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ABSTRACT

In this paper, we introduce a novel approach that unifies Automatic
Speech Recognition (ASR) and speaker diarization in a cohesive
framework. Utilizing the synergies between the two tasks, our
method effectively extracts speaker-specific information from the
lower layers of a pretrained Conformer-based ASR model while
leveraging the higher layers for enhanced diarization performance.
In particular, the integration of ASR contextual details into the di-
arization process has been demonstrated to be effective. Results
on the DIHARD III dataset indicate that our approach achieves
a Diarization Error Rate (DER) of 10.52%, which can be further
reduced to 10.39% when integrating ASR features into the diariza-
tion model. These findings highlight the potential of our approach,
suggesting competitive performance against other state-of-the-art
systems. Additionally, our framework’s ability to simultaneously
generate text transcripts for each speaker marks a distinct advantage,
which can further enhance ASR capabilities and transition towards
an end-to-end multitask framework encompassing both ASR and
speaker diarization.

Index Terms— Speaker diarization, automatic speech recogni-
tion, target-speaker voice activity detection

1. INTRODUCTION

Speaker diarization is the task of determining “who spoke when”,
identifying both speaker identities and the timing of each speaker’s
presence. This task demands robust speaker representations cou-
pled with contextual information to discriminate speaker identities
at different timestamps. However, in many traditional clustering-
based methods, this contextual information is often overlooked. In
these approaches, speaker representations are typically evaluated us-
ing specific metrics and then clustered without any contextual cues.

Several studies have incorporated both speaker representations
and contextual information into speaker diarization tasks. Landini et
al. [1] introduced a diarization algorithm based on Bayesian Hidden
Markov Models (HMM) to refine initial diarization results. Lin
et al. [2] proposed an LSTM-based model to extract a similarity
matrix, effectively incorporating contextual information. Subse-
quently, a target-speaker voice activity detection approach, also
founded on an LSTM framework, was presented to further refine
diarization results and recognize overlapping speech. Furthermore,
the End-to-End Neural Diarization (EEND) [3, 4] approach, which
has gained considerable popularity, uses LSTM or Transformers to
directly compute speaker diarization results. Within this approach,
contextual information can be implicitly learned during the training
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phase. However, these methodologies often overlook spoken con-
tent, which could facilitate a more contextual approach to speaker
diarization.

Automatic Speech Recognition (ASR), which translates spoken
language into text, has been effectively developed to enhance the
performance of both speaker verification and speaker diarization.
ASR’s primary focus is on recognizing the linguistic content of
speech, paying particular attention to frame-level details. For in-
stance, frame-level phoneme modeling in ASR can enhance speaker
verification by identifying distinctive, speaker-specific speech pat-
terns. Previous research provides support for this collaboration,
revealing that phoneme modeling improves speaker verification per-
formance in speaker embedding networks [5, 6] as well as in the
i-vector statistical model [7, 8].

Speaker diarization systems have also increasingly integrated
with ASR techniques. For example, word alignment has been used
to refine Speech Activity Detection (SAD) [9], while others have
leveraged it to detect change points [10]. Subsequent methods in-
corporated lexical information for diarization, such as the text-based
role recognizer [11] and segmentation using ASR outputs [12]. Fur-
thermore, some studies have jointly optimized ASR and speaker di-
arization systems. In such configurations, either one system benefits
from the other [13], or both systems can be improved from each
other [14].

In this paper, we propose a joint inference method of speaker
diarization and ASR, where we directly build a speaker diarization
system from a pretrained Conformer-based ASR model to improve
the diarization performance. Conformer encoders, initially designed
for ASR, exhibit a natural versatility due to their layered structure,
which enables them to grasp various aspects of speech. The lower
layers of the ASR Conformer capture a range of speech characteris-
tics, including speaker traits, language patterns, emotions, and pho-
netic nuances. In contrast, the upper layers focus more on pho-
netic and contextual details, aligning with ASR goals. Although
their primary training focus is ASR, even the initial layers exhibit
remarkable proficiency in speaker recognition [15]. This suggests
that ASR trained features can be used for speaker verification effec-
tively. However, the upper layers which conveys contextual infor-
mation are ignored in transfer learning because the lack of speaker-
related details may degrade the performance of speaker represen-
tation. Therefore, we follow the training protocol in [16]. More-
over, we further incorporate the output of the fixed upper layers of
ASR conformer as auxiliary features for speaker diarization. In this
paper, we adapt a sequence-to-sequence target-speaker voice activ-
ity detection (Seq2Seq-TSVAD) module [17] from a pretrained and
fixed ASR Conformer and explore how the ASR pretraining model
can improve the performance and save the parameters of speaker di-
arization during the joint inference.
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Fig. 1. The architecture of the proposed method, where the pretrained ASR model are frozen, and other parts are trainable.

2. RELATED WORKS

2.1. Unified ASR and speaker verification

In Figure 1, the architectures of the unified ASR and speaker adaptor
are consistent with the design presented in [16]. On the left side,
there is a frozen, pretrained Conformer-based ASR model, while
on the right lies a trainable speaker adaptor (blue blocks) that inter-
acts with the ASR model’s intermediate representations. This adap-
tor contains three components: L layer adaptors, K trainable Con-
former layers, and a fully connected layer preceded by a trainable
pooling layer for extracting speaker embeddings. Each layer adaptor
consists of two linear layers, interspersed with Layer Normalization
and an activation function.

Outputs from the first L layers of the pretrained ASR Conformer
encoder undergo dimensional reduction through the L layer adap-
tors and K trainable Conformer layers. Subsequently, the outputs
from these adaptors and the trainable Conformer layers are concate-
nated using a multi-scale feature aggregation (MFA) module [18].
An attentive statistics pooling layer then generates an utterance-level
speaker representation [19]. Notably, given that the parameters of
the pretrained ASR remain frozen, the model can concurrently pro-
duce the text transcript.

2.2. Seq2Seq TSVAD

In conventional TSVAD systems [20], each target-speaker embed-
ding is concatenated with the frame-level representation to deter-
mine the probability of the speaker’s presence. However, this pro-
cess can be resource-intensive, particularly in terms of GPU mem-

ory. As the number of target-speaker embeddings and frame se-
quences (T and N respectively) increase, there’s a significant surge
in memory consumption. This limits the model’s capability to han-
dle longer feature sequences and accommodate a larger number of
speakers simultaneously. Another limitation is that the output length
of models relying solely on encoders must match the input length,
constraining the temporal resolution of output and making it inflexi-
ble.

To address these challenges, Cheng et al. [17] introduced a
sequence-to-sequence framework for target-speaker voice activ-
ity detection, dubbed Seq2Seq TSVAD. Within this framework,
frame-level representations and speaker embeddings are channeled
separately into the encoder and decoder, eliminating the need for
concatenation. A key advantage is that the decoder consolidates
each speaker’s voice activity data into an embedding with a fixed
dimension, regardless of the input features’ length. Another advan-
tage is the flexibility offered by the final linear layer, which permits
voice activity predictions at a higher temporal resolution, achieved
with minimal computational overhead.

3. PROPOSED METHOD

3.1. Unified ASR and speaker diarization

Given the observed benefits of speaker verification using the pre-
trained Conformer-based ASR model, we believe that this model
can also enhance speaker diarization performance. Both the speaker
identity information from the lower layers and the contextual details
from the upper layers play significant roles in speaker diarization.



Initially, we utilize only the lower layers to assess the efficacy of the
pretrained Conformer-based ASR model in this context.

As depicted in Figure 1, the MFA module extracts frame-level
speaker representations from the acoustic features. These outputs are
subsequently fed to a standard Conformer Encoder to further model
the long-term dependencies among frame-level representations. The
Speaker-wise Decoder (SW-D) then discerns voice activities of the
target speaker, taking cross-speaker correlations into consideration.
The SW-D inputs encompass both decoder embeddings and auxiliary
queries. Notably, these decoder embeddings are initialized to zeros,
while the target-speaker embeddings serve as the auxiliary queries.
Finally, a linear layer, followed by a sigmoid activation, projects the
decoder output into posterior probabilities, indicating voice activities
of each respective speaker.

3.2. Integration of contextual details into diarization

To enhance the speaker diarization performance, we also leverage
the upper layers of the pretrained Conformer-based ASR model.
More specifically, as illustrated in Figure 1, we utilize the output
from the final ASR Conformer layer as the ASR features. Subse-
quently, this output is combined with the intermediate features of
the Seq2Seq TSVAD model and undergoes Layer Normalization.
To integrate the contextual details into speaker diarization, we com-
bine the ASR features with the input of the Conformer Encoder or
Decoder to let the model learn ASR details itself.

With the integration of ASR features, the performance of
speaker diarization can be further improved as the contextual details
are included.

4. EXPERIMENTAL SETUP

4.1. Pretrained Conformer-based ASR

We utilized the pretrained ASR Conformer-based models available
in the NEMO toolkit [21]. Our preference for this model was guided
by its commendable performance and versatility across a range of
benchmark datasets. The NEMO ASR Conformer is available in
three variants: small, medium, and large. For our research, we opted
for the ’small’ variant1, characterized by a convolution subsampling
rate of 14 and a uniform kernel size of 31 within its convolution
modules. This version encompasses 16 Conformer layers with an
encoder dimension of 176, accommodates 4 attention heads, and
comprises 704 linear hidden units.

4.2. Unified ASR and speaker verification

This model was trained using the development set from VoxCeleb
2, comprising 1,092,009 audio recordings spanning 5,994 distinct
speakers.

During the training phase, the entire pretrained ASR Conformer
was frozen without updates, and we only focus on training the
speaker adaptor. This component contains 4 layer adaptors with out-
put dimension of 128, 2 streamlined Conformer layers with output
dimension of 176, a pooling layer, and subsequent linear layers, all
of which are optimized with respect to the speaker verification ob-
jective. Consequently, only the outputs from the initial 4 Conformer
layers were utilized as inputs for the speaker adaptor. For this con-
figuration, L = 4 and K = 2. Ultimately, the outputs from both the
adaptors and trainable Conformer layers are concatenated, forming

1https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/nemo/models/stt_en_conformer_ctc_small

a feature sequence with a dimension of 128 × 4 + 176 × 2 = 864.
Following layer normalization and pooling, this sequence is trans-
formed into an utterance-level speaker embedding with a size of
256. Comprehensive training details and hyper-parameters can be
referred to in [16].

4.3. Unified ASR and speaker diarization

For speaker diarization, we utilize the pretrained ASR model and
speaker adaptor as the front-end module, with the speaker adaptor
pretrained on VoxCeleb 2. We adopt the feature sequence preceding
the pooling layer as the frame-level speaker representation, which
possesses a dimension of 864 for each frame. Subsequently, a Con-
former Encoder refines this feature sequence, and the outputs with
target-speaker embeddings and zero-initialized embeddings are fed
to the Decoder. The Decoder’s output is then converted into poste-
rior probabilities representing voice activities for all speakers. All
encoder-decoder components consist of 6 layers and maintain iden-
tical configurations: 512-dimensional attentions with 8 heads, and
1024-dimensional feed-forward layers with a dropout rate set at 0.1.

The training audio signals are segmented into 8-second chunks.
These segments serve as input to the model, which utilizes 80-
dimensional log Mel-filterbank energies with a frame length of 25
ms and a frame shift of 10 ms for acoustic features. Addition-
ally, data augmentation is performed using background noise from
Musan [22] and reverberation from RIRs [23].

During the training phase, we employ the BCE loss and the
Adam optimizer with a linear learning rate warm-up strategy. Ini-
tially, the model with a frozen ASR model and frozen speaker adap-
tor is trained using simulated data created from Voxceleb 2 dataset
[24] until convergence. Subsequently, the parameters of the speaker
adaptor are unfrozen for training. Real data from the DIHARD III
dataset [25] is then incorporated with the simulated data at a ratio
of 0.2. Ultimately, the model undergoes fine-tuning exclusively with
real data without any simulation. The initial two training stages en-
compass roughly 200 epochs with a learning rate set at 1e-4, while
the final stage adjusts the learning rate to 5e-6.

During the inference stage, we utilize spectral clustering [2] to
obtain the initial clustering-based results. Note that this step can
be replaced by adopting an EEND model for initial clustering [26].
For evaluation purposes, each test recording is divided into 8-second
segments. These are then input into the Seq2Seq TS-VAD model,
accompanied by the target-speaker embeddings. We cap the number
of speaker profiles at 10, padding with zero values for any additional
speaker embeddings as required. To enhance the results, oracle voice
activity detection (VAD) is employed during post-processing to re-
trieve missing frames. Comprehensive details on training and infer-
ence can be referenced in [17].

4.4. Integration of ASR features

We leverage the output from the final ASR Conformer layers to ac-
quire contextual information. This output corresponds to the feature
sequence preceding the ultimate linear layer responsible for token
conversion, with a feature dimension of 176. The backbone archi-
tecture of the Seq2Seq TSVAD model remains unchanged, and the
ASR feature is only utilized to assist the model in learning enhanced
representations. This ASR feature sequence can be integrated either
with the Encoder or the Decoder input. The combined input will be
layer normalized before sending to Encoder or Decoder.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_small
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_small


5. EXPERIMENTAL RESULTS AND DISCUSSION

For simplicity and efficiency, we utilize the small version of the
unified ASR and speaker verification (L = 4,K = 2). This ver-
sion achieves an EER of 0.98 on VoxCeleb1-O with a model size of
6.6M [16].

The unified ASR and speaker diarization models are evaluated
on Track 1 of the DIHARD III dataset [25]. The initialization for
clustering, which is used for target speaker embedding extraction,
is based on the LSTM-SC method [2]. This method has a DER of
15.4% with Oracle VAD on the evaluation set.

Table 1 presents the results of the unified ASR and speaker di-
arization in comparison with other approaches. Without the aid of
the ASR features, it achieves a DER of 10.52%, which is compet-
itive with other state-of-the-art (SOTA) systems. It also offers the
capability to produce text transcripts based on diarization results for
each speaker. Moreover, by integrating the ASR features with ei-
ther Encoder or Decoder input, the DER can be further lowered to
10.39% and 10.42%, respectively.

Table 1. DERs (%) on the DIHARD III Dataset.
Method DER (%) JER (%)

VBx [27] 16.54 37.82
Hitachi-JHU [28] 12.74 34.08
USTC-NELSLP [29] 12.41 -
ANSD-MA-MSE [30] 11.12 -
Seq2Seq TSVAD [17] 10.77 28.46

LSTM-SC 15.40 33.27
+ Unified ASR & SD 10.52 28.12

+ ASR feat before SD Encoder 10.39 27.97
+ ASR feat before SD Decoder 10.42 27.85

Actually, as Table 1 demonstrates, there isn’t a significant over-
all improvement when utilizing ASR features from the last Con-
former layer. We hypothesize that this is because certain domains are
too complex for the model to effectively learn the contextual details.
For instance, audio might contain excessive overlapping speech, or
the signal-to-noise ratio may be too low. As indicated by Table 2, we
assess performance across different domains. We can find out that
there are performance improvement (sys2 vs sys1) in all domains ex-
pect the Restaurant and Socio field domains, which might be because
the inaccurate ASR predictions.

It is worth noted that in some specific domains (e.g. Clinical),
where the predicted text has more role information, the ASR feature
can bring in more improvement.

Table 3 shows the number of the trainable parameters in the
front-end model of Seq2Seq TSVAD. The unified ASR and SD sys-
tem with a small front-end, with a mere tenth of the parameters of
the one in original Seq2Seq TSVAD system, can produce compet-
itive diarization results. This efficiency demonstrates the potential
of the Speaker Adaptor in harnessing vital speaker information with
fewer trainable parameters.

6. CONCLUSION

In this paper, we introduced a unified ASR and speaker diariza-
tion framework that can concurrently perform ASR and speaker di-
arization inference. Within the proposed framework, features from
the lower layers of a pretrained ASR model are utilized to extract

Table 2. DERs (%) over 11 domains on the DIHARD III dataset.
Sys 1, 2 and 3 refer to the last three rows in Table 1.

Domain LSTM-SC Sys 1 Sys 2 Sys 3

Audiobook 0.00 0.00 0.00 0.00
Broadcast 5.06 3.82 3.78 3.85
Clinical 7.59 5.01 4.63 4.61
Courtroom 4.10 2.06 2.04 2.18
CTS 14.46 6.01 5.89 5.85
Maptask 3.85 1.21 1.12 1.22
Meeting 28.70 22.95 22.54 23.16
Restaurant 42.30 38.97 39.36 39.25
Socio field 8.42 5.12 5.45 5.39
Socio lab 7.08 2.82 2.79 2.71
Webvideo 38.13 34.38 33.31 33.38

All 15.40 10.52 10.39 10.42

Table 3. The number of parameters for the speaker embedding
extractor front-end in the Seq2Seq TSVAD and unified ASR and
speaker diarization systems. The difference is that the trainable
front-end of these two systems are ResNet34 and speaker adaptor,
respectively. The number of the parameters of the first 4 layers of
ASR model is 3.92M, which is borrowed from ASR and maintains
unchanged.

System Front-end #Parameters

Seq2Seq TSVAD ResNet34 20.56M
Unified ASR & SD Speaker Adaptor 2.68M (+3.92M)

speaker-related information, while the upper layers provide ASR-
related features that can enhance diarization performance. On the
DIHARD III dataset, this framework demonstrates competitive per-
formance when compared to other state-of-the-art systems. How-
ever, the DIHARD dataset, being a challenging compilation that
contains substantial background noise and overlapping speech, can
severely ruin the contextual information. As such, the benefits of
integrating ASR features might be moderate on this dataset. Future
research will involve evaluating our model on some domain specific
datasets.

It’s also noteworthy that the parameters of the ASR model re-
main frozen, complicating the joint training of ASR and speaker di-
arization. In the future, we plan to unfreeze the ASR model, leverag-
ing diarization results to refine ASR performance, such as in multi-
talker ASR or target speaker ASR scenarios. Furthermore, we be-
lieve that an end-to-end framework would be more apt for address-
ing the multitasking needs of ASR and speaker diarization, which
will be a focus of our subsequent research.
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get, “Bayesian hmm clustering of x-vector sequences (vbx) in
speaker diarization: Theory, implementation and analysis on
standard tasks,” Computer Speech & Language, vol. 71, pp.
101254, 2022.

[2] Qingjian Lin, Ruiqing Yin, Ming Li, Hervé Bredin, and Claude
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Phonetic Information for Text-Independent Speaker Embed-
ding Extraction,” in Proc. of Interspeech, 2019, pp. 1148–
1152.

[7] Ming Li, Lun Liu, Weicheng Cai, and Wenbo Liu, “Gener-
alized i-vector representation with phonetic tokenizations and
tandem features for both text independent and text dependent
speaker verification,” Journal of Signal Processing Systems,
vol. 82, pp. 207–215, 2016.

[8] Yun Lei, Nicolas Scheffer, Luciana Ferrer, and Mitchell
McLaren, “A novel scheme for speaker recognition using a
phonetically-aware deep neural network,” in Proc. of ICASSP,
2014, pp. 1695–1699.

[9] Jing Huang, Etienne Marcheret, Karthik Visweswariah, and
Gerasimos Potamianos, “The ibm rt07 evaluation systems for
speaker diarization on lecture meetings,” in International Eval-
uation Workshop on Rich Transcription, 2007, pp. 497–508.

[10] Wei Xia, Han Lu, Quan Wang, Anshuman Tripathi, Yiling
Huang, Ignacio Lopez Moreno, and Hasim Sak, “Turn-to-
diarize: Online speaker diarization constrained by transformer
transducer speaker turn detection,” in Proc. of ICASSP, 2022,
pp. 8077–8081.

[11] Nikolaos Flemotomos, Panayiotis Georgiou, and Shrikanth
Narayanan, “Linguistically aided speaker diarization using
speaker role information,” in Proc. of Odyssey, 2020, pp. 117–
124.

[12] Tae Jin Park and Panayiotis Georgiou, “Multimodal speaker
segmentation and diarization using lexical and acoustic cues
via sequence to sequence neural networks,” in Proc. of Inter-
speech, 2018, pp. 1373–1377.

[13] Huanru Henry Mao, Shuyang Li, Julian McAuley, and Gar-
rison W. Cottrell, “Speech Recognition and Multi-Speaker
Diarization of Long Conversations,” in Proc. of Interspeech,
2020, pp. 691–695.

[14] Naoyuki Kanda, Zhong Meng, Liang Lu, Yashesh Gaur, Xi-
aofei Wang, Zhuo Chen, and Takuya Yoshioka, “Minimum
bayes risk training for end-to-end speaker-attributed asr,” in
Proc. of ICASSP, 2021, pp. 6503–6507.

[15] Danwei Cai, Weiqing Wang, Ming Li, Rui Xia, and Chuanzeng
Huang, “Pretraining conformer with asr for speaker verifica-
tion,” in Proc. of ICASSP, 2023, pp. 1–5.

[16] Danwei Cai and Ming Li, “Leveraging asr pretrained con-
formers for speaker verification through transfer learning and
knowledge distillation,” arXiv preprint arXiv:2309.03019,
2023.

[17] Ming Cheng, Weiqing Wang, Yucong Zhang, Xiaoyi Qin,
and Ming Li, “Target-speaker voice activity detection via
sequence-to-sequence prediction,” in Proc. of ICASSP, 2023,
pp. 1–5.

[18] Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck,
“ECAPA-TDNN: Emphasized Channel Attention, Propagation
and Aggregation in TDNN Based Speaker Verification,” in
Proc. of Interspeech, 2020, pp. 3830–3834.

[19] Koji Okabe, Takafumi Koshinaka, and Koichi Shinoda, “Atten-
tive Statistics Pooling for Deep Speaker Embedding,” in Proc.
of Interspeech, 2018, pp. 2252–2256.

[20] Ivan Medennikov, Maxim Korenevsky, Tatiana Prisyach, Yuri
Khokhlov, Mariya Korenevskaya, Ivan Sorokin, Tatiana Tim-
ofeeva, Anton Mitrofanov, Andrei Andrusenko, Ivan Pod-
luzhny, Aleksandr Laptev, and Aleksei Romanenko, “Target-
Speaker Voice Activity Detection: A Novel Approach for
Multi-Speaker Diarization in a Dinner Party Scenario,” in
Proc. of Interspeech, 2020, pp. 274–278.

[21] Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii Hrinchuk,
Ryan Leary, Boris Ginsburg, Samuel Kriman, Stanislav Beli-
aev, Vitaly Lavrukhin, Jack Cook, et al., “Nemo: a toolkit for
building ai applications using neural modules,” arXiv preprint
arXiv:1909.09577, 2019.

[22] David Snyder, Guoguo Chen, and Daniel Povey, “Mu-
san: A music, speech, and noise corpus,” arXiv preprint
arXiv:1510.08484, 2015.

[23] Tom Ko, Vijayaditya Peddinti, Daniel Povey, Michael L
Seltzer, and Sanjeev Khudanpur, “A study on data augmen-
tation of reverberant speech for robust speech recognition,” in
Proc. of ICASSP, 2017, pp. 5220–5224.

[24] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-
scale speaker identification dataset,” in Proc. of Interspeech,
2017.

[25] Neville Ryant, Prachi Singh, Venkat Krishnamohan, Rajat
Varma, Kenneth Church, Christopher Cieri, Jun Du, Sriram
Ganapathy, and Mark Liberman, “The third dihard diarization
challenge,” arXiv preprint arXiv:2012.01477, 2020.

[26] Weiqing Wang and Ming Li, “Incorporating end-to-end frame-
work into target-speaker voice activity detection,” in Proc. of
ICASSP, 2022, pp. 8362–8366.

[27] Federico Landini, Shuai Wang, Mireia Diez, Lukáš Burget,
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