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ABSTRACT

The paper describes the Wake Word Lipreading system devel-
oped by the WHU team for the ChatCLR Challenge 2024. Although
Lipreading and Wake Word Spotting have seen significant develop-
ment, exploration of pretrained frontends for Wake Word Lipreading
(WWL) remains insufficient. Our system is built upon a pretrained
frontend and Transformer-liked backend architecture, incorporating
Attentive Pooling and a Classifier. We investigate the effectiveness of
different frontends, including Auto-AVSR and AV-Hubert, and eval-
uate the performance of Conformer and E-Branchformer backends.
Additionally, we introduce Multi-layer Feature Aggregation to lever-
age features from multiple encoder block layers, demonstrating its
effectiveness. Finally, we apply various fusion strategies, leading to
score fusion that achieved a false reject rate of 8.21% and a false alarm
rate of 8.50% along with a WWS score of 16.71% on the evaluation
set, and obtain the first place in the task 1 of the ChatCLR Challenge.

Index Terms— Wake Word Lipreading, Keyword Spotting, Pre-
train, Multi-layer Feature Aggregation

1. INTRODUCTION

Wake Word Lipreading (WWL) involves detecting whether a speaker
says a specific wake word within a silent video stream. It is a similar
task to Wake Word Spotting (WWS), Keyword Spotting (KWS) or
Audio Visual Wake Word Spotting (AVWWS). WWS and AVWWS
aim to detect predefined wake words in audio streams or using both
audio-visual streams. As a sub-task of lipreading, it plays a significant
role in video recognition tasks. In situations with complex acoustic
conditions such as background noises (cheers, TV or screams), re-
verberations, and conversational multi-speaker interactions with a
significant portion of speech overlaps) or where acoustic input is in-
accessible, recognizing the speech content of the speaker in the video
through visual modality becomes crucial and necessary. Additionally,
in medical applications, it assists individuals with language disorders
or aphasia [1] in communicating with smart devices solely through lip
movements. In intelligent manufacturing and smart driving scenar-
ios, users can use various modalities, including simple lip movements
without vocalizing, to activate smart devices during conversational
interactions [2].

Along with the first Multimodal Information Based Speech
Processing Challenge (MISP Challenge 2021 [3]) and its data re-
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lease [4], much research is being applied to AVWWS [5–9]. How-
ever, existing systems primarily concentrate on enhancing audio
system performance in noisy wake-up scenarios by leveraging vi-
sual cues. Visual-only system research remains under-explored.
WWL poses challenges due to visual homophemes, where phonemes
have similar lip movements despite different vocalizations (e.g., ’t,’
’n,’ ’d’ in ’tight,’ ’night,’ ’dight’). To improve the performance of
lipreading, the 2024 Chat-scenario Chinese Lipreading Challenge
(ChatCLR)1 is launched. Task 1 WWL focuses on activating smart
home devices during conversational interactions using slient far-field
videos. To develop our WWL system, we first explore previous
systems [8, 9] and then design a system with the architecture based
on a pretrained frontend and Transformer-like backend structure,
integrating Attentive Pooling and a Classifier. We investigate the
effectiveness of different frontends (including Auto-AVSR [10] and
AV-Hubert [11]), and different backends (including Conformer [12]
and E-Branchformer [13]). Furthermore, we introduce Multi-layer
Feature Aggregation (MFA) to leverage features from multiple en-
coder block layers. Finally, we explore various fusion strategies and
achieve a false reject rate of 8.21% and a false alarm rate of 8.50%
along with a WWS score of 16.71% on the evaluation set, and obtain
the first place in the task 1 of the ChatCLR Challenge.

2. RELATED WORKS

Lipreading recognizes text content from the speaker’s lip movements
in silent videos. Early Lipreading research focuses on manually de-
signing visual features and using statistical models [14]. The advent
of large-scale Lipreading datasets like LRS2 [15] and LRS3 [16],
coupled with advancements in deep learning, has improved Lipread-
ing technology forward. Early efforts primarily concentrate on
word-level recognition [17, 18], while later work shifts towards
sequence-to-sequence (S2S) tasks [19]. [20] proposes a system based
on Transformer [21] architectures using CTC and S2S loss. [22] fu-
ture proposes a system based on Conformers [12] for Lipreading. [23]
proposes an attention-based pooling mechanism to aggregate visual
speech representations to improve performance.
Keyword Spotting aims to detect a predefined wake word or a set
of wake words in the streaming audio. Recently, many works for
WWS based on deep neural network are proposed, including the
deep neural networks (DNN) [24], convolutional neural networks
(CNN) [25], temporal convolutional neural networks [26], text-to-
speech data augmentation [27] and Transformer [28]. Because visual
lip movement information is not affected by acoustic noise and can

1https://mispchallenge.github.io/ICME2024/index.html
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Fig. 1. (a) Framework of previous 3D-ResNet18+2D-
ResNet18+SimAM system. (b) Framework of previous Visual-
Conformer system.

serve as complementary information to the audio stream, some works
investigate the multi-modal audio-visual systems [29, 30]. [31] de-
velops a new audio-visual KWS system based on CNN. [5] proposes
a CNN-3D-based AVWWS model, and [6] proposes a transformer-
based AVWWS model. [7, 8] improve their systems to enhance
performance further based on [5]. [9] proposes a Frame-Level Cross-
Modal Attention (FLCMA) module to improve the performance of
the AVWWS system.
Semi- and Self-Supervised Learning focuses on improving systems
with untranscribed data. [32, 33] propose various self-supervised
frameworks to learn audio and visual representations from large un-
labelled datasets. [34] uses pre-trained multiple modalities models
to teach a VSR network by using knowledge distillation. [11] learns
powerful audio-visual speech representation benefiting both VSR
and ASR by using mask prediction loss. [10] generates pseudo-labels
for the unlabelled data using pretrained ASR models to help train a
robust VSR model.

3. METHODS
3.1. Previous Systems

3.1.1. 3D-ResNet18+2D-ResNet18+SimAM

[5, 8] have shown the effectiveness of 3D convolution in previ-
ous video-only WWS. Compared to 2D convolution, which models
spatial dimensions only, 3D convolution adds a temporal dimen-
sion for better performance. Using a mixture of 3D CNN and 2D
CNN in a network allows 3D CNNs in lower layers to focus on
short-term spatial modeling, while 2D CNNs in higher layers ex-
tract temporal information. Moreover, compared to channel-wise
squeeze-excitation (SE) [35] and Convolutional block attention mod-
ule (CBAM) [36], Simple Attention Module (SimAM) [37] serves as
an attention mechanism that simultaneously considers both channel
and spatial dimensions. It utilizes spatial suppression mechanisms
to calculate attention weights, leading to improved performance.
Furthermore, SimAM requires no additional model weight mod-
ules compared to SE and CBAM, as it computes attention weights
for each feature map without any extra parameters, requiring only
a certain increase in computational. The robust 3D-ResNet18+2D-
ResNet18+SimAM [8] system achieves good performance for WWL.
As shown in Fig.1 (a), the 3D-ResNet18 processes the raw RGB im-
age sequences with the shape of (T, H, W, 3), and the feature map is
averaged along the spatial axis after the 3D-ResNet18 to the shape of
(T, C), and then the 2D-ResNet18 processes the hidden feature as a
one-channel image with the shape of (1, T, C).
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Fig. 2. Framework of our proposed system with frontend and back-
end.

3.1.2. Visual-Conformer

In prior work [6], an AV-Transformer model for the WWL task is
proposed, inspired by Visual Transformer (ViT) [38]. The model
operates on video feature sequences X ∈RT×D , with the addition of
a special <cls>token Xcls ∈R1×D at the sequence start, leveraging
attention mechanisms for information exchange. Subsequently, this
<cls>token is used as the final classification vector. In contrast, [9]
introduces a Visual-only WWS System based on Transformer and
Conformer, while presenting an End-to-End AVWWS system. Illus-
trated in Fig. 1 (b), this system includes a 3D-ResNet18 frontend,
followed by an Encoder based on Transformer or Conformer, and
subsequent Attentive Pooling and Classifier components. The 3D-
ResNet18 frontend transforms input video frames of shape (T, H, W,
C) into temporal features (T, D) via global average pooling along the
spatial dimension. A linear layer then projects these temporal features
to match the encoder block’s dimension. Unlike [6], this system does
not use a<cls>token for classification at the sequence beginning. In-
stead, it utilizes Attentive Pooling to aggregate all feature sequences
into a single vector for classification. We implement a visual-only
WWS system based on Conformer, referred to as Visual-Conformer.

3.2. Proposed Systems

With the advancements in Lipreading [19, 20, 22, 39], Transformer-
like models have gradually become a paradigm. As shown in Fig. 2,
we can abstract the aforementioned model Visual-Conformer in Sec.
3.1.2 into a frontend semantic feature extraction network and a back-
end semantic feature analysis network. The frontend and backend
network of visual-Conformer are the 3D-ResNet18 and the Con-
former blocks. The frontend feature extraction network processes the
4-dimensional raw video frames (T, H, W, C) to 2-dimensional (T, D)
features Xvideo ∈ RT×D of T frames, similar to the speech-based
features Xspec ∈ RT×D (MFCC, FBank, etc.). It transforms the
original video into a sequence of features, standardizing the input
format for subsequent backend Transformer-like networks.

Past studies have demonstrated that utilizing more data can
improve model performance, and fine-tuning additional simple net-
work structures on pre-trained models (such as BERT [40]) can
achieve good results in downstream tasks. In order to further en-
hance the effectiveness of the frontend model, we explore pretrained
Auto-AVSR [10] and AV-Hubert [11] models to replace our original
3D-ResNet18 frontend model.



3.2.1. Pretrained Frontend

Auto-AVSR: The model adopts the off-the-shelf architecture pre-
sented in [22], which achieves good performance on LRS2 and LRS3
without utilizing any additional training data. The system consists of
a visual frontend, visual encoder, and visual decoder. It employs a
modified ResNet18 as its frontend for lip movements, followed by an
encoder with stacked Conformer blocks and a Transformer-based de-
coder, ultimately trained using CTC/S2S attention loss for VSR tasks.
The advantage of Auto-AVSR lies in leveraging a large amount of ad-
ditional data generated by efficient ASR models, producing pseudo-
labels for the audios from AVSpeech [41] and VoxCeleb2 [42].
Experimental results demonstrate that a large amount of pseudo-
labeled data can enhance the performance of the VSR model. Finally,
it combines these pseudo-labels from AVSpeech and VoxCeleb2 and
oracle transcription labels from the training sets of LRS2 and LRS3 to
train its Conformer-based VSR model, achieving SOTA performance
on LRS2 and LRS3. We remove its Transformer Decoder and adopt
its ResNet18 and Conformer Encoder as our pretrained frontend.
AV-Hubert: This recent and advanced unsupervised audio-visual
model, known as AVHubert, utilizes audio and visual data to pre-
dict cluster labels, achieving effective unsupervised training. AV-
Hubert builds upon the Audio Hubert framework [33], which is a
self-supervised framework for training audio-based models. Hu-
bert’s training involves two stages: feature clustering and masked
prediction. Predicting cluster labels for masked regions allows the
model to leverage unmasked areas to learn local representations and
long-range temporal dependencies among latent features. Iteratively,
these stages enhance both the quality of clustering and the feature
representation capability.

AV-Hubert extends the Audio Hubert framework by incorpo-
rating ResNet18 for video processing in the frontend and fully-
connected layers for audio processing and downsampling. This en-
sures that both modalities achieve consistent feature dimensions (B,
T, D). Features from both modalities are concatenated into (B, T, 2D)
and fed into an Encoder with stacked Transformer blocks for informa-
tion exchange and cluster label prediction. The system uses Modality
Dropout to maintain robust feature representation capabilities, even
with only the input of one modality. After pretraining with unlabeled
data, additional decoders or CTC classification layers can be added
for supervised training, yielding good performance in VSR tasks. We
use its ResNet18 and Transformer Encoder as our pretrained frontend.

3.2.2. Backend

Conformer: We investigate the Conformer encoder’s effectiveness,
known for its effectiveness in ASR [12], AVWWS [9], and VSR [22]
tasks. The Conformer block includes a multi-head self-attention
(MHSA) module, a convolution (CONV) module, and a pair of feed-
forward network (FFN) modules in the Macaron-Net style. This
block combines CONV and MHSA to capture both local and global
information from the visual features.
E-Branchformer: We investigate the performance of the E-Branchfor
mer [13] architectures. The E-Branchformer is an improved version
of Branchformer [43]. The Branchformer encoder integrates two
parallel branches to capture diverse contextual ranges. While one
branch utilizes self-attention mechanisms to grasp long-range depen-
dencies, the other branch employs a multi-layer perceptron module
with convolutional gating (cgMLP) to extract intricate local corre-
lations concurrently. Additionally, [13] augments the Branchformer
by incorporating a depth-wise convolution-based merging module
and integrating an extra pointwise feedforward module, thereby
introducing the E-Branchformer.
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Fig. 3. Illustration of Multi-layer Feature Aggregation on the results
of the penultimate layers of the encoder.

3.2.3. Multi-layer Feature Aggregation

As shown in Fig. 3, we propose the Multi-layer Feature Aggregation
by utilizing features from multiple layers of the pretrained frontend
instead of solely relying on the output of the final layer, inspired
by MFA-Conformer [44]. The approach involves concatenating the
output feature maps from these last N selected encoder blocks and
passing them through a linear layer to ensure compatibility with the
input dimensions of the backend.

H
′
=Concat(hL,hL−1,...,hL−N+1)

H=Linear(H
′
)

(1)

where L represents the number of encoder layers in frontend,
hL−n, n ∈ [0, N ] represents the feature from the last n encoder
layer. If the dimension of the input of the backend is D, then the
H∈RT×D represents the output feature of the MFA module.

3.2.4. Attentive Pooling and Classifier

After we get the output feature from the backend, we send it to an
attentive pooling layer, a technique commonly employed in Speaker
Verification (SV), to capture the weighted summation of feature se-
quences and get a more robust classification vector. Subsequently,
this vector is sent to a sequence of fully-connected linear layers with
a final sigmoid function, facilitating the generation of the wake word
probability output.

3.3. Fusion Strategy

Integrating the results of multiple systems mitigates the risk of over-
fitting in individual systems, enhances the overall model’s generaliza-
tion ability, and improves system robustness. Thus, multiple-system
fusion not only improves the performance of WWL systems but also
enhances their stability and reliability in practical applications.
Vote Fusion: If we have multiple systems (Sys1, Sys2, ..., Sysn), we
can adopt a majority vote method to integrate these models and obtain
the final result. Each model determines the current result as either 0
or 1 based on its threshold, and then the mode of all model results is
taken as the final result.
Score Fusion: If we have multiple systems (Sys1, Sys2, ..., Sysn), we
can average the output score of each model to obtain a fused score.
This fused score is then compared with a threshold to determine
whether it corresponds to 0 or 1.



Table 1. Performance of various systems in the development (Dev) and evaluation (Eval) sets. MFA represents the Multi-layer Feature Ag-
gregation. The ∗ represents retraining the previous systems using the current dataset. The ♡ represents unfreezing the pretrained frontend for
finetuning. The ♣ represents finetuning with freezing the pretrained frontend.

ID Model Params[M] Dev[%] Eval[%]

AUC FRR FAR WWS AUC FRR FAR WWS

1 3D-ResNet18+2D-ResNet18+SimAM+Pretrain [8] 11.10 98.246 6.60 5.20 11.80 94.416 11.66 12.70 24.36
2 3D-ResNet18+2D-ResNet18+SimAM+Pretrain∗ 11.10 97.731 8.09 4.43 12.52 94.608 15.22 8.70 23.92
3 Visual-Conformer [9] 17.64 98.136 8.72 4.61 13.33 93.544 17.45 9.46 26.91
4 Visual-Conformer∗ 17.64 98.383 10.43 4.19 14.62 93.805 17.99 8.43 26.42

5 Auto-AVSR+Conformer(S) 191.48 96.970 8.94 7.92 16.86 91.767 18.06 13.52 31.58
6 AV-Hubert(a)+Conformer(S) 334.54 98.296 4.26 5.49 9.75 95.294 8.94 12.78 21.72
7 AV-Hubert(a)+E-Branchformer(S) 336.99 98.209 6.60 5.49 12.09 96.096 8.09 12.31 20.40

8 AV-Hubert(b)+Conformer(L)+MFA(1L) 472.13 98.619 3.83 5.32 9.15 95.532 7.19 13.77 20.96
9 AV-Hubert(b)+Conformer(L)+MFA(3L) 475.28 98.603 4.89 3.73 8.62 95.816 9.60 11.30 20.90
10 AV-Hubert(b)+Conformer(L)+MFA(6L) 478.43 98.683 4.47 5.20 9.67 95.745 7.13 13.64 20.77

11 AV-Hubert(c)+Conformer(L)+MFA(1L) 472.13 98.516 5.96 5.08 11.04 94.642 10.81 12.42 23.23
12 AV-Hubert(c)+Conformer(L)+MFA(3L) 475.28 98.693 6.17 4.08 10.25 95.784 9.00 11.63 20.63
13 AV-Hubert(c)+Conformer(L)+MFA(6L) 478.43 98.785 3.62 5.02 8.64 95.632 10.45 11.83 22.28

14 AV-Hubert(a)+Conformer(L)+MFA(1L) 472.13 98.434 3.62 5.38 9.00 95.723 6.64 13.30 19.94
15 AV-Hubert(a)+Conformer(L)+MFA(3L) 475.28 98.658 2.77 5.08 7.85 95.705 8.45 11.87 20.32
16 AV-Hubert(a)+Conformer(L)+MFA(6L) 478.43 98.760 2.98 5.26 8.24 96.016 7.13 12.81 19.94

17 AV-Hubert(a)+Conformer(L)+MFA(1L)♡ 472.13 98.972 5.53 3.37 8.90 96.525 8.28 10.79 19.07
18 AV-Hubert(a)+Conformer(L)+MFA(1L)♣ 472.13 98.447 5.96 4.14 10.10 96.118 8.58 9.76 18.34
19 AV-Hubert(a)+Conformer(L)+MFA(3L)♣ 475.28 98.616 5.11 3.96 9.07 95.976 9.66 9.92 19.58
20 AV-Hubert(a)+Conformer(L)+MFA(6L)♣ 478.43 98.840 3.62 3.78 7.40 96.301 8.82 9.37 18.19

21 VoteFusion(ID17 + ID18 + ID20) - - - - - - 8.09 8.89 16.98
22 ScoreFusion(ID17 + ID18 + ID20) - - - - - 96.655 8.21 8.50 16.71

4. EXPERIMENTS

4.1. Dataset and Evaluation Metrics

The dataset is provided by the 2024 ChatCLR Challenge Task 1. The
dataset is also similar to the previous database in the First MISP Chal-
lenge [3]. The organizers double-check all data and fix it, then release
all the database [4]2 and regrade it as the dataset in this 2024 ChatCLR
Challenge Task 1. The dataset covers audio and video related data,
and we basically only use video data in this WWL task. This dataset
is utilized to detect the wake word ’Xiao T, Xiao T’ spoken in far-field
home scenarios in the silent video.

The released database has two subsets: training set (45k+ nega-
tive samples and 5K+ positive samples) and development (Dev) set
(1.6k+ negative samples and 470 positive samples). Video samples
include single-person high-definition middle-field and multi-person
far-field video. Moreover, a new evaluation (Eval) set (8K+) without
annotations is provided to competition participants, which is only in
the far-field. The ChatCLR committee releases the annotations to all
the teams after the challenge to report detailed results.

To evaluate our system’s performance, we follow the guidelines
provided by the competition committee. We utilize the False Reject
Rate (FRR), False Alarm Rate (FAR), and the WWS Score. Let
Nwake represent the number of samples containing the wake word,
and Nnon wake represent the number of samples without the wake
word. The FRR and FAR are defined as:

FRR=
NFR

Nwake
, FAR=

NFA

Nnon wake
(2)

2https://challenge.xfyun.cn/misp dataset

where NFR denotes the number of samples containing the wake
word while not recognized by the system. NFA denotes the number
of samples containing no wake words while predicted to be positive.
Hence, the final score of Wake Word Spotting (WWS) is defined as:

ScoreWWS=FRR+FAR (3)

To further represent the models’ performance, we also evalu-
ate the models by calculating the area under the receiver operating
characteristic curve (AUC).

4.2. Preprocessing

Region of Interest (RoI): Our system focuses solely on the lip region
as input rather than the entire face. We use the RetinaFace model [45]
for facial detection, extracting all faces and their five facial landmarks.
In wide-angle videos with multiple faces, we reference official oracle
results and use the nearest distance principle to identify specific faces
for testing. Following [8], we crop the lip region using facial land-
marks to generate lip movement videos. All lip movement videos are
resized to 112×112 with 3 RGB channels.
Data Augmentation: We use the same video-based data augmen-
tation methods referred to the [8], including speed perturbation,
frame-wise rotation, horizontal flip, frame-level cropping, color jit-
ters, gray scaling and histogram equalization. The probability for all
data augmentation strategies is set to 0.5.
Model Training: For Conformer(S) and E-Branchformer(S) struc-
tures, we use 6 self-attention blocks with 4 heads, a 256-dimensional
hidden size, and a feed-forward layer of 1,024 dimensions (D =
256,h=4,N =6). For Conformer(L), we use D=1024,h=4,N =
6. The batch size is 16 with a learning rate of 0.002, warmed up for
the first 2,000 steps using the Adam optimizer. We use weighted



BinaryCrossEntropy (BCE) Loss (negative:positive=1:5) to address
sample imbalance. Previous systems sampled videos with 64 frames,
resulting in a shape of (64, 112, 112, 3). For Auto-AVSR, lip videos
are resized to 96×96 with 1 channel, and for AV-Hubert, to 88×88
with 1 channel.
Table 2. The information of different pretrained frontend checkpoints.
T represents Type. P represents the parameters used in our frontend.
TS represents the training strategy. Pse represents the Pseudo-label
data. Unl represents the Unlabeled data. Lab represents the Labeled
data. NA represents the Noise-Augmented. WER represents the result
of the checkpoint on LRS3.
Pretrain Frontend T P[M] TS Pse (h) Unl (h) Lab (h) WER[%]

Auto-AVSR - 182.03 - 2630 - 818 19.1

AV-Hubert
a 325.03 - 1326 1759 433 26.9
b 325.03 - - 1759 - -
c 325.03 NA - 1759 - -

4.3. Results

4.3.1. Previous systems

We first evaluate the performance on the current Eval set using
checkpoints from previous studies [8] and [9], yielding results corre-
sponding to ID1 and ID3 in Table 1. Furthermore, we retrain the 3D-
ResNet18+2D-ResNet18+SimAM+Pretrain and Visual-Conformer
model with the revised training dataset from the current competition,
presenting results as ID2 and ID4. Compared to previous checkpoints,
the performance improves. Analysis revealed that the MISP2021
competition training set lacked oracle labels to select the correct
speaker in multi-person far-field videos, requiring a face recognition
tool for identification. This leads to errors in speaker selection during
lip movement training. Conversely, the updated training set includes
oracle target person labels, preventing the selection of incorrect
far-field speaker lip movements and reducing error accumulation.

4.3.2. Results of proposed systems

Pretrained Frontend: As described in Sec 3.2.1, we utilize pre-
trained Auto-AVSR and AV-Hubert models as our frontend. Details
are provided in Table 2. For AutoAVSR, the selected checkpoint3

achieves a 19.1% Word Error Rate (WER) on LRS3. AV-Hubert is
utilized with three checkpoints: (a) a checkpoint4 pretrained on LRS3
+ VoxCeleb2(En) and finetuned with Self-Training and annotated
data, achieving a 26.9% WER on LRS3; (b) an original unsupervised
checkpoint5 pretrained on LRS3 + VoxCeleb2(En); and (c) an unsu-
pervised checkpoint6 with Noise-Augmentation applied to the audio
part during pretraining. As shown in Table 1 comparing ID5 with ID6,
Auto-AVSR outperforms AV-Hubert(a) on LRS3 but underperforms
for the current task. This could be attributed to Auto-AVSR not incor-
porating audio information. Additionally, unsupervised models may
exhibit better robustness than supervised models in downstream tasks.

Backend: We also explore the use of E-Branchformer as
our backend. As shown in Table 1 comparing ID6 with ID7, E-
Branchformer exhibits slightly lower performance on the Dev set

3https://drive.google.com/file/d/19GA5SqDjAkI5S88Jt5neJRG-
q5RUi5wi/view?usp=sharing

4https://dl.fbaipublicfiles.com/avhubert/model/lrs3 vox/vsr/
self large vox 433h.pt

5https://dl.fbaipublicfiles.com/avhubert/model/lrs3 vox/clean-
pretrain/large vox iter5.pt

6https://dl.fbaipublicfiles.com/avhubert/model/lrs3 vox/noise-
pretrain/large vox iter5.pt

compared to Conformer, but outperforms Conformer on the Eval set.
Due to time constraints during the challenge, we focus our further ex-
ploration only on the downstream aspects of the Conformer structure.

Parameters: Comparing ID6 with ID14 in Table 1, we em-
ploy a larger Conformer model (L), which performs better than the
Conformer (S). Additionally, the dimension of Conformer (L) is con-
sistent with the frontend of AV-Hubert, potentially resulting in fewer
information losses during feature input.

AV-Hubert: From Table 1 (ID8, ID11, ID14); (ID9, ID12, ID15);
(ID10, ID13, ID16), we can compare the performance of different
AV-Hubert frontends. AV-Hubert(b) and AV-Hubert(c) show similar
performance, while AV-Hubert(a) exhibits relatively better perfor-
mance. This could be attributed to AV-Hubert(a) leveraging more
labeled information compared to (b) and (c), including finetuning on
the pseudo-label generation from VoxCeleb2(En) and oracle labels
from LRS3.

Multi-layer Feature Aggregation: From Table 1 (ID8-10);
(ID11-13); (ID14-16), we compare the performance of Multi-layer
Feature Aggregation. The notation ’1L’ indicates usingN=1, where
only the output of the final layer of the frontend is utilized without
employing the Multi-layer Feature Aggregation mechanism. ’3L’
signifies using N = 3, incorporating features from the last three
hidden layers, while ’6L’ denotes N = 6. It can be observed that
the performance of the 3L models outperforms the 1L models on
some metrics. Furthermore, deeper utilization of more layers yields
additional benefits in downstream WWL tasks, demonstrating the
effectiveness of the Multi-layer Feature Aggregation mechanism.

In Table 1, ID17-20 represent the second-stage finetuning of
previous models with a lower learning rate of 0.0002. The symbol ♡
represents unfreezing the pretrained frontend for finetuning. We find
that unfreezing and finetuning the pretrained frontend to obtain ID17
resulted in a similar performance to ID18, possibly due to overfitting
caused by the large model parameters. The symbol♣ represents fine-
tuning without unfreezing the pretrained frontend, leading to further
performance improvement of the model.

Fusion Strategy: Finally, we also test different fusion mech-
anisms. Multi-system fusion can enhance model robustness. Ulti-
mately, using score fusion, we achieve a final performance of 16.71
WWS on the Eval set, ranking first on the leaderboard.

5. CONCLUSION

The paper presents the Wake Word lipreading system developed by
the WHU team for the ChatCLR Challenge 2024. We design a sys-
tem based on a pretrained frontend and Transformer-like backend
structure, incorporating Attentive Pooling and a Classifier. We ex-
plored the effectiveness of various frontends from Auto-AVSR and
AV-Hubert, as well as investigated the performance of Conformer and
E-Branchformer backends. Additionally, we proposed Multi-layer
Feature Aggregation by leveraging features from multiple layers of
the encoder block and demonstrated its effectiveness. Finally, we
employ various fusion strategies, culminating in score fusion, which
achieves a false reject rate of 8.21% and a false alarm rate of 8.50%
along with a WWS score of 16.71% on the evaluation set and obtain
the first place in the task 1 of the ChatCLR Challenge.
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