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ABSTRACT

In contrast to human speech, machine-generated sounds of the
same type often exhibit consistent frequency characteristics
and discernible temporal periodicity. However, leveraging
these dual attributes in anomaly detection remains relatively
under-explored. In this paper, we propose an automated dual-
path framework that learns prominent frequency and temporal
patterns for diverse machine types. One pathway uses a novel
Frequency-and-Time Excited Network (FTE-Net) to learn the
salient features across frequency and time axes of the spectro-
gram. It incorporates a Frequency-and-Time Chunkwise En-
coder (FTC-Encoder) and an excitation network. The other
pathway uses a 1D convolutional network for utterance-level
spectrum. Experimental results on the DCASE 2023 task 2
dataset show the state-of-the-art performance of our proposed
method. Moreover, visualizations of the intermediate feature
maps in the excitation network are provided to illustrate the
effectiveness of our method.

Index Terms— Anomalous sound detection, squeeze and
excitation, frequency pattern analysis, temporal periodicity
analysis

1. INTRODUCTION
Anomalous sound detection (ASD) is a task to distinguish
anomalous sounds from normal ones. It is useful to monitor a
machine’s condition and detect malfunctions of an operating
machine before it is damaged. ASD is a challenging task and
is often regarded as an unsupervised learning problem [1],
given the rare occurrence and high diversity of anomalous
events. Furthermore, in real-world scenarios, machines may
operate under different settings and environmental conditions,
leading to potential domain shifts [2–5], thereby increasing
the difficulty of the ASD task.

To address the lack of anomalous data, conventional
ASD systems adopt a generative method [6, 7] to model
the distribution of normal data. Recently, self-supervised
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methods [8–11] are getting more attention, which is widely
adopted by top-ranked teams [12–18] in recent DCASE1

challenges. These systems train a feature extractor on normal
data to obtain expressive embeddings, and use distance met-
rics to assess the abnormality by comparing test embeddings
with normal ones. Despite the success of these systems, the
frequency patterns and temporal periodicity remain relatively
under-explored when modeling machine sounds.

Some recent studies have investigated the efficacy of fre-
quency patterns in machine-generated sounds. In DCASE 2022
Challenge, the first-ranking team [12] builds customized
high-pass filters for individual machine types, enhancing
ASD performance by applying them before the Mel filters.
Additionally, experiments conducted by [19] demonstrate
notable high-frequency characteristics produced by certain
machine types. Nevertheless, these approaches rely on manu-
ally constructed filters to leverage frequency patterns, limiting
their adaptability to new machine types.

To automatically explore the frequency patterns, one pos-
sible solution is to learn the patterns with deep learning. Re-
cently, researchers in [20] have explored automated analysis
of frequency patterns on top of their prior work [10]. They
introduce a multi-head self-attention [21] to adaptively filter
the log-Mel spectrogram. Their experimental results demon-
strate the feasibility of integrating frequency pattern analysis
into the training process of ASD.

In this paper, we propose a novel framework that lever-
ages both the frequency and temporal characteristics. We use
the framework from [22] as the backbone, dealing with both
frame-level spectrogram and utterance-level spectrum. Dif-
ferent from [22], we employ a Frequency-and-Time Excited
Network (FTE-Net) in the spectrogram pathway to enrich the
learnt representation by capturing salient patterns in both the
frequency and time domains. To the best of our knowledge,
our work is the first to integrate both frequency and tempo-
ral pattern analysis of a spectrogram within a deep-learning
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Fig. 1: The overview of our proposed framework

framework for machine ASD.

2. METHODS
Our proposed framework uses [22] as the backbone, in-
tegrating a 1D convolutional network for utterance-level
spectrum and an FTE-Net for frame-level spectrogram. The
FTE-Net incorporates a Frequency-and-Time Chunkwise
Encoder (FTC-Encoder) and an excitation network. The
overall structure of our method is depicted in Fig. 1. In
section 2.1, we introduce the backbone framework [22] and
briefly explain the difference between theirs [22] and ours. In
section 2.2, we introduce the proposed FTE-Net module and
explain in detail the FTC-Encoder and the excitation network
in the module.

2.1. Backbone framework
The backbone framework is a dual-path ASD framework [22],
designed to process both the frame-level spectrogram and
utterance-level spectrum of machine-generated sounds in
separate paths. The spectrum is processed by three 1D con-
volutional layers and five dense layers, and the spectrogram
is processed by four ResNet [23] layers. Comparing to us-
ing only the spectrogram, empirical results from top-ranked
teams [15, 18] show that by adopting such dual-path struc-
ture that handles the spectrogram and spectrum separately
can produce better results. In this work, we replace the net-
work used in the spectrogram pathway of [22] with a novel
FTE-Net, aiming to learn frequency and temporal patterns.

2.2. Frequency-and-Time Excited Network (FTE-Net)
The FTE-Net is a two-branch network. One branch employs
an FTC-Encoder, and the other branch uses an excitation net-
work. The FTC-Encoder allows the network to learn the po-
tential patterns within small intervals of frequency or time,
while the excitation network is used to filter out unrelated in-
formation and enhance the useful patterns in a global context.

2.2.1. Frequency-and-Time Chunkwise Encoder (FTC-Encoder)

Table 1: Structure of the Conv2D module in the FTC-
Encoder. n indicates the number of layers or blocks, c is the
number of output channels, k is the kernel size and s is the
stride. h and w are the output height and width of the ResNet
Blocks.

Operator n c k s

Conv2D 7x7 1 32 (7,7) (2,2)
MaxPooling - - (3,3) (2,2)
ResNet block 4 (64, 128, 128, 128) (3,3) (2,2)
MaxPooling - - (h, w) (h, w)

The FTC-Encoder is designed to process spectrogram
data in a chunkwise manner, with separate pathways dedi-
cated to handle frequency chunks and time chunks respec-
tively. The goal of this module is to capture potential patterns
within short frequency bands and time intervals.

In the frequency pathway, the input spectrogram X ∈
RF×T is equally segmented into N overlapping frequency
bands, denoted as fi ∈ R F

N ×T . These frequency bands
f1, f2, · · · , fN are subsequently merged to create a band-
wise 3D feature matrix Mf ∈ RN× F

N ×T . Finally, Mf is
passed through a 2D convolution network (as shown in Ta-
ble 1) to get the embedding zf ∈ Rd, with the number of
chunks serving as the number of input channels. The first
Conv2D and MaxPooling layer uses large kernel size, aiming
to reduce the dimension of the input. The last MaxPooling
layer is used to flatten the feature maps.

Similar strategies are applied to the dual pathway along
the time axis, using the same structure after splitting the spec-
trogram into small time segments.

2.2.2. Excitation network
The detailed structure of the excitation network is shown in
Table 2. Modified squeeze-and-excitation (SE) [24] mod-



Table 2: Structure of the excitation network with the same
notations shown in Table. 1.

Operator n c k s

Modified SE - - - -
Conv2d 1 16 (7,7) (2,2)

MaxPooling - - (3,3) (2,2)
Modified SE - - - -

ResNet Block
1

16 (3,3) (1,1)
Modified SE - - -
ResNet Block 16 (3,3) (1,1)

ResNet Block
4

(32, 64, 128, 256) (3,3) (2,2)
Modified SE - - -
ResNet Block (32, 64, 128, 256) (3,3) (1,1)

MaxPooling - - (h, w) (h, w)

ules are integrated between ResNet blocks to form the ex-
cited block. While the conventional SE generates a mask (wc)
to adjust channel-wise feature maps, we introduce two addi-
tional masks, namely the frequency excitation mask (wf ) and
the time excitation mask (wt). As shown in Fig. 1, given an
input x ∈ RC×H×W , where H and W are the dimensions
along the frequency and time axis, the excitation map is for-
mulated as follows:

wi =
1

1 + exp

− (ai ·WT + b)

 , ai = Si(x)

where Si is a 2D average pooling operation, cancelling out
the dimension other than i. W and b are learning parameters.
The output is aggregated using the excitation maps as follows:

y = x+


i∈{c,f,t}

wi(x) · x,

where wc, wf , and wt represent the excitation masks for chan-
nel, frequency, and time respectively.

As a result, the output embeddings (zf , zt) of the FTC-
Encoder, the embedding (zs) of the excitation network are
concatenated before passing to a linear layer to get the spec-
trogram embedding (zgram). Meanwhile, the spectrum em-
bedding (ztrum) is generated by the 1D convolutional network.
To train the embeddings, zgram and ztrum are stacked together,
used as an input to a linear classifier to classify different ma-
chines.

3. EXPERIMENTS
3.1. Dataset
The experiments are conducted on the DCASE 2023 Task 2
dataset [3], which comprises audio clips from seven distinct
machine types. Each machine type has roughly 1,000 audio
clips, including 990 clips of source data and 10 clips of target
data. Each audio clip lasts 6 to 18 seconds with a sampling
rate of 16 kHz. The dataset includes a development dataset,
an additional dataset, and an evaluation dataset. To compare
with other systems in the challenge, the model is trained using
the training portion of the development dataset and the addi-
tional dataset, while performance evaluation is conducted on

Table 3: Results (%) on DCASE 2023 task 2 evaluation
dataset. source AUC, target AUC, mean AUC and pAUC is
the harmonic mean over all machine types. Integrated score
is calculated using the official script2.

System
source
AUC

target
AUC

mean
AUC pAUC

Integrated
Score

Official baseline [28] - - 63.41 56.82 61.05
Jie et al. [15] - - 69.75 62.03 66.97
Lv et al. [16] - - 70.04 60.01 66.39

Jiang et al. [17] - - 68.03 60.71 65.40
Wilkinghoff [18] - - 67.95 59.58 64.91

Self-implement Baseline 76.31 66.72 72.34 62.91 68.20
Proposed Method using FTE-Net 72.94 75.08 73.97 66.38 71.27

the evaluation dataset. It is important to note that only normal
machine sounds are used for training.

3.2. Implementation details
For data processing, we use linear magnitude spectrograms
and spectrum as the inputs. The spectrogram is obtained by
Short-time Fourier Transform, with the sampling window size
and hop length set to 1024 and 512 respectively. The entire
signal is used to obtain the utterance-level spectrum. In our
experiments, we repeat and clip the audio to force its length
to be 18 seconds.

In terms of the training strategy, we use the sub-cluster
AdaCos [25] as the loss function to train the model. Wave-
level mixup [26] strategy is adopted as the data augmentation.
We set the number of classes to match the joint categories of
machine types and attributes. The model is optimized with
the ADAM optimizer [27] with a learning rate of 0.001. We
set the batch size to 64 and train the model for 100 epochs.

The ASD results are generated by measuring the cosine
distance between the prototypes of normal embeddings with
the test embeddings for each machine type. Each machine
type has 26 prototypes, including 16 center embeddings gen-
erated by K-Means on the source domain, and all the 10 em-
beddings from the target domain.

The results are evaluated using the official scripts2. Three
commonly used metrics are adopted for evaluating the ASD
performance in this paper: AUC, pAUC and the integrated
scores. AUC is divided into source AUC and target AUC for
the data in separate domains. pAUC is calculated as the AUC
over a low false-positive-rate (FPR) range [0, 0.1]. The inte-
grated score is the harmonic mean of AUC and pAUC across
all machine types, which is the official score used for ranking.

3.3. Performance comparison and ablation studies
We compare the performance of our proposed framework
with the top 4 teams [15–18] in the DCASE 2023 challenge.
As presented in Table 3, our method surpasses all teams
across all evaluation metrics. Notably, our approach exhibits
a superior performance with a 4.3% absolute improvement
over the first-ranking team [15] and a substantial 10.22%
absolute improvement over the official system [28] in terms

2Official scripts available at https://github.com/nttcslab/
dcase2023_task2_evaluator
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of the integrated score. The self-implement baseline shown
in the table is re-implementation of [18] with more ResNet
blocks added to the spectrogram branch. The results indi-
cate that the proposed FTE-Net leads to improvements in the
overall ASD performance.

Moreover, we find that the proposed framework exhibits a
noteworthy capacity for domain generalization. As observed
in Table 3, despite a moderate reduction in the source AUC
compared to the baseline system, our framework demon-
strates a substantial improvement in terms of the target AUC.
We argue that the inferior performance of the source AUC is
likely attributed to overfitting of the baseline system to the
source data, given that the source and target domains feature
a highly imbalanced ratio. An indicator of the overfitting phe-
nomenon in the baseline system is the significant disparity
between the source and target AUC values presented in the
table. In contrast, the proposed FTE-Net exhibits a relatively
minor difference, showing its generalization ability.

Table 4: Results (%) for different modules in FTE-Net.

System
mean
AUC pAUC

Integrated
Score

FTE-Net 73.97 66.38 71.27
w/o FTC-Encoder 70.46 65.08 68.58

w/o Excitation Network 71.78 64.18 69.06
w/o Both (Self-implement Baseline) 72.34 62.91 68.20

Table 5: Results (%) using different excitation mechanism.

System
mean
AUC pAUC

Integrated
Score

FTE-Net 73.97 66.38 71.27
w/o Both (Vanilla SE) 69.94 62.31 67.20

w/o freq. excitation 69.43 64.48 67.79
w/o time excitation 70.45 63.84 68.10

To show the effectiveness of the individual modules in
FTE-Net, we conduct some ablation studies. In Table 4, we
show that the best performance is achieved by using all the
modules. In Table 5, we conduct an excitation mechanism ab-
lation study. Our findings demonstrate that employing more
excitation maps results in improved performance. Notably,
frequency excitation maps outperform time excitation maps
in terms of ASD performance.

3.4. Visualization analysis

To illustrate the impact of excitation mechanism in the excita-
tion network, we present spectrogram comparisons before and
after applying the excitation maps. In this example featuring a
fan shown in Fig. 2, we observe that the original spectrogram
undergoes enhancement both in terms of frequency and time,
highlighting the effectiveness of our method. Particularly, in
the frequency excitation map shown in Fig. 3 (a), our network
predominantly focuses on the high-frequency band, in accor-
dance with the results given by recent discoveries [12,19,20].
This indicates that our method effectively generates excitation
maps conducive to machine sound modeling.

(a) Origin spectrogram

(b) Feature map after the first excitation

Fig. 2: Illustration of the excited mechanism on fan

(a) frequency-wise (b) time-wise

Fig. 3: Illustration of excitation masks on fan

From Fig. 3 (a) and (b), frequency and temporal patterns
can be highlighted. For example, despite the enhancement of
the high frequency, some prominent frequency patterns in the
middle range of the spectrogram are highlighted while some
of them are filtered out. Additionally, despite the simple tem-
poral periodicity, much more complicated temporal patterns
within tiny time segments are shown. These patterns hold
potential as features for analyzing sounds emitted by specific
machine types in future research.

4. CONCLUSION
In our paper, we introduce a novel dual-path framework for
anomaly detection in machine-generated sounds, which has
the ability to leverage distinctive frequency and temporal
patterns found in machine sounds. One pathway employs
the Frequency-and-Time Excited Network (FTE-Net) to cap-
ture features across both frequency and time axes of the
spectrogram. The other pathway utilizes a 1D convolutional
network for utterance-level spectrum. The experiments on
the DCASE 2023 task 2 dataset shows that our framework
achieves state-of-the-art performance, demonstrating the ef-
fectiveness of leveraging dual attributes for machine ASD.
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