-
supervised models on the VoxCeleb 1-E and VoxCeleb 1-H
trials. A plausible reason is the difference in the volume of
training data used for pretraining. While self-supervised mod-
els utilized speech data ranging from 56,000 to 188,000 hours,
the training data of the ASR Conformer used in this study
are limited to approximately 10,000 hours. Nevertheless, our
proposed ASR pretraining method offers flexibility. Integrating
an MFA module and a pooling layer can readily transform an
ASR pretrained Conformer into a speaker verification task.
This eliminates the need for supplementary TDNN- or CNN-
based speaker networks, which are commonly employed in
large self-supervised models.

To facilitate a direct comparison between the ASR pre-
trained method and the large self-supervised speech model
method, table III highlights various configurations, including
different model sizes, training data, usage types, and additional
fine-tuning techniques like Large Margin Fine-Tuning (LMFT)
and Quality Measure Function (QMF). From the table, the

medium Conformer model with ASR pretraining demonstrates
comparable performance to the WavLM Base+ and HuBERT
Base models. Similarly, the large ASR pretrained Conformer
model exhibits performance on par with the HuBERT Large
and WavLM Large models using a smaller size of model and
training data, making it a competitive option in the realm of
speech model methods.

4) Exploring the potential of extracting lower layers:
We also extend our experiments by using subsets of the
larger Conformer model, specifically extracting the initial 4,
6, and 8 layers, to initiate MFA-Conformer training. These
truncated models perform better than the full version when
ASR pretraining was not applied, which reaffirms the earlier
observation regarding the overfitting tendency of Conformers
with increased parameters. When ASR pretraining is applied,
these truncated models outperform their counterparts without
ASR pretraining, emphasizing the benefits of ASR pretraining.
The experiments of the truncated Conformers present a way
to balance model size and speaker verification performance.

B. Knowledge distillation from ASR to speaker verification

This section presents the results of our second proposal,
which explores the application of knowledge distillation from
ASR to speaker verification. For these experiments, we used
the NEMO Large ASR-CTC model in Table I, as the teacher
model in the knowledge distillation process. We set the hy-
perparameter α in equation 5 to 1. The speaker verification
performance of various MFA-Conformer models, considering
different training methodologies and model sizes, are shown
in Table IV.

1) Influence of ASR knowledge distillation: The primary
objective of our experiments is to determine the effective-
ness of ASR distillation in enhancing the performance of
MFA-Conformer models. The application of ASR distillation
consistently shows promising improvements across various
model scales and sampling rates. For instance, considering the
NEMO Small model, the ASR distillation technique (EER of
0.54%) reduces the EER by 38.6% on the VoxCeleb 1-O trials
compared to the vanilla version (EER of 0.88%). The NEMO
Medium model with ASR distillation outperforms its vanilla
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TABLE IV
SPEAKER VERIFICATION PERFORMANCE OF MFA-CONFORMER WITH ASR DISTILLATION ON VOXCEBLEB 1.

Model Sampling
Rate

Size MACs6 Training
Method

VoxCeleb 1-O VoxCeleb 1-E VoxCeleb 1-H

EER[%] minDCF EER[%] minDCF EER[%] minDCF

NEMO
Half Small

1
2

8.73M 405.18M
Baseline 0.62 0.0792 0.84 0.0907 1.67 0.1676
ASR Distillation 0.65 0.0725 0.79 0.0881 1.50 0.1477

+ QMF 0.56 0.0572 0.74 0.0775 1.36 0.1333

NEMO
Small

1
4

15.88M 1.12G

Baseline 0.88 0.1367 1.08 0.1342 2.20 0.2245
ASR Pretrained 0.74 0.1101 0.90 0.1054 1.90 0.1893

+ QMF 0.61 0.0937 0.83 0.0954 1.69 0.1687
ASR Distillation 0.54 0.0625 0.74 0.0782 1.54 0.1568

+ QMF 0.43 0.0575 0.67 0.0705 1.37 0.1429

NEMO
Half Medium

1
2

19.30M 803.04M
Baseline 0.64 0.0855 0.89 0.1020 1.74 0.1750
ASR Distillation 0.43 0.0485 0.69 0.0727 1.37 0.1364

+ QMF 0.38 0.0388 0.66 0.0668 1.24 0.1221

NEMO
Medium

1
4

35.26M 2.31G

Baseline 0.94 0.1200 1.26 0.1487 2.41 0.2398
ASR Pretrained 0.61 0.0946 0.78 0.0891 1.67 0.1649

+ QMF 0.52 0.0875 0.72 0.0783 1.48 0.1538
ASR Distillation 0.52 0.0689 0.72 0.0791 1.49 0.1429

+ QMF 0.48 0.0589 0.67 0.0711 1.34 0.1364

NEMO
Half Large

1
2

72.16M 2.52G
Baseline 0.87 0.0799 1.04 0.1145 1.93 0.1838
ASR Distillation 0.52 0.0564 0.75 0.0808 1.55 0.1516

+ QMF 0.48 0.0619 0.72 0.0735 1.42 0.1439

NEMO
Large

1
4

130.94M 8.53G

Baseline 0.96 0.1375 1.22 0.1391 2.35 0.2278
ASR Pretrained 0.48 0.0673 0.71 0.0785 1.54 0.1538

+ QMF 0.43 0.0623 0.66 0.0709 1.35 0.1350
ASR Distillation 0.53 0.0589 0.79 0.0852 1.64 0.1611

+ QMF 0.45 0.0562 0.75 0.0802 1.49 0.1475

counterpart by approximately 44.7% relatively in EER on the
same trials.

Our results also enable a direct comparison between the
ASR distillation and ASR pretraining techniques. Notably, in
most cases, models trained with ASR distillation outperform or
come close to their ASR pretrained counterparts. For instance,
the EER in the VoxCeleb 1-O trial for the NEMO Medium
model decreases by 14.8% with ASR distillation compared
to ASR pretraining. The improvements from ASR distillation
primarily come from two factors. First, the student model
benefits from the robustness of the larger ASR teacher model
trained on extensive ASR datasets, exposing the student model
to a wide range of speech patterns and accents. Second,
the auxiliary task of ASR at frame-level modeling enhances
the student model’s ability to capture fine-grained, speaker-
specific features, which is critical for speaker verification.

However, the NEMO Large model with ASR distillation
does not consistantly outperform the ASR pretraining method.
This might be due to the shared model architecture between
the student and teacher models, as the ASR-pretrained NEMO
Large model was used as the teacher. This outcome suggests
no one-size-fits-all answer, and the best approach could depend
on the specific model architecture or data constraints.

2) Reduced Conformer layers with increased convolution
subsampling rate: To explore the impact of model size and
sampling rate, we reduced the number of Conformer layers by
half and increased the convolution subsampling rate from 1

4
to 1

2 for the three Conformer models. The ASR teacher model
remained the same as in previous experiments. To match the
convolution subsampling rate between the teacher and student

models for the KL divergence loss at frame level, we added a
convolutional layer to the student model with a kernel size of
3, padding of 1, and stride of 2, increasing the student model’s
convolution subsampling rate from 1

4 to 1
2 .

Our results show that MFA-Conformer models with a 1
2

convolution subsampling rate, even with nearly half the num-
ber of parameters, achieve comparable or better verification
performance with ASR distillation compared to those with a
1
4 convolution subsampling rate. For example, the NEMO Half
Medium model with ASR distillation achieved EERs of 0.43%,
0.69%, and 1.37%, while the NEMO Medium model’s EERs
were 0.52%, 0.72%, and 1.49% for VoxCeleb 1-O, VoxCeleb
1-E, and VoxCeleb 1-H trials, respectively.

The integration of ASR distillation into the MFA-Conformer
model training presents a promising direction in speaker
verification. Our results demonstrate consistent improvements
across different model scales, indicating the robustness and
versatility of this method. Moreover, the potential to achieve
similar or even better results than ASR pretraining further
highlights the efficacy of ASR distillation.

C. Speaker adaptation: unifying ASR and speaker verification

In this section, we delve into the effectiveness of our
proposed speaker adaptation approach in bridging the gap
between ASR and speaker verification tasks.

6MACs (Multiply-Accumulate Operations) are calculated based on a 5-
second speech input.

7#ASR param indicates the model size (in million parameters) of the ASR
Conformer encoder when it has L layers. #adap param represents the speaker
adaptation modules’ total model size including L adaptor layers (in million
parameters).
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TABLE V
THE NETWORK CONFIGURATION OF THE SPEAKER ADAPTATION MODULE.

Layer Structure

Layer
Adaptor

 Linear(D, 128)
LayerNorm(128)
ReLU()
Linear(128, 128)

× L

Trainable
Conformer

V2: Linear(D, 176) V3: Concatenation
Linear(D × L, 176)

Conformer(dim = 176, head = 4, hidden = 704)×K

MFA Concatenation
LayerNorm(128× L+ 176×K)

Pooling Attentive statistics pooling

Linear Linear((128× L+ 176×K)× 2, 256)

We employ three pretrained ASR Conformer encoders —
small, medium, and large, as referenced in Table I. These
encoders are integrated with our speaker adaptation technique.
For each encoder size, we assess three distinct configurations
of the speaker adaptation module, based on the one depicted
in Fig. 4:

• V1: This version extracts directly from the first L layers
of the ASR Conformer without the intervention of layer
adaptors.

• V2: In alignment with Fig. 4a, this version integrates
layer adaptors to refine the outputs from the first L
ASR Conformer layers. Subsequently, K lightweight
Conformer layers process the frame-level outputs derived
from the L-th ASR Conformer layer.

• V3: As illustrated in Fig. 4b, this configuration feeds
the K lightweight Conformer layers with a concatenated
output from the first L Conformer layers of the pretrained
ASR model. An auxiliary linear layer ensures the align-
ment of concatenated feature dimensions.

All configurations use a lightweight Conformer layer archi-
tecture consistent across the ASR encoders. These lightweight
Conformer layers have 174 dimensions, 704 hidden units,
and 4 attention heads, the same as the Conformer layer
configuration in the NEMO Small ASR-CTC model. Addi-
tionally, the layer adaptor always maps the frame-level outputs
from ASR Conformer layers to a 128-dimensional feature
space. A detailed architecture configuration can be found in
Table V. Notably, when the model lacks trainable Conformer
layers (i.e., K = 0), the V2 and V3 configurations converge
to become identical. The specific EERs for distinct model
configurations, considering variations in both L and K, are
outlined in Tables VII, VIII, and IX, each corresponding to a
unique pretrained ASR model.

1) Baseline - ASR Conformer without speaker adaptation:
Before introducing any adaptation method, it is crucial to
understand the innate capabilities of the ASR Conformer
encoder when used for speaker verification. Our baseline is
free from any layer adaptor (configuration V1) and does not
incorporate additional trainable Conformer layers (K = 0).
Here, the frame-level outputs of the ASR Conformer are
concatenated and subsequently routed to the pooling layer to

extract speaker embeddings. The results consistently indicate
a notable trend: ASR models with a more significant number
of parameters (or layers) often exhibit superior performance
compared to their smaller counterparts. For instance, while
the NEMO Small ASR-CTC model with 12 layers has an
EER of 1.73%, its larger counterpart, the NEMO Large ASR-
CTC model with 6 layers, surpasses it with a more desirable
EER of 1.18%. While increasing the ASR Conformer’s layers
generally leads to a decrease in the EER, the relationship is
not strictly linear. For instance, in NEMO Large ASR-CTC
mode, while moving from 6 to 10 layers results in an EER
reduction from 1.18% to 0.97%, further increasing to 14 layers
sees a slight EER increase to 1.01%.

2) ASR Conformer with layer adaptors: After assessing
the ASR Conformer without speaker adaptation, we investi-
gated the effect of introducing layer adaptors (configuration
V2) without integrating additional trainable Conformer layers
(K = 0). Using the layer adaptor, the ASR Conformer’s
feature dimensions are reduced to 128, resulting in a smaller
concatenated feature dimension after MFA concatenation. This
led to a more compact speaker adaptation module in V2
compared to V1. Our findings indicate that introducing layer
adaptors substantially enhances the speaker verification perfor-
mance. Specifically, for the NEMO Small ASR-CTC model
with L = 12, we observed an EER of 1.10%, marking
a relative 36% reduction from the baseline’s 1.73% in the
absence of speaker adaptation. Similar performance improve-
ments are also witnessed across medium and large ASR-
CTC models. The consistent performance improvement across
different model sizes proves the effectiveness of layer adaptors.

3) ASR Conformer with trainable lightweight Conformer
layers: Expanding our investigation, we delved into the impact
of incorporating trainable lightweight Conformer layers into
the ASR Conformer under configuration V1, specifically with
K = 2 and K = 4. Adding additional trainable layers
to the ASR Conformer resulted in improved performance.
Compared to the baseline model, adding just two trainable
layers demonstrated a marked reduction in EER across all
configurations. However, these performance gains tend to
plateau. For instance, while adding 2 trainable layers yields
a noteworthy improvement, the benefits diminish, or in some
cases even slightly reverse, with the addition of 4 layers. One
plausible explanation is that the inputs to these lightweight
trainable Conformer layers come from highly abstract signals
from the ASR model. Therefore, an increase in their number
could potentially lead to overfitting.

4) Comparing the input of the trainable Conformer layers:
Our subsequent investigation aimed at the inputs channeled
into the trainable lightweight Conformer layers. We compared
configurations V2 and V3, explicitly focusing on K = 2
and K = 4. In configuration V2, the inputs to the trainable
Conformer layer are sourced directly from the frame-level
outputs derived from the L-th ASR Conformer layer. Con-
versely, in configuration V3, the trainable Conformer layer
receives its inputs from a concatenation sourced from the
ASR model’s first L Conformer layers. A clear distinction
in performance emerged from the results: Configuration V3
consistently outperforms V2 across all ASR model sizes and
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TABLE VI
EER[%] AND MINDCF OF THE SPEAKER ADAPTATION METHOD ON VOXCEBLEB 1.

Model Size MACs Vox1-O Vox1-E Vox1-H

ASR SpkAdap ASR SpkAdap EER minDCF EER minDCF EER minDCF

Small V3 L8 K2 6.94M 3.49M 826.39M 116.51M 0.83 0.1223 0.99 0.1058 1.87 0.1798
+ QMF 0.69 0.1011 0.89 0.0930 1.66 0.1663

Medium V3 L10 K2 17.79M 4.14M 1.79G 116.71M 0.67 0.0873 0.88 0.0978 1.66 0.1609
+ QMF 0.55 0.0807 0.80 0.0844 1.48 0.1494

Large V3 L10 K2 70.85M 4.92M 7.07G 117.33M 0.57 0.0631 0.77 0.0805 1.52 0.1484
+ QMF 0.45 0.0485 0.69 0.0727 1.35 0.1350

TABLE VII
EER[%] OF VOXCELEB 1-O OF DIFFERENT ADAPTATION METHODS

APPLIED ON NEMO SMALL ASR-CTC MODEL (15.88M). 7

L K = 0 K = 2 K = 4

#L #ASR
param EER #adap

param EER #adap
param EER #adap

param

V1
4 3.92M 2.49 0.73M 1.22 2.60M 1.21 4.47M
8 6.94M 1.77 1.45M 1.26 3.32M 1.12 5.20M

12 9.95M 1.73 2.18M 1.47 4.05M 1.34 5.92M

V2
4 3.92M 1.47 0.69M 1.13 2.56M 1.05 4.43M
8 6.94M 1.11 1.37M 1.02 3.24M 0.94 5.12M

12 9.95M 1.10 2.06M 1.03 3.93M 1.03 5.80M

V3
4 3.92M — 0.98 2.68M 0.95 4.55M
8 6.94M — 0.83 3.49M 0.83 5.36M

12 9.95M — 0.79 4.30M 0.66 6.17M

TABLE VIII
EER[%] OF VOXCELEB 1-O OF DIFFERENT ADAPTATION METHODS

APPLIED ON NEMO MEDIUM ASR-CTC MODEL (35.26M).7

L K = 0 K = 2 K = 4

#L #ASR
param EER #adap

param EER #adap
param EER #adap

param

V1
6 11.44M 1.65 1.63M 1.01 3.50M 0.99 5.37M
10 17.79M 1.40 2.69M 1.10 4.56M 1.03 6.43M
14 24.15M 1.34 3.74M 1.20 5.61M 1.19 7.48M

V2
6 11.44M 1.08 1.14M 0.89 3.01M 0.94 4.88M
10 17.79M 0.93 2.69M 0.84 4.56M 0.84 6.43M
14 24.15M 0.89 3.74M 0.92 5.61M 0.86 7.48M

V3
6 11.44M — 0.81 3.23M 0.90 5.10M
10 17.79M — 0.67 4.14M 0.83 6.01M
14 24.15M — 0.66 5.05M 0.77 6.92M

all values of L. For instance, considering the NEMO Large
ASR-CTC model with L = 14 and K = 2, V3 achieved an
EER of 0.55%, this translates to a relative reduction of 29%
compared to V2. As shown in the linear probe experiments in
section III-E, the early layers of the ASR Conformer model
are proficient at gathering speaker-specific information. The
concatenation from multiple ASR Conformer layers in V3
captures a more diverse and quality-rich set of information,
which proves advantageous for the speaker adaptation module.

For a more thorough evaluation, we test the speaker adap-
tation method on three testing trials of VoxCeleb 1. We select
one speaker adaptation module with the V3 configuration for
each NEMO ASR Conformer-CTC model of varying sizes.
The results can be found in Table VI. The V3 speaker

TABLE IX
EER[%] OF VOXCELEB 1-O OF DIFFERENT ADAPTATION METHODS

APPLIED ON NEMO LARGE ASR-CTC MODEL (130.94M).7

L K = 0 K = 2 K = 4

#L #ASR
param EER #adap

param EER #adap
param EER #adap

param

V1
6 45.55M 1.18 3.26M 0.88 5.13M 0.94 7.00M

10 70.85M 0.97 5.37M 0.85 7.24M 0.89 9.11M
14 96.14M 1.01 7.48M 0.89 9.35M 0.97 11.23M

V2
6 45.55M 0.86 1.38M 0.72 3.25M 0.78 5.12M

10 70.85M 0.72 2.23M 0.78 4.11M 0.75 5.98M
14 96.14M 0.71 3.09M 0.77 4.96M 0.76 6.84M

V3
6 45.55M — 0.61 3.70M 0.69 5.57M

10 70.85M — 0.57 4.92M 0.65 6.79M
14 96.14M — 0.55 6.14M 0.65 8.01M

adaptation module with L = 10 and K = 2 achieves an 0.45%
EER using the NEMO Large ASR-CTC model. In comparison,
the ASR pretraining and ASR distillation techniques result in
EERs of 0.43% and 0.45%, respectively, using the same Large
model. While the speaker adaptation method lags slightly
behind these two methods, it uniquely offers the capability
of unifying ASR and speaker verification within a single
Conformer model. This benefit of task unification comes
with a relatively modest increase of 4.92 million parameters
added to the 130.94 million parameter Large ASR Conformer
encoder.

VI. CONCLUSION

This research has presented and evaluated three techniques
to leverage ASR pretrained Conformers for speaker verifi-
cation tasks effectively. Experiments on VoxCeleb datasets
validate the efficacy of our proposed methods. First, we have
shown that initializing speaker embedding networks with ASR
pretrained Conformers lead to significant performance gains
and generalization. The extensive ASR pretraining enables
the network to extract more robust speaker representations
by preventing overfitting to limited speaker data. Second,
knowledge distillation from the ASR Conformer teacher to
the speaker verification student model allows efficient transfer
of ASR expertise. Serving as an auxiliary phonetic modeling
task, this distillation approach enhances speaker modeling.
Compared to direct ASR pretraining, knowledge distillation
offers more flexibility in student model design. Third, our
lightweight adaptation modules successfully unify ASR and
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speaker verification within a single Conformer model. By
refining ASR-learned features for speaker tasks, the adaptation
module efficiently bridges the gap between the two modalities.
This unified model delivers simultaneous ASR and speaker
verification using minimal additional parameters. This research
has demonstrated three promising and viable strategies to
leverage ASR pretrained Conformers to advance speaker ver-
ification performance. Our methods effectively transfer rich
ASR knowledge to speaker modeling. We aim to extend our
approaches to multilingual models and low-resource settings
for further studies.
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