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ABSTRACT

In this paper, we introduce a large-scale and high-quality audio-
visual speaker verification dataset, named VoxBlink. We propose an
innovative and robust automatic audio-visual data mining pipeline
to curate this dataset, which contains 1.45M utterances from 38K
speakers. Due to the inherent nature of automated data collection,
introducing noisy data is inevitable. Therefore, we also utilize a
multi-modal purification step to generate a cleaner version of the
VoxBlink, named VoxBlink-clean, comprising 18K identities and
1.02M utterances. In contrast to the VoxCeleb, the VoxBlink sources
from short videos of ordinary users, and the covered scenarios can
better align with real-life situations. To our best knowledge, the
VoxBlink dataset is one of the largest publicly available speaker
verification datasets. Leveraging the VoxCeleb and VoxBlink-clean
datasets together, we employ diverse speaker verification models
with multiple architectural backbones to conduct comprehensive
evaluations on the VoxCeleb test sets. Experimental results indicate
a substantial enhancement in performance—ranging from 12%
to 30% relatively—across various backbone architectures upon
incorporating the VoxBlink-clean into the training process. The
details of the dataset can be found on Site.

Index Terms— Speaker Verification, Dataset, Large-scale, Multi-
modal.

1. INTRODUCTION

Automatic Speaker Verification (ASV) in wild scenarios has
achieved remarkable success consisting of the evolution of back-
bone architecture [1, 2, 3], the introduction of diverse loss functions
[4, 5], and the availability of large-scale corpora [6, 7]. Even though
growing efforts have been devoted to refining networks and training
strategies [8, 9], the academic community still faces constraints by
the limited scale and diversity of available datasets.

In the computer vision field, millions of images establish a robust
foundation for face recognition. Regrettably, in the field of speaker
recognition, the availability of publicly accessible datasets with both
millions of utterances and tens of thousands of speakers in the wild
remains noticeably limited. As is shown in Fig 1, many contributions
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Fig. 1. Comparisons of # identities and # samples for our VoxBlink
data and public ASV training set (also a face dataset as a contrast).
The x and y-axis have non-uniform scales.

have been made to enrich ASV datasets [6, 7, 10, 11, 12, 13, 14, 15].
Some datasets [11, 12] mainly comprise multi-channel far-field
speeches, which includes limited number of speakers. While others
[10, 13, 14] fall short of their limited styles, languages and scales.
Among these endeavors, the VoxCeleb [6, 7] stands out as the most
successful as it contains over one million utterances from thousands
of speakers. Nonetheless, compared to face recognition, the quan-
tity remains relatively small. Recently, the VoxTube [15] dataset
releases over 4M utterances for 5,040 speakers, making it one of the
largest open-source speaker recognition datasets to date. However,
due to its reliance solely on audio information for clustering, the ac-
curacy of its derived labels may not be very convincing. Meanwhile,
hard samples can be easily discarded during the filtration.

Therefore, we introduce a new large-scale audio-visual dataset
for speaker verification, VoxBlink. All VoxBlink data is captured
automatically from users who upload short videos on the YouTube
platform, which contain over 1.4M utterances from over 38K
speakers. In order to further purify the data without filtering out
difficult samples, we use a multi-modal validation approach that re-
sults in a purified version of the VoxBlink (VoxBlink-clean), which
contains 18k individuals and 1.02M utterances. All raw data is pro-
cessed by multi-stage audio-visual models (including but not limited
to face and lip detection, face verification, active speaker detection
and overlap detection). Furthermore, by implementing audio-visual
models for data mining, our data automatic pipeline exhibits greater
resilience and promise in data size. Since data from the VoxBlink are
mainly collected from the “wild”, it also inherently exhibits diverse-
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age, diverse-lingual, diverse-style and diverse-device attributes. As
the VoxBlink is an audio-visual dataset, it can be used in various
other applications, such as speech separation[16, 17], multi-modal
verification[18, 19], and speaker diarization[20, 21], among others.

In addition, we also incorporate the VoxBlink-clean dataset in
training various models with different backbones. When introduc-
ing the VoxBlink-clean, all models exhibit a performance boost
ranging from 12% to 30% in terms of relative EER reduction
on the VoxCeleb1-O test set. Our primary contributions can be
summarized as follows: 1) We propose a more scalable and robust
pipeline for mining speaker verification data; 2) We collect a
large-scale audio-visual speaker verification dataset VoxBlink and
its purified version VoxBlink-clean; 3) We achieve significant per-
formance improvements under different backbones by integrating
the VoxBlink-clean dataset into training process.

2. DATA MINING

2.1. Data Description

The VoxBlink contains 1,455,190 utterances from 38,065 channels
on YouTube, while its purified version VoxBlink-clean comprises
1,028,095 utterances from 18,381 speakers. All speech/video
segments are extracted from short videos uploaded by ordinary
YouTube users, encompassing various contexts, including podcasts,
music lives, speeches, live streaming highlights, etc. Indoor rever-
beration, non-verbal voice, background music and other acoustic
conditions have increased the complexity and diversity of the
data. Most of the segments are recorded on mobile devices, with
recording environments spanning indoors, outdoors, and a variety
of complex scenarios. Other statistic information can be found
in Table 1 and Fig 3 shows a visualization of the statistics. The
majority of speakers within the VoxBlink dataset are female, and
its purified version is relatively gender-balanced. The dataset is
multi-lingual yet English-dominant, with participants ranging from
over 130 different regions worldwide.

Table 1. Statistics for the VoxBlink dataset. The last two rows
describe the time-varying characteristics across videos recorded by
the same speaker.

Dataset VoxBlink VoxBlink-clean

# of SPKs 38,065 18,381
# of male-SPKs 15,013 8,124
# of videos 372,084 241,170
# of hours 2,135 1,670
# of utterances 1,455,190 1,028,095
Avg # of videos per SPK 9.77 13.12
Avg # of utterances per SPK 38.23 55.93
Avg # of duration per utterance (s) 5.28 4.87
Avg # of video recording intervals (days) 39.72 34.55
Avg # of video recording span (days) 440.07 441.85

2.2. Collection Pipeline

As depicted in Fig 2, we employ an automatic multi-modal data-
mining pipeline to construct the VoxBlink database from YouTube.
The novelty of our approach lies in utilizing user avatars for

Fig. 2. The automatic pipeline for the VoxBlink dataset.

frame-by-frame face verification and lip motions for active speaker
detection. Additionally, with the help of other auxiliary tools, we
can extract speech/video segments specifically pertaining to the
target user. For clarity, we summarize the processes as follows:
Step I: Candidate Collection. We start by compiling a list
containing over 2,000 commonly used names as well as some
professions and themes for data diversity. Having observed that
users are more likely to appear in short videos, we opt to retain
users with a single-face avatar who have uploaded short videos.
Over 1M videos from 61,038 users with avatars are downloaded
after duplicate removal in the YouTube retrieval. Since the data
source of the VoxBlink consists of only short videos, there should
be no overlapping with the VoxCeleb and VoxMovies[22] datasets.
Step II: Face and lip tracking. Using the Retina Face[23] model,
we detect both face and lip movements, producing corresponding
video and lip tracks. By setting a threshold for the minimum Inter-
section Over Union (IOU) value between two consecutive detections,
we ensure that each track contains only one face or lip sequence.
Step III: Face verification. After face and lip tracking, we utilize
the ResNet-IRSE50 [4] model to extract face embeddings for each
speaker frame by frame along each track. Meanwhile, the face
embedding of the avatar has been extracted as template embedding
using flip augmentation, which promotes template robustness. Then,
cosine similarities are calculated along the track, and the track-level
average score is calculated to discard non-target tracks.
Step IV: Active Speaker Detection. To refine the track and
eliminate silent or out-of-sync segments, we utilize a Seq2Seq
audio-visual speaker diarisation model [20]. This model leverages
lip motions and audio cues to identify instances of active speech
within the track. This approach not only facilitates the removal of



Fig. 3. Top: the distribution of geographic locations (left) and
languages (right) of speakers. Bottom: The distribution of utterance
lengths in the dataset.

silent or voice-over sections but also effectively excludes out-of-sync
fragments.
Step V: Multi-Speaker Overlap Detection. In order to mitigate the
potential disruption caused by overlapping speech data and enhance
the quality of speech segments, we employ a conformer-based
Overlapping Speech Detection (OSD) toolkit [24]. Furthermore,
we discard utterances shorter than one second in duration.
Step VI: Meta Information Collection. Due to platform con-
straints, only the geographical locations of approximately 21,000
speakers are recorded. Given the challenges in obtaining gender
labels, we binary-classify the speakers’ genders using audio-visual
data. We also infer the utterance-level language labels using the
Whisper’s[25] base model and obtain speaker-level labels through
a voting mechanism. Other meta-informations about the video,
including each video’s release time, category, and tags, are collected
for other potential applications. All collection meta will be released
together with data.

Finally, The audio-visual data obtained through the pipeline
constitutes the VoxBlink, whose name is inspired by the character-
istics of short videos. The threshold within the collection pipeline
is intentionally relaxed to facilitate the accumulation of a larger
volume of data.

2.3. Multi-modal Purify

Due to automated data collection and relatively relaxed threshold set-
tings, the introduction of noisy data is inevitably unavoidable. Upon
manual inspection, we have found that some recordings are merely
lip-syncing, indicating the need to purify our data further. Therefore,
we purify the VoxBlink dataset utilizing the following metrics:

• The average score of within-speaker speech embedding
cosine similarities derived by ResNet34 [2].

• The average score of within-speaker face embedding cosine
similarities derived by [4].

• The average music-speech discrimination score of a speaker
by [26].

We retain only those speakers with five or more utterances in order
to uphold diversity within each speaker’s data. Audio samples sur-
passing the aforementioned scores will be considered into the clean
subset, VoxBlink-clean. Through randomly sampling observations,
there are very few instances of noisy labels in this subset.

3. SPEAKER VERIFICATION MODEL TRAINING

In this section, we describe the experimental settings and implemen-
tation details of several speaker verification systems. We suggest
a Mix-FineTune(Mix-FT) [27] training strategy to incorporate the
VoxBlink into the training set.

3.1. Model Settings

ResNet-based model. ResNet-based speaker verification model
achieved success in past years. Therefore, we conducted ex-
periments using the state-of-the-art(SOTA) ResNet models for
comparative analysis. Initially, we employed a standard ResNet34
[2] followed by a temporal statistic pooling layer as our baseline
system. Then, to further tap into the latent potential of the data,
we employed a larger ResNet model mounted with attention mech-
anisms – specifically, ResNet100 with Simple Attention Module
(SimAM)[28] and frequency-wise Squeeze-Excitation (fwSE) [29]
modules. The attentive statistics pooling (ASP) is employed to
capture the importance of different frames.

TDNN-based model. ECAPA-TDNN [1] is currently the most
popular and SOTA TDNN-series model for speaker verification. We
conducted experiments using ECAPA-TDNN with 1024 channels
to observe the performance of TDNN on a larger dataset.

3.2. Implement details

Data Usage. We conducted experiments using the VoxCeleb2
development set and the VoxBlink-clean set. The acoustic features
are 80-dimensional log Mel-filterbank energies with a frame length
of 25ms and a hop size of 10ms. The input frame length is fixed
at 200 frames.

Data Augmentation. We adopt on-the-fly data augmentation[30]
to add additive background noise or convolutional reverberation
noise for the time-domain waveform. Also, we apply speaker aug-
mentation with speed perturbation [31]. We speed up or down each
utterance by a factor of 0.9 or 1.1, yielding shifted pitch utterances
that are considered from new speakers. Finally, the training data
contains 6,360,345 utterances (3,084,318 from the VoxBlink-clean
and 3,276,027 from the VoxCeleb2) from 73,125 speakers (55,143
from the VoxBlink-clean and 17,982 from the VoxCeleb2).

Training Strategy. Inspired by [27], we observe that initiating
training both datasets (VoxCeleb2 and VoxBlink-clean) from the
start yields similar performance outcomes as beginning solely
with the VoxCeleb2 and later incorporating the VoxBlink-clean for
fine-tuning. Therefore, we carry most of our experiments based
on three stages:

Stage.1 Warm-up. We perform a linear warm-up learning rate
schedule at the first five epochs to the initial learning rate at 0.1,
which aims to prevent model vibration and speed model training.



Table 2. The experimental results of different backbones with/without the VoxBlink-clean dataset. All the benchmarks are based on the
cosine scores between trials. No post-processing operations have been employed, such as LMFT, score norm, and QMF. ∆ represents the
relative EER reduction on the VoxCeleb1-O trials when using the VoxBlink-clean for Mix-FT compared to not using the VoxBlink-clean.

ID Model Size VoxCeleb2 VoxBlink
∆

VoxCeleb1-O VoxCeleb1-E VoxCeleb1-H

-clean EER[%] mDCF0.01 EER[%] mDCF0.01 EER[%] mDCF0.01

M1 ResNet34-TSP 23.9M
× ✓ - 2.499 0.241 - - - -
✓ × - 0.856 0.084 0.995 0.112 1.832 0.179
✓ ✓ 13.1% 0.744 0.057 0.988 0.109 1.787 0.176

M2 ECAPA-TDNN 14.7M ✓ × - 0.856 0.081 1.078 0.118 2.059 0.197
✓ ✓ 12.5% 0.749 0.077 0.953 0.105 1.823 0.177

M3 SimAM-ResNet100-ASP 50.2M ✓ × - 0.622 0.058 0.761 0.083 1.391 0.132
✓ ✓ 29.1% 0.441 0.044 0.681 0.075 1.268 0.125

M4 fwSE-ResNet100-ASP 50.6M ✓ × - 0.580 0.057 0.775 0.083 1.438 0.141
✓ ✓ 22.1% 0.452 0.038 0.709 0.079 1.277 0.128

Stage.2 Plateau. The SGD optimizer updates the model param-
eters, and the StepLR scheduler with 0.1 initial LR drops to 1e-4
in 30 epochs. The step size is set to 10.

Stage.3 Mix-FT. As the first two stages only use the VoxCeleb2
dev set, we introduce the VoxBlink-clean in the last phase for the
Mix-FineTuning(Mix-FT). The training process resumes at 1e-3
LR and gradually drops till convergence.

Finally, we adopt the Equal Error Rate (EER) and Minimum
Detection Cost Function (minDCF) to measure system performance.
Cosine similarity scores are calculated in the evaluation phase. As
for the back end, we utilize the AAM-Softmax [4] (m=0.2, s=32)
to classify different speakers.

4. EXPERIMENTIAL RESULTS

4.1. Base Results

As shown in table 2, the domain of the VoxBlink dataset does not
closely align with that of the VoxCeleb2 dataset, as the results on the
VoxCeleb1-O trials exhibit better performance when trained only
on the VoxCeleb2. However, the VoxBlink-clean can be regarded
as a supplementary training set of the VoxCeleb2. As we can see,
across models M1 to M4, we achieve performance enhancements
of relative 13.1%, 12.5%, 29.1%, and 22.1% when introducing
the VoxBlink-clean, respectively. Performance improvements
are observed across all other test protocols (VoxCeleb1-E and
VoxCeleb1-H) as well, relatively ranging from 2% to 12%. More-
over, as we enlarge the model size, the positive impact of adding
the VoxBlink-clean for training becomes increasingly noticeable.

4.2. LMFT and Score calibration

The ASV systems could benefit from several post-processing
methods, including Large-Margin Fine-Tune (LMFT) [8], Adaptive
Symmetric Score Normalization (AS-Norm) [32] and Quality
Measure Functions (QMF) [8]. Therefore, we follow the same
post-processing settings as [33] to enhance performance. As shown
in Table 3, by incorporating the VoxBlink-clean set for Mit-FT
training, followed by a series of post-processing steps, we achieved
a reduction in EER from 0.441% to 0.282% on the Vox-O test

set. Compared to using only the VoxCeleb2 as the training set
with post-processing, we achieve a 20.8% relative EER reduction
(0.356% to 0.282%).

Nevertheless, without incorporating the VoxBlink-clean for
training, the LMFT achieves a 13.7% improvement, while the
Mix-FT using the VoxBlink-clean shows only a 6.1% boost. We
also observed that the EER reduction of the LMFT under the
Mix-FT is not that significant in other models. We speculate that
this might be because the average speech duration of the VoxBlink
is shorter than that of the VoxCeleb2, meaning that less information
is carried on for each utterance.

Table 3. The post-processing results based on the SimAM-
ResNet100 single system with/without the VoxBlink-clean data in
training.

ID Method ∆
VoxCeleb1-O

EER[%] mDCF0.01

Only VoxCeleb2 for training

M3 SimAM-ResNet100 - 0.622 0.058
+LMFT 13.7% 0.537 0.045
++ AS-Norm 8.9% 0.489 0.047
+++ QMF 27.2% 0.356 0.040

VoxCeleb2 for training and VoxBlink-clean for Mix-FT

M3 SimAM-ResNet100 - 0.441 0.044
+LMFT 6.1% 0.414 0.035
++ AS-Norm 14.0% 0.356 0.037
+++ QMF 21.8% 0.282 0.029

5. CONCLUSION

This paper introduces a large-scale audio-visual dataset named
VoxBlink for the speaker verification task. We develop an auto-
matic multi-modal data-mining pipeline to extract target users’
audio-visual segments on YouTube and further conduct multi-modal
detectors to build the VoxBlink-clean subset. We also achieve
significant improvements by incorporating the VoxBlink-clean into
model training across different backbones, which proves that the
VoxBlink-clean is an excellent supplementary dataset for training
speaker verification models.



6. REFERENCES

[1] B. Desplanques, J. Thienpondt, and K. Demuynck, “ECAPA-TDNN:
Emphasized Channel Attention, Propagation and Aggregation in
TDNN Based Speaker Verification,” in Proc. Interspeech, 2020, pp.
3830–3834.

[2] W. Cai, J. Chen, and M. Li, “Exploring the Encoding Layer and Loss
Function in End-to-End Speaker and Language Recognition System,”
in Proc.Odyssey, 2018, pp. 74–81.

[3] Y. Zhang, Z. Lv, H. Wu, S. Zhang, P. Hu, Z. Wu, H. yi Lee, and
H. Meng, “MFA-Conformer: Multi-scale Feature Aggregation
Conformer for Automatic Speaker Verification,” in Proc. Interspeech,
2022, pp. 306–310.

[4] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular
margin loss for deep face recognition,” in Proc. CVPR, 2019, pp.
4685–4694.

[5] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface:
Deep hypersphere embedding for face recognition,” in Proc. CVPR,
July 2017.

[6] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-scale
speaker identification dataset,” in INTERSPEECH, 2017.

[7] J. S. Chung, A. Nagrani, and A. Zisserman, “VoxCeleb2: Deep
Speaker Recognition,” in Proc. Interspeech, 2018, pp. 1086–1090.

[8] J. Thienpondt, B. Desplanques, and K. Demuynck, “The idlab
voxsrc-20 submission: Large margin fine-tuning and quality-aware
score calibration in dnn based speaker verification,” in Proc. ICASSP,
2021, pp. 5814–5818.

[9] D. Cai, W. Wang, M. Li, R. Xia, and C. Huang, “Pretraining
conformer with asr for speaker verification,” in Proc. ICASSP, 2023,
pp. 1–5.

[10] Y. Fan, J. Kang, L. Li, K. Li, H. Chen, S. Cheng, P. Zhang, Z. Zhou,
Y. Cai, and D. Wang, “Cn-celeb: A challenging chinese speaker
recognition dataset,” in Proc. ICASSP, 2020, pp. 7604–7608.

[11] X. Qin, M. Li, H. Bu, S. Narayanan, and H. Li, “The 2022 far-field
speaker verification challenge: Exploring domain mismatch and
semi-supervised learning under the far-field scenarios,” arXiv preprint
arXiv:2209.05273, 2022.

[12] X. Qin, H. Bu, and M. Li, “Hi-mia: A far-field text-dependent
speaker verification database and the baselines,” in Proc. ICASSP,
2020, pp. 7609–7613.

[13] M. McLaren, L. Ferrer, D. Castan, and A. Lawson, “The Speakers
in the Wild (SITW) Speaker Recognition Database,” in Proc.
Interspeech, 2016, pp. 818–822.

[14] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
An asr corpus based on public domain audio books,” in Proc.
ICASSP, 2015, pp. 5206–5210.

[15] I. Yakovlev, A. Okhotnikov, N. Torgashov, R. Makarov, Y. Voevodin,
and K. Simonchik, “VoxTube: a multilingual speaker recognition
dataset,” in Proc. Interspeech, 2023, pp. 2238–2242.

[16] A. L. A. Blanco, C. Valentini-Botinhao, O. Klejch, M. Gogate,
K. Dashtipour, A. Hussain, and P. Bell, “Avse challenge: Audio-visual
speech enhancement challenge,” in Proc. SLT, 2023, pp. 465–471.

[17] J. Lin, X. Cai, H. Dinkel, J. Chen, Z. Yan, Y. Wang, J. Zhang, Z. Wu,
Y. Wang, and H. Meng, “Av-sepformer: Cross-attention sepformer
for audio-visual target speaker extraction,” in Proc. ICASSP, 2023,
pp. 1–5.

[18] M. Liu, K. A. Lee, L. Wang, H. Zhang, C. Zeng, and J. Dang,
“Cross-modal audio-visual co-learning for text-independent speaker
verification,” in Proc. ICASSP, 2023, pp. 1–5.

[19] S. O. Sadjadi, C. S. Greenberg, E. Singer, D. A. Reynolds, L. P.
Mason, J. Hernandez-Cordero et al., “The 2019 nist audio-visual
speaker recognition evaluation.” in Proc. Odyssey, 2020, pp. 259–265.

[20] M. Cheng, H. Wang, Z. Wang, Q. Fu, and M. Li, “The whu-alibaba
audio-visual speaker diarization system for the misp 2022 challenge,”
in Proc. ICASSP, 2023, pp. 1–2.

[21] Z. Wang, S. Wu, H. Chen, M.-K. He, J. Du, C.-H. Lee, J. Chen,
S. Watanabe, S. Siniscalchi, O. Scharenborg et al., “The multimodal
information based speech processing (misp) 2022 challenge:
Audio-visual diarization and recognition,” in Proc. ICASSP. IEEE,
2023, pp. 1–5.

[22] A. Brown, J. Huh, A. Nagrani, J. S. Chung, and A. Zisserman, “Play-
ing a part: Speaker verification at the movies,” in Proc. ICASSP, 2020.

[23] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, “Retinaface:
Single-shot multi-level face localisation in the wild,” in Proc.CVPR,
2020, pp. 5202–5211.

[24] M. Cheng, W. Wang, X. Qin, Y. Lin, N. Jiang, G. Zhao, and
M. Li, “The dku-msxf diarization system for the voxceleb speaker
recognition challenge 2023,” arXiv preprint arXiv:2308.07595, 2023.

[25] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak
supervision,” in Proc. ICML, 2023, pp. 28 492–28 518.

[26] J. Lee, J. Park, K. L. Kim, and J. Nam, “Sample-level deep
convolutional neural networks for music auto-tagging using raw
waveforms,” arXiv preprint arXiv:1703.01789, 2017.

[27] X. Qin, D. Cai, and M. Li, “Robust multi-channel far-field
speaker verification under different in-domain data availability
scenarios,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 31, pp. 71–85, 2023.

[28] X. Qin, N. Li, C. Weng, D. Su, and M. Li, “Simple attention module
based speaker verification with iterative noisy label detection,” in
Proc. ICASSP, 2022, pp. 6722–6726.

[29] J. Thienpondt, B. Desplanques, and K. Demuynck, “Integrating
Frequency Translational Invariance in TDNNs and Frequency Po-
sitional Information in 2D ResNets to Enhance Speaker Verification,”
in Proc. Interspeech, 2021, pp. 2302–2306.

[30] W. Cai, J. Chen, J. Zhang, and M. Li, “On-the-fly data loader and
utterance-level aggregation for speaker and language recognition,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 28, pp. 1038–1051, 2020.

[31] W. Wang, D. Cai, X. Qin, and M. Li, “The dku-dukeece systems
for voxceleb speaker recognition challenge 2020,” arXiv preprint
arXiv:2010.12731, 2020.

[32] P. Matějka, O. Novotný, O. Plchot, L. Burget, M. Sánchez, and
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