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ABSTRACT

Personal voice activity detection (PVAD) is gradually used
in speech assistants. Traditional PVAD schemes extract the
target speaker’s embedding from existing query reference
speech through a pre-trained speaker verification model.
Consequently, the performance of the PVAD model may suf-
fer if the quality of the extracted speaker embedding is poor,
such as when only utilizing wake word speech as the refer-
ence. In this work, we introduce a novel and efficient PVAD
model. In contrast to conventional approaches that rely on
speaker embeddings extracted from a pre-trained speaker
verification model, our proposed method directly uses the
raw frame-level features of the reference speech as the target
speaker’s attributes. In this way, our proposed model achieves
an ultra-high recall rate, which is vital for speech assistant
applications. The experimental results show the effectiveness
of our proposed method in both cases of using existing query
speech or wake word speech as reference.

Index Terms— Personal voice activity detection, Speaker
verification, Wake word speech, Recall rate.

1. INTRODUCTION

Voice activity detection (VAD) [1, 2] is a task identifying
speech or non-speech at frame level. In actual noisy environ-
ments, we pay more attention to whether a target speaker is
speaking. Personal voice activity detection (PVAD) [3, 4, 5] is
a technique to determine the target speaker’s speech segments
in multi-speaker scenarios. Typical PVAD methods first ex-
tract the target speaker’s embedding from existing reference
speech using a pre-trained speaker verification (SV) model.
Subsequently, with the assistance of the speaker embedding,
the PVAD models identify the segments containing the target
speaker’s speech. PVAD can be a robust front-end in var-
ious speech-related tasks, such as automatic speech recogni-
tion [6], speaker verification [7] and speaker diarization [8, 9].
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However, several challenges arise when applying PVAD
to speech assistants. Firstly, the reference speech used for
target speaker registration, often derived from existing query
speech, needs periodic updates due to the temporal variability
inherent in SV [10, 11]. Mismatches between the recording
environment of the reference speech and the current environ-
ment can adversely affect the PVAD system’s performance.
Secondly, the performance of the pre-trained SV model does
not necessarily correlate positively with the PVAD system’s
performance, since they are optimized with different loss
functions. Selecting an appropriate SV model for the PVAD
task requires careful consideration. Last but not the least, the
PVAD model must balance between a small number of pa-
rameters and a low rate of error, especially the miss of target
speech. Low recall rate of target speaker’s speech frames may
fail downstream speech assistant applications.

Existing PVAD methods have not effectively tackled the
issues mentioned above. [4] introduces a model training ap-
proach to mitigate the challenge of insufficient reference
speech data. Nevertheless, employing online wake word
speech as the reference can serve as a registration free solu-
tion, as online instant wake word speech is readily accessible
through wake word detection [12, 13] whenever the speech
assistant becomes active. [5] use a feature-wise transform
(FiLM) [14] layer as an alternative to concatenation. How-
ever, using an utterance-level speaker embedding for fusion
with frame-level acoustic features may not be optimal.

This work explores PVAD models in both cases of using
existing query speech or wake word speech as reference. In-
spired by [8], we propose a PVAD model, denoted as PVAD-
FISV, where the front-end feature extractor is initialized with
a pre-trained SV model. This approach yields a favorable cor-
relation between the effectiveness of SV and PVAD models.
However, it is crucial to highlight that initializing the front-
end with the SV model significantly increases the number of
parameters in the PVAD model. To address this concern, we
introduce a efficient PVAD model called PVAD-FTSA, which
stands for PVAD model with Frame-level Target Speaker’s
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Fig. 1: (A) Typical PVAD model with concatenation as the speaker embedding fusion module. (B) PVAD model with FiLM
layer as the speaker embedding fusion module. (C) The Proposed PVAD-FISV model. (D) The Proposed PVAD-FTSA model,
’CA’ denotes the Cross-Attention module.

Attributes. Our proposed method applies a cross-attention
mechanism to multi-speaker and reference speech acoustic
features. Subsequently, we use the frame-level output as the
target speaker’s attributes and fuse it with the acoustic fea-
tures of multi-speaker input speech through a FiLM layer.
Notably, the PVAD-FTSA model operates without the need of
an SV model during the training and inference stages. More-
over, in contrast to fixed utterance-level speaker embedding,
this frame-level target speaker’s attributes contribute to in-
creasing the recall rate in PVAD models.

2. METHODS

In this section, we first briefly review two typical PVAD mod-
els presented in PVAD 1.0 [3] and PVAD 2.0 [5], respectively.
Following that, we introduce our two proposed PVAD mod-
els, namely PVAD-FISV and PVAD-FT.

2.1. Typical PVAD models

The diagram of the typical PVAD models is shown in Fig-
ure 1 (A). The PVAD model employs a pre-trained SV model
to extract the target speaker’s embedding from the reference
speech. The speaker embedding repeatedly concatenates with
the acoustic feature of the multi-speaker mixed input speech
and then input to the PVAD backbone. Finally, the output of
the PVAD model is input to the linear layer and derives the
decision of the target speaker’s speech at the frame level:

p = PV AD([Fmix, e]) (1)

where e ∈ R1×D and Fmix ∈ RT×N denote the speaker em-
bedding and acoustic feature, respectively. T denotes the se-
quence length. D and N are denote the feature dimension. p
denotes the posterior of the target speaker’s speech.

Fusing the speaker embedding by concatenation may not
be optimal. [5] proposes to use a FiLM layer as the fusion
module. The diagram of the optimized approach is shown in
Figure 1 (B). The whole process can be formulated as:

p = L(FiLM(Con(Fmix), e)) (2)

FiLM(Con(Fmix), e) = γ(e) · Con(Fmix) + β(e) (3)

where L(·) and Con(·) denote the linear and Conformer [15]
operation, respectively. γ(·) and β(·) are the scaling and shift-
ing vectors of FiLM respectively.

2.2. Proposed PVAD models

2.2.1. PVAD with A Front-end Initialized by SV Model.

Inspired by [8], we propose the PVAD-FISV method. The
diagram of the PVAD-FISV model is shown in Figure 1 (C).
The front-end feature extractor and the pre-trained SV model
share a similar structure, differing primarily in the pooling
layer configuration. The front-end extractor employs seg-
mental statistical pooling to generate a frame-level represen-
tation of the mixed speech. In contrast, SV typically produces
a segment-level feature using statistical pooling. The back-
end module consists of several transposed convolution layers,
each with the same stride and kernel size as the correspond-
ing convolutional layers in the front-end extractor. Notably,
during the training phase, the front-end is initialized with the
pre-trained SV model.

2.2.2. PVAD with Frame-level Target Speaker Attributes.

While the architecture of the PVAD-FISV model is efficient,
it significantly increases the number of model parameters. To
address this concern, we introduce the PVAD-FTSA model,
which is depicted in 1 (D). Instead of relying on a pre-trained



Table 1: Results on simulated test set from FFSVC22 using query speech as reference (%). 2 speaker: mixed wave from two
speaker’s speech. ’Noise’ denotes adding noise from Musan. REC: Recall. PRE: Precision. F1: F1 score. AUC: Accuracy.

Exp Model 2 Speaker 2 Speaker + Noise Parameters(M)
PVAD/SVREC PRE F1 AUC REC PRE F1 AUC

E1 Seq2Seq-TSVAD 86.2 62.5 72.4 64.2 84.0 62.6 71.7 63.8 86.6/21.9
E2 LSTM+Concat 31.3 65.4 42.4 53.5 29.4 65.0 40.5 52.8 2.4/21.9
E3 Conformer+Concat 31.5 81.0 45.4 58.6 28.3 79.4 41.8 56.9 2.9/21.9
E4 Conformer+FiLM 72.6 70.5 71.6 68.5 68.8 70.3 69.5 67.1 2.9/21.9
E5 PVAD-FISV 75.5 85.8 80.3 79.8 74.8 82.4 78.4 77.6 27.8/21.9
E6 PVAD-FTSA(FFN=512) 84.5 69.0 76.0 70.9 80.6 68.2 73.9 68.9 3.3/0.0
E7 PVAD-FTSA(FFN=1024) 87.5 69.4 77.4 72.1 82.5 69.0 75.2 70.2 4.6/0.0

SV model, the PVAD-FTSA model employs two weight-
sharing Conformer blocks for processing mixed and refer-
ence speech acoustic features, respectively. Subsequently,
we feed these two acoustic features into the Cross-Attention
(CA) module, utilizing a Transformer Encoder [16] as the CA
module in this study. We use the frame-level output of the CA
module as the target speaker’s attribute and fuse it with Emix

through a FiLM layer. Follow This, p can be formulated as:

p = L(Con(FiLM(Emix, CA(Emix,Eref )))) (4)

CA(Emix,Eref ) = Tra(q = Emix; k, v = Eref ) (5)

where CA(·) denotes the cross-attention module. Con(·) and
Tra(·) denote the Conformer and Transformer operation, re-
spectively. Emix and Eref are the Conformer encoder of
Fmix and F ref , respectively.

3. EXPERIMENTAL SETUP

3.1. Datasets

Training Sets: We use the VoxCeleb2 [17] dataset to cre-
ate a simulated multi-speaker training set. Considering that
there are generally two speakers in a short speech, each sim-
ulated audio contains 1-2 speakers. Each speaker component
of the simulated multi-speaker audio is randomly created on-
line. We use the Musan [18] and RIRs [19] datastes for data
augmentation. Moreover, we add the real data from the Al-
iMeeting [20] and Aishell-4 [21] datasets into the simulated
training data at a ratio of 0.2. Evaluation Sets: We evaluate
our proposed models separately on two datasets, one is sim-
ulated from the publicly open FFSVC22 [22] dataset1 while
the other one is a vendor collected in-house dataset targeting
real applications. We create 3000 2-spaker-mix utterances us-
ing the close-talking iPhone data from FFSVC22 train set of
the track 1. The speech component of two speakers are set
in a relative signal-noise ratio (SNR) between 0 to 5 dB and
the overlap ratio has not been controlled. We randomly select
query and wake word speech of the corresponding speaker as
two different types of reference speech. The vendor-collected

1The simulated datasets from FFSVC22 are available at: https://
github.com/ZBang/pvad

set contains 260 2-speaker mixed utterances from 13 speak-
ers, and 3 wake word utterances for each speaker. The overlap
ratio of simulated training and test sets has not been controlled
in this work. Considering the usage scenario of a smartphone
speech assistant, a speaker with higher SNR is selected as the
target speaker.

3.2. Implementation Details

We adopt the ResNet34-SE [23] architecture with statistical
pooling layer as the SV model for our PVAD systems. The
speaker embedding size is 256. The SV model has about 21.9
million parameters. All compared approaches use the same
pre-trained SV model. There are 1 and 2 Conformer layers
for the Conformer block of PVAD-FTSA and PVAD-FISV,
respectively. Each Conformer layer has an attention dimen-
sion of 256, an attention head of 4 and a feed-forward dimen-
sion of 1024. The configurations for the CA module in the
PVAD-FTSA model are the same as its Conformer block. We
use the same model input as a 80-dim log Mel-filterbank en-
ergies with a frame length of 25 ms and a frame-shift of 10
ms. We trained our models with binary cross entropy loss and
Adam optimizer. The initial learning rate is set to 1e-4.

4. RESULTS AND DISCUSSIONS

To evaluate the effectiveness of our proposed PVAD models,
we conduct a series of comparisons among six PVAD mod-
els using both simulated and vendor-collected test datasets.
Seq2Seq-TSVAD denotes one of the state-of-the-art speaker
diarization (SD) models presented in [8]. LSTM+Concat de-
notes the model shown in Figure 1 (A), which is proposed
in [3]. Conformer+FiLM denotes the model shown in the
Figure 1 (B), which is proposed in [5]. The configurations of
these two models are the same as that of [5]. PVAD-FISV
and PVAD-FTSA are two proposed models, shown in Fig-
ure 1 (C) and Figure 1 (D), respectively.

4.1. Results on Simulated Test Set

The results on the simulated test set from FFSVC22 using
query reference speech and wake word speech are shown in
Table 1 and Table 2, respectively. We use the Recall (REC),



Table 2: Results on simulated test set from FFSVC22 using wake word speech as reference (%). 2 speaker: mixed wave from
two speaker’s speech. ’Noise’ denotes adding noise from Musan. REC: Recall. PRE: Precision. F1: F1 score. AUC: Accuracy.

Exp Model 2 Speaker 2 Speaker + Noise Parameters(M)
PVAD/SVREC PRE F1 AUC REC PRE F1 AUC

E8 Seq2Seq-TSVAD 85.9 62.3 72.2 63.9 83.7 62.4 71.5 63.6 86.6/21.9
E9 LSTM+Concat 39.9 65.0 49.5 55.5 38.9 64.5 48.5 54.9 2.4/21.9
E10 Conformer+Concat 36.7 81.3 50.6 60.9 33.1 80.1 46.8 59.0 2.9/21.9
E11 Conformer+FiLM 67.7 71.5 69.5 67.6 63.7 71.4 67.3 66.2 2.9/21.9
E12 PVAD-FISV 71.2 86.8 78.2 78.4 70.1 84.0 76.6 76.5 27.8/21.9
E13 PVAD-FTSA(FFN=512) 81.5 68.0 74.1 69.0 75.5 67.2 71.1 66.5 3.3/0.0
E14 PVAD-FTSA(FFN=1024) 83.7 70.2 76.4 71.7 76.0 69.9 72.9 69.1 4.6/0.0

Precision (PRE), F1 score (F1) and Accuracy (AUC) as met-
rics. The Seq2Seq-TSVAD is a sota SD model with multi-
speaker outputs. Consequently, the PRE of the Seq2Seq-
TSVAD (E1, E8) tends to be low when the target output
is only one target speaker. The results indicate that the
PVAD-FISV model (E5, E12) excels in overall PVAD per-
formance. However, the number of parameters (27.8 M) and
REC (E5:75.5%, E12:71.2%) constrains the utilization of the
PVAD-FISV model for speech assistant applications. Despite
the PVAD-FTSA model (E7, E14) performing less effectively
in terms of PRE compared to the baseline models (E2-E4, E9-
E11), its overall performance (F1 and AUC) surpasses that of
the baseline models. This is attributed to the PVAD-FTSA
model achieving an ultra-high REC (E7:87.5%, E14:83.7%),
a crucial factor for speech assistant applications. Although
we adjust the dimension of the feed-forword network (FFN)
in PVAD-FTSA to 512 (E6, E13) to closely match the param-
eter count size of the baseline models (3.3 M vs. 2.9 M), the
overall performance of the PVAD-FTSA model, particularly
in terms of the REC, remains superior to that of the baseline
model. Furthermore, in contrast to the baseline model, the
PVAD-FTSA model eliminates the need for an additional SV
model during both the training and inference stages.

Comparing Table 1 and 2, the performance of all PVAD
systems with FiLM degrades a little bit when using wake
word speech as the reference, as opposed to using query
speech as the reference. Nevertheless, when it comes to the
REC, the decrease in performance of the PVAD-FTSA model
(E7:87.5% to E14:83.7%) is less pronounced compared to
the baseline models (E4:72.6% to E11:67.7%). Based on
the aforementioned results, the PVAD-FTSA model demon-
strates effectiveness in both scenarios, whether utilizing ex-
isting query speech or wake word speech as reference. It is
worth noting that we have observed a notable impact of noise
on the REC of the PVAD-FTSA model when using wake
word reference speech (E14: 83.7% to 76.0%). We intend to
delve deeper into this issue in our future research endeavors.

4.2. Results on Vendor-Collected Test Set

The results on the vendor-collected test set are shown in Ta-
ble 3. We use the Word Error Rate (WER) and Deletion Error
Rate (DEL) as metrics. We use WeNet [24] model as the

Table 3: Results on vendor-collected test set.
Exp Model DEL(%) WER(%)
E15 Mixture 0.7 81.2
E16 LSTM+Concat 24.1 57.63
E17 Conformer+Concat 21.5 57.51
E18 Conformer+FiLM 19.4 55.77
E19 PVAD-FISV 12.3 30.4
E20 PVAD-FTSA (FFN=512) 1.3 39.6
E21 PVAD-FTSA (FFN=1024) 1.0 35.6

speech recognition model in this experiments. The PVAD-
FISV model performs best in terms of WER (E19:30.4%)
but has a relatively high DEL (E19:12.3%). While the WER
of the PVAD-FTSA model is slightly higher than that of
PVAD-FISV (E21:35.6% vs. E19:30.4%), it is important
to note that the PVAD-FTSA model attains an ultra-low
DEL (E21:1.0%). Furthermore, the DEL of the PVAD-
FTSA model closely approaches that of the original mixture
(E21:1.0% vs. E15:0.7%), which is considered as the upper
bound. In summary, the conclusions drawn from the Table 3
align with Tables 1 and Table 2. It highlights our proposed
model’s efficacy when employing query and wake word
speech as the reference for speech assistant applications.

5. CONCLUSIONS

This work explores PVAD models utilizing wake word refer-
ence speech. Specifically, we introduce the PVAD-FTSA
model, a PVAD model that operates independently of a
pre-trained SV model. The PVAD-FTSA model directly
employs the reference speech’s frame-level feature as the
target speaker’s attributes. Experimental results highlight the
superior performance of our proposed approach over other
baseline. Furthermore, our model accomplishes an ultra-high
recall rate, a critical aspect for smartphone speech assistant.
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