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ABSTRACT
This paper introduces an innovative deep learning framework for
parallel voice conversion to mitigate inherent risks associated with
such systems. Our approach focuses on developing an invertible
model capable of countering potential spoofing threats. Specifically,
we present a conversion model that allows for the retrieval of source
voices, thereby facilitating the identification of the source speaker.
This framework is constructed using a series of invertible modules
composed of affine coupling layers to ensure the reversibility of the
conversion process. We conduct comprehensive training and evalua-
tion of the proposed framework using parallel training data. Our ex-
perimental results reveal that this approach achieves comparable per-
formance to non-invertible systems in voice conversion tasks. No-
tably, the converted outputs can be seamlessly reverted to the orig-
inal source inputs using the same parameters employed during the
forwarding process. This advancement holds considerable promise
for elevating the security and reliability of voice conversion.

Index Terms— Voice conversion, Audio security, Invertible
neural networks, Anti-spoofing

1. INTRODUCTION

Voice conversion (VC) provides the capability to alter the vocal char-
acteristics of a source audio signal to match a desired voice while
keeping the linguistic content unchanged. Over the past decade,
deep neural network-based VC techniques have outperformed tra-
ditional VC methods, yielding synthesis results with exceptional fi-
delity [1]. Particularly, when equipped with neural vocoders [2, 3],
these advanced VC systems are capable of generating speech that is
remarkably natural, rivalling human speech, under both parallel and
non-parallel training conditions. Nevertheless, this high-fidelity syn-
thesized speech poses challenges in distinguishing between authen-
tic and synthesized speech segments. This challenge has been am-
plified by recent advancements in many-to-many VC, considerably
broadening the range of convertible voices for voice cloning [4, 5].
Furthermore, investigations into zero-shot conversion are reducing
the necessity for enrollment audio recordings, as voice cloning now
only necessitates a brief audio sample from the target speaker [6, 7].

Many contemporary voice services depend on speaker veri-
fication — a biometric method to validate individuals’ identities.
Nevertheless, those aforementioned achievements in VC inevitably
empower spoofing attacks on automatic speaker verification (ASV)
systems [8]. Various studies have highlighted the vulnerabilities
of speaker verification/recognition systems to spoofing attacks via
VC [8, 9]. Accordingly, researchers have been investigating coun-
termeasures to mitigate these vulnerabilities. Two predominant
strategies have emerged: the development of more robust ASV sys-
tems and the incorporation of an independent spoofing detection
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mechanism. While both approaches aim to tackle spoofing threats,
the latter has garnered greater attention within this field [10]. As
a result, the biannual ASVspoof challenge was initiated in 2015,
serving as a platform to stimulate and support researchers in their
efforts to enhance spoofing detection performance [11, 12].

However, numerous countermeasures in the spoofing literature
are aimed at discerning whether an audio signal is synthetic, yet they
lack the capability to trace the origin of fraudulent activity. Particu-
larly in instances where VC is exploited in criminal activities, iden-
tifying the true speaker behind the converted audio becomes pivotal
for criminal investigations and legal proceedings. To address these
potential threats emerging from VC systems, we put forth an alter-
native countermeasure. Our primary contribution lies in designing a
novel and reliable conversion system equipped with the unique abil-
ity to reverse the conversion process. This facet enables the retrieval
of the source speech from the converted result, a capability that re-
mains absent in existing approaches. Specifically, our proposed sys-
tem takes advantage of the affine coupling layer [13], integrated with
a modified transformer encoder [14] to transform features within the
coupling layers. Our proposed model is trained and evaluated on
the parallel dataset CMU ARCTIC [15]. The experimental results
demonstrate that the proposed architecture achieves successful and
invertible VC. Moreover, our proposed system yields comparable
performance with other VC approaches regarding naturalness and
speaker similarity.

2. BACKGROUND: INVERTIBLE NETWORKS

In recent years, invertible neural networks (INNs) have gained con-
siderable attention and made substantial advancements across di-
verse research fields, including image generation [13, 16] and speech
synthesis [17, 18]. Originally conceived as generative models, INNs
were designed to produce synthetic content from standard proba-
bility distributions. Typically, INNs consist of a series of bijective
mapping [19]. Given a high-dimensional vector x ∈ Rd, the net-
work functions as a bijective transformation denoted by f , involving
K consecutive transformations that convert the input x to an output
y ∈ Rd, as formulated in Equations 1 and 2.

y = f(x) (1)
f = f1 ◦ f2 ◦ · · · ◦ fK (2)

Importantly, each transformation is reversible. These transforma-
tions are often referred to as “forwards”, while the corresponding
inverse computations that map the output y back to x are termed
“backwards”. The corresponding backward process is mathemati-
cally defined in Equations 3 and 4.

x = f−1(y) (3)

f−1 = f−1
K ◦ · · · ◦ f−1

2 ◦ f−1
1 (4)
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Fig. 1. Invertible Voice Conversion Architecture. (a) General overview of the proposed model. (b) Structure and data flow of the Invertible
Network Module. (c) Structure of the nonlinear network component ‘Net’

Bijective networks are powerful in tasks such as density estima-
tion, variational inference, and generative modeling across diverse
data modalities encompassing audio, images, and text. INNs with
a tractable determinant of the Jacobian are commonly referred to as
normalizing flows, which have gained widespread adoption in a mul-
titude of fields. For instance, Gudovskiy et al. [20] and Yamaguchi
et al. [21] have applied flows for anomaly detection. In speech signal
processing, these flows have found utility in text-to-speech [18] and
neural vocoder [17], demonstrating competitive results with other
generative models like generative adversarial networks (GANs).

Recent studies have incorporated normalizing flows for VC [22].
With the addition of speech attributes like speaker representations
as conditions, these flow-based models exhibit the capability for
versatile any-to-any VC and even the generation of entirely new
voices [23, 24]. Typically, during the training phase, flow-based VC
models transform acoustic features into a latent representation de-
noted as z, conditioned on attribute c. Here, z adheres to a normal
distribution while c is extracted by speech encoders. In the inference
phase, the converted voice is generated by drawing a random sample
z from the latent distribution and a given condition c. Unlike those
models, our proposed method leverages the invertibility of INNs,
eliminating the necessity for tractable determinants as seen in tradi-
tional flows. Instead of transforming acoustic features into a latent
space, we deploy INN modules to directly facilitate the reversible
mapping of acoustic features between source and target speakers.

3. PROPOSED FRAMEWORK

The conversion framework of our proposed model is depicted in Fig-
ure 1 (a). Here, the transformation from the source spectrogram
to the target counterpart is achieved by a series of invertible net-
work modules. The input acoustic feature is the Mel-spectrogram
extracted from audio signals. The number of invertible network
modules is determined by the hyperparamater N1. Each step of the
invertible network module consists of a block containing two con-
secutive affine coupling layers, as visualized in Figure 1 (b). The

nonlinear network component Net within the coupling layers is il-
lustrated in Figure 1 (c).

3.1. Invertible Coupling Layer

Each step of the invertible module involves an alternating pattern
executed by two consecutive affine coupling layers. This process is
vividly illustrated in Figure 1 (b), wherein a module is distinctly di-
vided into two parts: the upper portion, preserving half of the input
hidden features Hi

b unchanged, and the symmetrical lower part, re-
sponsible for transforming Hi

b, where Hi denotes the input of ith
invertible network module. Note that the input of the first invertible
network module is X, the source acoustic feature, and the output of
the last invertible network module is Y∗, the predicted acoustic fea-
ture. The affine coupling layer serves as a robust bijective operation
that plays a pivotal role in converting the source feature to the de-
sired target feature [13]. Recognizing that maintaining invertibility
necessitates certain values to remain unmodified in this process, we
adopt such alternating manner to completely transform the input.

The forward and reverse operations of the upper coupling layer
are formulated in Table 1, where SPLIT() is the operation that chunks
the input feature into two halves along the channel/feature dimen-
sion. Neta is a nonlinear mapping structure that increases the chan-
nel dimension to obtain intermediate variables U and B. If we as-
sume that Hi ∈ RT×d is a matrix with a channel size of d, then the
size of Hi

a and Hi
b is d/2 after the SPLIT() operation. The output

vector of Neta has a channel size of d, which is then split into two
halves to obtain U and B, each with a size of d/2. S is the element-
wise scale vector, ϵ is a constant, and σ is the sigmoid function. Fea-
ture Hi

b remains unchanged in the first coupling layer. This allows
us to obtain the same values S and B during the reverse phase by
feeding Hi

b into Neta. Then the original input Hi
a can be retrieved

by inverse operations with respect to the way we obtain Hi+1
a . The

forward and reverse operations of the bottom coupling layer are sim-
ilar, but they keeps Hi+1

a unchanged and convert Hi
b to Hi+1

b .



Table 1. The forward and reverse process in the ith coupling layer
FORWARD REVERSE

Hi
a,H

i
b = SPLIT(Hi) Hi+1

a ,Hi
b = SPLIT(H′)

U,B = SPLIT(Neta(Hi
b)) U,B = SPLIT(Neta(Hi

b))
S = σ(U+ ϵ) S = σ(U+ ϵ)

Hi+1
a = S ⊙Hi

a +B Hi
a = (Hi+1

a −B)⊘ S

H′ = CONCAT(Hi+1
a ,Hi

b) Hi = CONCAT(Hi
a,H

i
b)

3.2. Conversion Net

Generally, the Net component can be any network structure that dou-
bles the input feature’s dimensionality to help obtain the scaling fac-
tor u and the affine component t for the feature conversion process.
In our proposed model, we adopt a transformer-based structure to
perform this task [14]. Depicted in Figure 1 (c), this architecture
starts with two 1D convolutions designed to pre-encode the input,
with the second convolution doubling the feature’s dimensionality.
Following this, we incorporate N2 identical blocks, each composed
of a multi-head attention module and a convolution module hous-
ing two 1D convolutional layers. After that, N2 identical blocks
are used, each containing a multi-head attention module and a con-
volution module with two 1D convolutional layers. Both modules
integrate residual connections and culminate in layer normalization.

3.3. Loss Function

Training is optimized by minimizing the mean square error (MSE)
between the predicted Mel-spectrogram and the ground-truth spec-
trogram. In addition, we incorporate mean absolute error (L1) losses
between the means of the two Mel-spectrograms and L1 loss be-
tween their standard deviations as supplementary criteria. Conse-
quently, our final training loss is formulated in Equation 5.

Ltrain = MSE(Predicted Mel,Target Mel)
+ L1(mean(Predicted Mel),mean(Target Mel))
+ L1(std(Predicted Mel), std(Target Mel))

(5)

4. EXPERIMENTS

4.1. Dataset

Our primary dataset for experimentation is drawn from the CMU
ARCTIC English corpus1 [15], a publicly accessible speech database
featuring parallel recordings of various speakers reading textual con-
tent. From this database, we have chosen four speakers—two males
and two females—for our experimental purposes. In our paper, we
label them as ‘bdl’, ‘slt’, ‘clb’, and ‘rms’. This phonetically bal-
anced corpus encompasses 1132 parallel speech utterances for each
individual speaker, all distributed in 16 kHz waveforms. In our ex-
perimental setup, 1000 of these utterances per speaker are allocated
for training, while the remaining 132 are reserved for the test set.

4.2. Training Setup

In our experiment, we use the Mel-spectrogram as the acoustic fea-
ture. We extract 80-dimensional Mel-spectrograms with a window
length of 25ms and a hop length of 12.5ms from the continuous
speech. During the data preparation stage, we use Dynamic Time
Warping (DTW) to align the acoustic features for parallel pairs. For

1http://festvox.org/cmu_arctic/

every pair of selected speakers, we train and evaluate three corre-
sponding voice conversion systems:

Invertible VC, our proposed model, is structured with 4 consec-
utive invertible modules (N1 = 4). The number of the transformer-
based encoder block N2 is set to 4. Within the conversion Net, we
use two pre-encoding convolutional layers with a kernel size of 3,
while the channel size dh is set to 512. We employ two heads for
the attention mechanism. The internal convolutional layers within
the transformer-based block have an intermediary channel size of
1024, with respective filter sizes of 9 and 1. Throughout the training
process, the mini-batch size is set at 64. Optimization is performed
using the Adam optimizer, initialized with a learning rate of 0.0001.
We train a model for each pair of speakers until convergence, which
typically takes more than 1000 epochs.

Transformer-VC follows a transformer-based voice conver-
sion methodology akin to other models documented in the lit-
erature, including the Voice Transformer Network [25] and the
non-autoregressive sequence-to-sequence VC [26]. Specifically, we
adopt the basic structure of the transformer-based Fastspeech22 [27],
but with the modification of omitting the variance adaptor and tran-
sitioning from phoneme embeddings to the Mel-spectrogram of the
source speaker as input. The size of the PreNet in this model is
set to 256. There are 4 encoder layers and 4 decoder layers, each
incorporating 2 attention heads and a hidden layer size of 256. Both
encoder dropout and decoder dropout are set to 0.2. The mini-batch
size, optimizer and training settings remain consistent with those of
the Invertible VC approach.

CycleGAN-VC3 is a GAN-based approach, which is another
popular approach in VC. This model can be used for both parallel
and non-parallel data. We implemented the CycleGAN-VC3 model
as per the specifications outlined in the original paper [28]. We fol-
low the hyperparameter settings from CycleGAN-VC3, except that
all models are trained with parallel pairs for more than 1000 epochs
until convergence. The batch size is set to 12 and the number of
frames per training sample is set to 128.

All synthesized spectrograms from the VC systems mentioned
above are subsequently converted into audio waveforms using a neu-
ral vocoder called HiFiGAN [3]. This vocoder undergoes train-
ing using the extracted Mel-spectrograms from the training dataset,
which consists of 4000 utterances in total.

4.3. Results

For each VC approach mentioned above, we train twelve distinct
pairwise conversion models constructed from the four chosen speak-
ers. Our synthesized samples are accessible online for listening3.
The confirmation of our model’s invertibility can be achieved by
both listening to the samples and referring to Table 3, which involves
objective evaluation conducted using Mel-Spectrogram Distortion
(MSD). This metric, resembling Mel Cepstral distortion (MCD) but
applied to distinct features [29], measures the difference between the
synthesized Mel-spectrograms and their natural counterparts. These
MSD scores are computed across the test set encompassing all con-
version speaker pairs. Note that our extracted Mel-spectrograms are
normalized within the value range of [−1, 1].

The MSD score between source speakers and the target speak-
ers stands at 3.34. With our proposed Invertible VC model, the
distortion rate to the target utterances drops to 2.52. A marginal
performance enhancement is observed with the Transformer model,
showcasing an MSD score of 2.41. However, the MSD score for

2https://github.com/ming024/FastSpeech2
3https://caizexin.github.io/parallel_invvc/index.html



Table 2. The mean opinion scores (MOS) with 95% confidence interval (CI) of three VC approaches, where Invertible VC is our proposed
system. p-value is obtained by T-test comparing MOS samples between our proposed method and the target VC approach.

Speakers Naturalness Similarity
source target Invertible VC Transformer-VC CycleGAN-VC3 Invertible VC Transformer-VC CycleGAN-VC3

bdl
clb 3.84±0.23 4.01±0.19 3.71±0.23 4.13±0.18 4.1±0.18 3.38±0.22
rms 4.21±0.18 4.17±0.17 3.98±0.2 4.12±0.19 4.1±0.18 3.47±0.21
slt 3.75±0.19 4.02±0.19 3.77±0.2 4.22±0.17 4.24±0.17 3.85±0.21

clb
bdl 3.35±0.22 3.2±0.24 3.53±0.23 3.83±0.22 4.12±0.18 3.48±0.22
rms 3.81±0.21 3.98±0.23 3.39±0.23 4.03±0.18 4.18±0.18 2.47±0.2
slt 3.31±0.24 3.93±0.22 4.1±0.2 3.83±0.2 4.23±0.19 4.22±0.19

rms
bdl 3.01±0.23 3.11±0.25 2.69±0.21 3.76±0.22 3.82±0.19 3.17±0.21
clb 3.44±0.23 3.47±0.24 2.82±0.26 3.93±0.21 3.95±0.19 1.91±0.2
slt 3.24±0.22 3.47±0.2 3.21±0.22 3.91±0.18 4.03±0.2 3.0±0.22

slt
bdl 3.21±0.23 3.39±0.23 3.36±0.23 3.97±0.19 4.02±0.2 3.72±0.22
clb 4.02±0.21 4.08±0.2 4.27±0.17 4.35±0.18 4.48±0.16 4.27±0.18
rms 4.01±0.2 4.17±0.18 3.58±0.21 4.05±0.19 4.15±0.17 2.75±0.2

All 3.59±0.07 3.78±0.06 3.52±0.07 4.01±0.06 4.12±0.05 3.31±0.07
p-values - 6.2 × 10−5 0.154 - 6.43 × 10−3 < 10−5

Table 3. Objective performance based on Mel-Spectrogram Distor-
tion (dB), Src denotes source utterances, Tgt denotes target utter-
ances, VC denotes the voice converted utterances and INV denotes
the inverted utterances obtained from the converted results

Src - Tgt VC - Tgt Src - INV
Invertible Transformer CycleGAN Invertible

3.34 2.52 2.41 10.81 0.00

the CycleGAN model is unsatisfactory, even surpassing the MSD
score for source-target pairs. Moreover, the credibility of our pro-
posed model’s invertibility is validated between the inverted results
and the source Mel-spectrograms, resulting in an MSD score of 0.
This reaffirms the efficacy of our proposed approach.

We contend that subjective evaluation of the inverted results
against their natural counterparts is unnecessary since the network
is entirely invertible. The inverted voices, as demonstrated by on-
line listening and objective evaluation, perfectly mirror the input
voices. Therefore, concerning subjective evaluation, we conduct an
assessment to determine whether the invertible model can achieve
comparable naturalness and similarity to non-invertible models.
To this end, we randomly select five utterances from the test set
and gather their corresponding conversion results for listening test.
Thus, each pairwise conversion model contributes five utterances,
resulting in a total of 60 utterances for each approach. The listen-
ing test, involving 15 participants, assesses naturalness and speaker
similarity by evaluating 180 converted utterances and 180 pairs of
converted and real voices. The participants rate the utterances on a
MOS scale from 1 to 5 with 0.5 increments.

Table 2 presents the MOS results of the listening test conducted.
Our proposed system scores around 3.59 on naturalness, which is
slightly lower than the non-invertible VC approach Transformer-VC.
Our proposed system’s performance is similar to that of CycleGAN-
V3, which scores around 3.52, as the p-value of 0.154 indicates low
statistical significance. On the other hand, our proposed system
achieves a speaker similarity score of 4.01, while Transformer-VC
scores 4.12 and CycleGAN-VC3 scores 3.31. A score above 4 indi-
cates impressive conversions of the target voices from our proposed
system. CycleGAN-VC3 obtains a lower score due to the conversion
systems between two speaker pairs, ‘clb’ and ‘rms’, ‘slt’ and ‘rms’.
This is also the underlying reason for CycleGAN-VC3’s relatively

poor MSD score in the objective evaluation. Although some of the
pairs achieved fair performance in terms of naturalness, such as ‘slt’
to ‘rms’, the converted voices obtained by the models trained with
these pairs are not satisfactory.

Overall, out of the three mentioned approaches, the Transformer-
VC exhibits superior performance, followed closely by our proposed
system. Despite this, our system is distinct in its ability to recover
the source voice, rendering our invertible parallel VC approach
proficient in restoring the converted voice to its original speaker.
This is a distinctive feature absent in the other two methods, and it
comes with only a marginal trade-off in performance compared to
the transformer-based parallel voice conversion model.

5. DISCUSSION AND CONCLUSION

Similar to countermeasures against spoofing attacks found in exist-
ing literature, our proposed approach also exhibits certain limita-
tions. While our system effectively traces the source speaker, its ap-
plicability is currently restricted to utterances synthesized by it, and
the invertibility is presently available at the spectrogram level. One
practical scenario for our system involves the storage of generated
Mel-spectrograms. In cases where suspected synthesized speech is
encountered, even if it exhibits some distortions, we can employ
spectrogram-based matching algorithms such as audio fingerprint-
ing to identify the corresponding stored Mel-spectrogram within the
database. Subsequently, our proposed model can be employed to in-
vert it, thus recovering the original speech from the source speaker.

It’s important to note that, up to this point, achieving invertibil-
ity has necessitated the use of parallel data, which can be associated
with significant costs. Our future endeavors will primarily revolve
around the goal of achieving invertibility at the waveform level, us-
ing non-parallel data, with the aim of enhancing the robustness and
cost-effectiveness of our approach.

In conclusion, we present a bijective architecture for voice con-
version that possesses the unique ability to trace source speakers,
potentially serving as a countermeasure against voice conversion
spoofing attacks. Through the utilization of affine coupling layers,
our model exhibits the capacity to revert the conversion output to its
original input feature. While our proposed system demonstrates pro-
ficient conversion performance with parallel data, it’s worth noting
that our subjective evaluation results indicate a slight performance
decrease when compared to a transformer-based conversion model.
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