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Abstract—The current success of deep learning largely benefits
from the availability of large amount of labeled data. However,
collecting a large-scale dataset with human annotation can be
expensive and sometimes difficult. Self-supervised learning thus
attracts many research interests to train models without labels.
In this paper, we propose a self-supervised learning framework
for speaker recognition. Combining clustering with deep rep-
resentation learning, the proposed framework generates pseudo
labels for the unlabeled dataset and learns speaker representation
without human annotation. Our method starts with training a
speaker representation encoder with contrastive self-supervised
learning. Clustering on the learned representation generates
pseudo labels, which are used as the supervisory signal for the
subsequent training of the representation encoder. The clustering
and representation learning process is performed iteratively to
bootstrap the discriminative power of the deep neural network.
We apply this self-supervised learning framework to both sin-
gle modal audio data and multi-modal audio-visual data. For
audio-visual data, audio and visual representation encoders are
employed to learn representations of the corresponding modality.
A cluster ensemble algorithm is then used to fuse the clustering
results of the two modalities. The complementary information in
multi-modalities ensures a robust and fault-tolerant supervisory
signal for audio and visual representation learning. Experimental
results show that our proposed iterative self-supervised learning
framework outperforms previous works with self-supervision by
large margins. Training with single modal audio data on the
development set of VoxCeleb 2, our proposed framework achieves
an equal error rate (EER) of 2.8% on the original test trials of
VoxCeleb 1. When training with additional visual modality, the
EER further reduces to 1.8%, which is only 20% higher than
the fully supervised audio-based system with an EER of 1.5%.
Also, experimental analysis shows that the proposed framework
generates pseudo labels that are highly correlated to ground truth
labels.

Index Terms—Self-supervised learning, self-labeling, cluster-
ing, speaker recognition, audio-visual data

I. INTRODUCTION

REPRESENTATION learning is to extract useful infor-
mation of perceptual data such as audio, image, or

video when building classifiers or other predictors [1]. Over
the past decade, deep learning has facilitated representation
learning by training deep neural networks (DNN) with massive
labeled data. For example, in speaker recognition, a DNN is
trained to map audio data to a discriminative feature space
by classifying speakers in training data. Under this deep
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learning setup, a large-scale dataset is required to obtain great
model generalizability and discriminative representation space.
However, manually annotating labels for a large-scale dataset
is expensive and sometimes difficult. Learning from unlabeled
data can significantly reduce the cost of developing machine
learning models for new applications. Self-supervised learning
thus emerges as an increasingly popular framework to train
models without labels.

Self-supervised learning aims to design pretext or proxy
tasks for DNNs to learn model parameters without annotated
data [2]. For example, in natural language processing, a proxy
task can be predicting the next or a randomly masked element
of a sequence [3]. In visual representation learning, most
proxy tasks fall into two classes: generative or discriminative.
Generative approaches learn to generate or model pixels in
the image space. Examples include colorizing images [4],
solving jigsaw puzzles [5], predicting the patch context [6],
predicting rotations [7], inpainting patches [8], and so on.
Recently, discriminative approaches based on contrastive self-
supervised learning (CSL) emerge and show promising results
in visual representation learning [9, 10, 2]. It performs in-
stance discrimination for the unlabeled data and learns the
representation using metric learning-based objectives similar
to supervised learning methods [11]. Typically, self-supervised
learning with pretext tasks is used as a pre-training method for
other downstream tasks.

As an alternative, self-labeling using self-supervised learn-
ing aims at learning a deep neural network together with
discovering the data labels [12, 13]. Self-labeling algorithms
can be viewed as a combination of feature learning with
clustering. Starting from the randomly initialized feature rep-
resentation, the clustering algorithm derives pseudo labels
as the supervisory signal iteratively and updates network
parameters. Since self-labeling methods rely on the initial
feature representations of the network, they are sensitive to
the initialization of network parameters [12].

In our previous work on self-supervised speaker representa-
tion learning [14, 15], we proposed a two-stage iterative label-
ing framework. In the first stage, contrastive self-supervised
learning (CSL) pre-trains the speaker embedding network.
CSL allows the network to learn a meaningful representation
for the first clustering round instead of random initializa-
tion. The second stage is an iterative process of clustering
and representation learning. A clustering algorithm generates
pseudo labels of the training data with the learned speaker
representation, and the network is trained with these labels in
a supervised manner. The clustering algorithm can discover
the intrinsic structure of the representation of the unlabeled



2

data, providing meaningful supervisory signals compared to
contrastive learning, which draws negative samples uniformly
from the training data without label information. The idea
behind the proposed framework is to take advantage of the
DNN’s ability to learn from data with label noise and bootstrap
its discriminative power. Different from other works on self-
labeling using self-supervised learning [12, 13], our method
decouples clustering and representation learning: representa-
tion is trained until converged before clustering.

While the evaluation phase of speaker recognition only
allows audio data, multi-modal audio-visual data can be used
for training. The usage of the additional modality could be
beneficial for representation learning since different modalities
contain complementary information. In this work, we extend
the iterative labeling framework to multi-modal audio-visual
data. Specifically, a visual encoder is added to learn face
representations from the visual modality. Clustering on the
representations of the multi-modal data gives pseudo labels
from the audio and the visual modality. We employ a cluster
ensemble algorithm to fuse the pseudo labels from different
modalities. This fused pseudo label is then used to train
both audio and visual encoders. With the clustering ensemble
algorithm, information in one modality can flow to the other,
and confirmation bias in self-training within a single modality
is avoided.

We evaluate our proposed framework on the Voxceleb
[16, 17] dataset. Experimental results show that the proposed
self-supervised framework outperforms prior works by large
margins in both single and multiple modality settings. Also,
our method is capable of labeling the video data with high
accuracy.

The key contributions of this work are summarized as
follows:

1) We develop an iterative framework for self-supervised
speaker representation learning using single modal audio
data. The framework generates pseudo labels that are
highly correlated to ground truth labels.

2) We extend the proposed self-supervised learning-based
speaker recognition framework to audio-visual training
data. The multi-modal information helps to generate more
meaningful pseudo labels compared to a single modality.

3) The proposed framework greatly shrinks the performance
gap between self-supervised and fully supervised speaker
recognition. Our method obtains the best speaker recog-
nition performance among published literature under a
self-supervised setting to the best of our knowledge.

II. RELATED WORKS

A. Deep speaker recognition

Automatic speaker recognition analyzes a given speech and
recognizes the speaker’s identity using signal processing and
pattern recognition algorithms. Over the past few years, deep
learning methods have greatly improved the performance of
speaker recognition systems [18, 19, 20]. In general, speaker
recognition, especially speaker verification, is evaluated under
the open-set setting, where speakers in the testing set are
different from those in the training set. Therefore, the goal

of a speaker network is to learn discriminative representations
from the training speakers. It is common to train a speaker
classification network and extract the speaker representation
from the output of the intermediate layer.

Typically, a deep speaker framework consists of three parts:
a frame-level local pattern extractor, an utterance-level encod-
ing layer, and a fully connected layer. A local pattern extractor
learns speaker representation from the spectral feature se-
quence of varying lengths, producing a frame-level representa-
tion. Common network architectures for local pattern extractor
lie in two categories: time-delayed neural network (TDNN)
[18, 21] and convolutional neural network (CNN) [19, 22].
TDNN is actually 1-dimensional CNN with a 1-dimensional
kernel whose receptive field covers the whole frequency axis in
one time frame of the time-spectral feature map. The encoding
layer encodes the frame-level sequence into an utterance-
level representation. The most common encoding method is
the average pooling layer [18], which aggregates the mean
or (and) standard deviation statistics from the frame-level
representation. Other encoding layers include attentive pooling
layer [23, 21], learnable dictionary encoding layer [24], and
dictionary-based NetVLAD layer [25, 26]. After that, fully
connected layers take the utterance-level representation as an
input to further abstract the speaker information and classify
the training speakers.

B. Audio-visual speaker recognition

Because of the complementary nature of audio and visual
data, audio-visual biometrics methods have drawn attention in
the research community. Several fusion strategies have been
proposed at different stages of model training, i.e., early,
middle and late fusion. Early fusion takes audio features and
visual images as joint input and generates joint representation
containing multi-modal information [27]. Middle fusion com-
bines audio and visual representations after the independent
encoding of the two modalities [27, 28, 29, 30]. Late fusion
performs score fusion of uni-modal systems from different
modalities [31].

Audio-visual learning based on fusion strategies generally
requires multi-modal data at both the training and evaluation
phases. As an alternative, the cross-modal method allows
greater flexibility for unimodal testing. The basic idea of cross-
modal method is to map data from multi-modalities into a
shared latent feature space and achieve cross-modal retrieval
[32, 33, 34, 35].

C. Self-supervised speaker representation learning

Proxy tasks for self-supervised speaker representation learn-
ing fall into generative and discriminative methods. Stafylakis
et al. [36] propose to learn speaker representation via recon-
structing the acoustic features of a target speech, given the
decoded phone sequence and the inferred speaker represen-
tation of another speech segment from the same utterance.
Although speaker label is not required, this method employs
a phone decoder trained with supervision and is not strictly
self-supervised.
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Fig. 1: The proposed iterative framework for self-supervised speaker representation learning.

Discriminative approaches based on contrastive learning
have recently shown promising results [37, 38]. To learn
speaker representations that are invariant to channel vari-
abilities, multiple methods such as augmentation adversarial
training [39], equilibrium learning [40], and channel-invariant
training [41] are proposed.

In this work, we take a step further beyond contractive self-
supervised learning. A clustering algorithm is used to discover
the intrinsic structure of the representation of the unlabeled
data and generate pseudo labels to learn the representation
encoder discriminatively.

D. Self-supervised multi-modal representation learning

Audio-visual self-supervised representation learning utilizes
the video data’s multi-modal information, i.e., images and
sound, to learn representations. Given the audio and visual
streams, semantic correspondence [42, 43, 44, 45, 46] and
synchronized timing of content [47, 48] are commonly used
as a supervisory signal in the existing literature. Other works
perform within-clip sound localization [49, 50] or audio-
separation [51] using this multi-modal information. Also, the
cross-modal semantic correspondence has been leveraged in
the application of speaker/person representation learning[52,
53].

This paper focuses on using single modal audio data or
multi-modal audio-visual data to learn speaker representation
under a self-supervised setting. Also, the testing data only
contains audio signals. Our goal is to obtain pseudo labels
for an unlabeled dataset using the multi-modal information
and bootstrap the discriminative power of the representation
encoders for both audio and visual modalities. Since the multi-
modal data is only used to discover the supervisory signal for
model training, multi-modal data is not necessarily required at
the testing phase.

E. Self-supervised track of VoxSRC

The VoxCeleb Speaker Recognition Challenge (VoxSRC)
has been held since 2019 annually to: (i) promote new research

in speaker recognition; (ii) evaluate the current state of the
art through public evaluations; and (iii) provide open-source
data that can be used by the research community [54, 55, 56].
In 2020, VoxSRC developed the new track of self-supervised
speaker verification. The challenge dataset [16, 17] is a multi-
modal dataset, both audio and visual modalities are allowed
for system development in the self-supervision track.

The proposed two-stage iterative labeling framework in this
paper was submitted in VoxSRC 2020 (single modality sys-
tem) [14] and VoxSRC 2021 (multi-modality system) [57]. A
similar iterative framework based on single modality of audio
data was also developed by Thienpondt et al. in VoxSRC 2020
[58]. In VoxSRC 2021, participants developed their systems
based on the two-stage framework with single modality of
audio data. Two improvements from two different teams are
highlighted here:

1) In [59], a non-contrastive self-supervised method, distilla-
tion with no labels (DINO), is used as the initial model.
This new method is shown to outperform the previous
contrastive learning method.

2) In [60], two parallel branches of neural network are
trained with different data augmentation setups. The pseu-
do labels generated by different branches are exchanged
for the next round of training.

III. ITERATIVE LABELING FRAMEWORK FOR
SELF-SUPERVISED SPEAKER REPRESENTATION LEARNING

This section describes the proposed iterative labeling frame-
work for self-supervised speaker representation learning. We
illustrate the proposed framework in figure 1.
• Stage 1: contrastive training

– Train an audio encoding network with contrastive
self-supervised learning.

– With this encoding network, extract representations
for the whole training data. Perform a clustering al-
gorithm on these representations to generate pseudo
labels.

• Stage 2: iterative clustering and representation learning
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– Train a new encoding network with a classification
layer and cross-entropy loss using the generated
pseudo labels.

– With the new encoding network, extract representa-
tions and perform clustering to generate new pseudo
labels.

– Repeat stage 2 with limited rounds.

A. Contrastive self-supervised learning

We employ the contrastive self-supervised learning (CSL)
framework similar to the framework in [2, 61] to learn an
initial audio representation. Let D = {x1, · · · ,xN} be an
unlabeled dataset with N data samples, CSL assumes that
each data sample defines its own class and perform instance
discrimination. During training, we randomly sample a mini-
batch B = {x1, · · · ,xM} of M data samples from D. For
data point xi, two different audio segments are randomly
cropped from the original audio before data augmentation.
Then stochastic data augmentation is performed to generate
two correlated views, i.e., x̃i,1 and x̃i,2, resulting 2M data
points in total for a mini-batch. x̃i,1 and x̃i,2 are considered
as a positive pair and other 2(M − 1) data points {x̃j,k|j 6=
i, k = 1, 2} are negative examples for x̃i,1 and x̃i,2.

During training, a neural network encoder Φ extracts rep-
resentations for the 2M augmented data samples,

zi,j = Φ(x̃i,k), k ∈ {1, 2} (1)

After that, contrastive loss identifies the positive example
x̃i,1 (or x̃i,2) among the negative examples {x̃j,k|j 6= i, k =
1, 2} for x̃i,2 (or x̃i,1). We adapt the contrastive loss from
SimCLR [2] as:

LCSL =
1

2M

M∑
i=1

(li,1 + li,2) (2)

li,j = − log
exp(cos(zi,1, zi,2)/τ)∑M

k=1

∑2
l=1 1k 6=i

l 6=j
exp(cos(zi,j , zk,l)/τ)

(3)

where 1 is an indicator function evaluating 1 when k 6= i and
l 6= j, cos denotes the cosine similarity and τ is a temperature
parameter to scale the similarity scores. li,j can be interpreted
as the loss for anchor feature zi,j . It computes positive score
for positive feature zi,(j+1)mod2 and negative scores across all
2(M − 1) negative features {zk,j |k 6= i, j = 1, 2}.

The encoder encodes the audio segments at the utterance
level; thus, the learned representation may contain variability
factors of semantic content, speaker identity, channel, and
language all together. Since the contrastive loss performs
instance discrimination for two segments in an utterance, the
variability factor of semantic content, which varies in different
segments, may be reduced. Other unwanted variabilities such
as channel and language, which remain unchanged to varying
segments within an utterance, may still be preserved in the
learned representation.
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Fig. 2: Within-cluster sum of square W of a clustering
procedure versus the number of clusters K employed.

B. Generating pseudo labels by clustering

1) K-means clustering: Given the learned representations
of the training data, we employ a clustering algorithm to
generate cluster assignments and pseudo labels. In this paper,
we use the well-known k-means algorithm because of its
simplicity, fast speed, and capability with a large dataset.

Let the learnt representation in d-dimensional feature space
z ∈ Rd, k-means learns a centroid matrix C ∈ Rd×K and the
cluster assignment yi ∈ {1, · · · ,K} for representation zi with
the following learning objective

min
C

1

N

N∑
i=1

min
yi

‖zi −Cyi
‖22 (4)

where Cyi is the yth
i column of the centroid matrix C. The

optimal assignments {y1, · · · , yN} are used as pseudo labels.
In contrastive self-supervised learning, negative samples are

drawn uniformly from the training data without label informa-
tion, which brings false negative samples into training. How-
ever, with the clustering algorithm, the intrinsic structure of the
unlabeled data is mined, providing a meaningful supervisory
signal to train the representation encoder discriminatively.

2) Determine the number of clusters: As mentioned before,
the learned representations may contain variability factors of
channel and language in addition to the variability of speaker
identity. The choice of the number of clusters may affect the
content of the resulting clusters. For example, clustering with
two classes may result in male and female classes; clustering
with 100 classes may result in classes with different languages
(suppose that the dataset contains about 100 languages).

To determine the optimal number of clusters, we employ
the simple ‘elbow’ method [62]. It calculates the total within-
cluster sum of squares W for the clustering outputs with
different numbers of clusters K:

W =

N∑
i=1

‖zi −Cyi‖22 (5)

The total within-cluster sum of squares W curve is plotted ac-
cording to a sequence of K in ascending order. Figure 2 shows
an example of such a curve. W decreases as K increases and
the decrease of W flattens from some K onwards, forming an
‘elbow’ of the curve. Such ‘elbow’ indicates that additional
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Fig. 3: The proposed iterative framework for self-supervised speaker representation learning using multi-modal data.

clusters beyond such K contribute little intra-cluster variation;
thus, the K at the ‘elbow’ indicates the appropriate number
of clusters.

To find such ‘elbow’, we draw an auxiliary line connecting
the first and the last points of the W -K curve. The auxiliary
line and the W -K curve together form a closed shape. This
closed shape can be abstracted as a triangle. The ‘elbow’ of
the W -K curve corresponds to the lower-left vertex of the
triangle. In this case, we draw a tangent line of the W -K
curve parallel to the auxiliary line. The contact on the W -K
curve has the longest distance from the auxiliary line and can
be considered an ‘elbow’. In figure 2, the number of clusters
can choose between 5,000 and 7,000.

This ‘elbow’ method is not exact, and the optimal number of
clusters can be subjective [63]. Still, it provides a meaningful
way to help to determine the optimal number of clusters and
is successfully used in different applications [64, 65]. More
analysis of this method can be found in [66, 67].

C. Learning with pseudo labels

With the generated pseudo labels {y1, · · · , yN} for training
data D = {x1, · · · ,xN}, the neural network encoder Φ can be
discriminatively trained with a parametrized classifier gW (·)
which predicts the labels for the representation vector zi =
Φ(xi). The parameters {Φ,W} are jointly trained with the
cross-entropy loss:

Lclassifier = −
N∑
i=1

K∑
k=1

log (p(k|xi)q(k|xi)) (6)

p(k|xi) =
exp(gWk(zi))∑K
j=1 exp(gWj(zi))

(7)

where q(k|xi) = δk,yi is the ground-truth distribution over
labels for data sample xi with label yi, δk,yi

a Dirac delta
which equals to 1 for k = yi and 0 otherwise, gWj(zi) is
the jth element (j ∈ {1, · · · ,K}) of the class score vector
gW (zi) ∈ RK , K is the number of the pseudo classes.

D. Dealing with label noise: label smoothing regularization

One problem with the generated pseudo labels is label noise
which degrades the generalization performance of deep neural
networks. We apply label smoothing to deal with label noise
to mitigate this problem.

Label smoothing is a regularization method to estimate the
marginalized effect of label noise during training. It prevents
a DNN from assigning full probability to the training samples
with noisy label [68, 69]. Specifically, for a training example x
with label y, label smoothing regularization replaces the label
distribution q(k|x) = δk,y in equation (6) with

q′(k|x) = (1− ε)δk,y +
ε

K
(8)

where ε is a smoothing parameter.

IV. INCORPORATING VISUAL INFORMATION IN
SELF-SUPERVISED SPEAKER REPRESENTATION LEARNING

Given a dataset of multi-modal data with audio- and visual-
modality, the representation of each modality is learned inde-
pendently following the method in section III. Clustering is
performed on the representations of each modality to generate
pseudo-labels for both audio and visual data. Cluster ensemble
is then used to fuse pseudo-labels generated by different
modalities. The proposed framework is illustrated in figure
3.
• Stage 1: contrastive training

– Train an audio encoding network using contrastive
self-supervised learning.

– With this encoding network, extract representations
for the audio data. Perform a clustering algorithm on
these audio representations to generate pseudo labels.

• Stage 2: iterative clustering and representation learning
– With the generated pseudo labels, train audio, and

visual encoding networks independently in a super-
vised manner.

– With the audio encoding network, extract audio
representations and perform clustering to generate
pseudo audio labels.
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– With the visual encoding network, extract visual
representations and perform clustering to generate
pseudo visual labels.

– Fuse the audio and visual pseudo labels using a
cluster ensemble algorithm.

– Repeat stage 2 with limited rounds.

A. Representation learning
Given a multi-modal dataset D = {x1,x2, · · · ,xN} with

audio-modality Da = {xa,1,xa,2, · · · ,xa,N} and visual-
modality Dv = {xv,1,xv,2, · · · ,xv,N}, encoders for each
modality is trained independent with the generated pseudo
labels from last training round. For each video sample xi, its
audio part xa,i and visual part xv,i share the same generated
pseudo label.

The audio encoder Φa is discriminatively trained with the
audio classifier gWa

(·) using cross-entropy loss in equation
(6). The audio representation is extracted as

za = Φa(xa) (9)

Same procedure is applied to the visual encoder Φv and the
visual classifier gWv (·). The visual representation is extracted
as

zv = Φv(xv) (10)

B. Clustering
Clustering is applied independently on both audio repre-

sentations {za,i|i = 1, · · · , N} and visual representation-
s {zv,i|i = 1, · · · , N}. Audio and visual pseudo labels
({ya,i|i = 1, · · · , N} and {yv,i|i = 1, · · · , N}) are thus
obtained for further aggregation.

Considering that the audio and the visual representations
contain complementary information from different modalities,
we apply an additional clustering on the joint representation-
s to generate more robust pseudo labels. Given the audio
representation za and the visual representation zv , the joint
representation is formed as

z = (za, zv) (11)

Joint pseudo labels {y,i|i = 1, · · · , N} is then generated by
clustering on joint representations.

C. Cluster ensemble
We use simple voting strategy [70, 71] to fuse the three

clustering outputs, i,e., {ya,i}, {yv,i} and {y,i}. Since the
cluster labels in different clustering outputs are arbitrary,
cluster correspondence should be established among different
clustering outputs. This starts with a contingency matrix
Ω ∈ RK×K for the referenced clustering output {yref,i} and
the current clustering output {ycur,i}, where K is the number of
clusters. Each entry Ωl,l′ represents the co-occurence between
cluster l of the referenced clustering output and cluster l′ of
the current clustering output,

Ωl,l′ =

N∑
i=1

ω(i)

ω(i) =

{
1 yref,i = l, ycur,i = l′

0 otherwise

(12)

Cluster correspondence is solved by the following optimization
problem,

max
Θ

K∑
l=1

K∑
l′=1

Ωl,l′Θl,l′ (13)

where Θ ∈ RK×K is the correspondence matrix for the
two clustering outputs. Θl,l′ equals to 1 if cluster l in the
reference clustering output corresponds to cluster l′ in the
current clustering output, 0 otherwise. This optimization can
be solved by the Hungarian algorithm [72].

We select the joint pseudo labels as the reference clustering
output and calculate cluster correspondence for the audio and
visual pseudo labels. A globally consistent label set is obtained
after the re-labeling process. Majority voting is then employed
to determine a pseudo consensus label for each data sample
in the multi-modal dataset.

V. EXPERIMENTAL SETUPS

A. Dataset

The experiments are conducted on VoxCeleb, which is an
audio-visual dataset consisting of short video clips extracted
from interview videos [16, 17].

For model training, the development set of VoxCeleb 2
is used. The original development set contains 1,092,009
audio files from 5,994 speakers. The corresponding video
files from the official VoxCeleb dataset are with a quantity
of 1,091,724. The final audio-visual dataset used for training
is the intersection of these two parts. We extract face images at
one frame per second (fps) from cropped video files. Speaker
or face identity labels are not used for model training and are
used for experimental analysis purposes only.

For evaluation, the development and test sets of Voxceleb
1 are used. We report the speaker verification results on three
trial lists as defined in [17]:
• VoxCeleb 1-O: the original trial list of Voxceleb 1 con-

taining 37,720 trials from 40 speakers.
• Voxceleb 1-E: an extended trial list containing 581,480

trials from 1251 speakers.
• Voxceleb 1-H: a hard trial list containing 552,536 trials

from 1190 speakers; all test pairs are within the same
language and gender.

Face verification results are also reported using the trial lists
described above to test the learned face representation. The
cropped face images extracted at one fps are downloaded from
the VoxCeleb website1.

B. Data Augmentation

1) Data augmentation for audio data: Data augmentation
is effective for deep speaker representation learning under
the settings of supervised learning [73] and contrastive self-
supervised learning [37, 39, 2]. We use additive background
noise or convolutional reverberation noise for the time-domain
waveform. MUSAN dataset [74] is used as the data augmen-
tation dataset. Addictive noises include ambient noise, music,
and babble noise. The babble noise is constructed by mixing

1Available at https://www.robots.ox.ac.uk/∼vgg/research/CMBiometrics

https://www.robots.ox.ac.uk/~vgg/research/CMBiometrics


7

TABLE I: The network architecture for audio encoder,
C(kernal size, stride) denotes the convolutional layer, [·]
denotes the residual block; L relates to the duration of the
speech and L relates to the number of frequency bins of the
Mel spectrogram.

Layer Output Size Structure

Input 1× F × L -

Conv1 16× F × L C(3× 3, 1)

Residual layer 1 16× F × L

[
C(3× 3, 1)
C(3× 3, 1)

]
× 3

Residual layer 2 32× F
2
× L

2

[
C(3× 3, 2)
C(3× 3, 1)

] [
C(3× 3, 1)
C(3× 3, 1)

]
× 3

Residual layer 3 64× F
4
× L

4

[
C(3× 3, 2)
C(3× 3, 1)

] [
C(3× 3, 1)
C(3× 3, 1)

]
× 5

Residual layer 4 128× F
8
× L

8

[
C(3× 3, 2)
C(3× 3, 1)

] [
C(3× 3, 1)
C(3× 3, 1)

]
× 2

Pooling layer 256 Global statistics pooling

Embedding 128 Fully connected layer

three to eight speech files into one. The signal-to-noise ratios
(SNR) are randomly set between 5 to 20 dB. For the reverbera-
tion noise, the convolution operation is performed with 40,000
simulated room impulse responses (RIR) in MUSAN. We only
use RIRs from small and medium rooms. Data augmentation
is performed on the fly at a probability of 0.6 during training.

In contrastive self-supervised learning, we apply a more
aggressive data augmentation strategy. In addition to applying
a single noise type, we also apply additive and convolutional
noise simultaneously for a signal training utterance.

2) Data augmentation for visual data: We sequentially
apply these simple augmentations for cropped face images:
random cropping followed by resizing to 3×224×224, random
horizontal flipping, random color distortions, random grey
scaling, and random Gaussian blur. The data augmentation is
performed at a probability of 0.6 during training. We normalize
each image’s pixel value to the range of [−0.5, 0.5] afterward.

C. Audio encoder trained with contrastive self-supervision

We apply contrastive self-supervised learning on audio data
to learn speaker representations.

During DNN training, audio waveforms in a data batch
are randomly cropped between 2 to 4 seconds. Logarithmical
Mel-spectrogram is extracted for each audio signal as an
acoustic feature. 40 Mel filters are applied on the spectrogram
computed over Hamming windows of 20ms shifted by 10ms
to generate the Mel-spectrogram.

While the proposed framework allows various choices of
the network architecture, we opt for a residual convolutional
network (ResNet) for speaker representation learning [19, 75].
The ResNet takes spectral features as input and produces fea-
ture maps at the frame level. A global statistics pooling layer
then calculates means and standard deviations for the output
feature maps to generate an utterance-level representation. A
fully connected layer is employed afterward to extract the 128-
dimensional speaker representation. The detailed configuration

of the speaker embedding network can be found in table I.
Rectified linear unit (ReLU) activation and batch normaliza-
tion are applied to each convolutional layer in ResNet. Adam
optimizer [76] is used to update network parameters with a
batch size of 256. The learning rate is initially set to 0.001 and
is decreased by 5% every five epochs. The hyper-parameter τ
in equation (3) is set to 0.1.

At the evaluation stage, cosine similarity is used to generate
a verification score for a test trial.

D. Audio encoder trained with pseudo supervision

The experimental setup for the audio encoder trained with
pseudo labels are the same as described in the last section
except for the following changes:

• Logarithmical Mel-spectrogram with 80 frequency bins
is used as input features.

• The ResNet doubles the feature map channels to increase
its modeling ability under the setting of discriminative
training.

• A linear layer is used to classify the pseudo speakers
using cross-entropy loss. Dropout is added before the
classification layer to prevent overfitting [77].

• Network parameters are updated using stochastic gradient
descent (SGD) algorithm.

• The learning rate is initially set to 0.1 and is divided by
10 whenever the training loss reaches a plateau.

E. Visual encoder setup

We choose the standard ResNet-34 [75] as the visual
encoder. To produce a 128-dimensional representation, a fully
connected layer is added between the pooling layer and
the final liner layer which classifies face identities. Dropout
is applied before the linear classification layer to prevent
overfitting.

During training, the network takes the extracted images with
the shape of 3×224×244 as inputs. Network parameters are
updated with the SGD algorithm with an initial learning rate
of 0.1. We divide the learning rate by 10 whenever the training
loss reaches a plateau.

During the face based evaluation phase, we average the
face representations of the image frames from the same
video segment to get a video-level face representation. Cosine
similarity is used as the scoring function.

F. Evaluation metric

1) Verification evaluation: For speaker verification and face
verification, we report two performance metrics: (1) Equal
error rate (EER): the error rate when false acceptance rate
and false rejection rate are equal; (2) Minimum detection
cost (minDCF): the minimum value of the detection cost
function which is defined as a weighted sum of false-reject and
false-alarm error rates for some decision threshold [78]. The
parameters of the detection cost function are set as: CMiss = 1,
CFA = 1, PTarget = 0.05.
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TABLE II: Verification performance of the proposed self-supervised learning framework on VoxCeleb 1 test trials.

Model Modality VoxCeleb 1-O VoxCeleb 1-E VoxCeleb 1-H

minDCF EER[%] minDCF EER[%] minDCF EER[%]

Supervised Audio 0.097 1.51 0.102 1.59 0.178 3.00
Visual 0.083 1.46 0.063 1.24 0.092 1.71

Nagrani et al. [52] Audio (train and test); Visual (train) - 22.09 - - - -
Chung et al. [53] Audio (train and test); Visual (train) - 17.52 - - - -
Inoue et al. [37] Audio - 15.26 - - - -
Xia et al. [38] Audio - 8.23 - - - -
Huh et al. [39] Audio 0.454 8.65 - - - -
Mun et al. [40] Audio - 8.01 - - - -
Zhang et al. [41] Audio - 8.28 - - - -

Initial round - CSL Audio 0.508 8.86 0.570 10.15 0.710 16.20

Training with single modal audio data
Round 1 Audio 0.257 3.64 0.299 4.11 0.459 7.68
Round 2 Audio 0.214 2.99 0.234 3.41 0.362 6.25
Round 3 Audio 0.190 2.93 0.214 3.23 0.334 5.85
Round 4 Audio 0.184 2.85 0.202 3.16 0.314 5.54
Round 5 Audio 0.173 2.74 0.201 3.08 0.311 5.48

Training with multi-modal audio-visual data

Round 1 Audio 0.257 3.64 0.299 4.11 0.459 7.68
Visual 0.345 5.55 0.319 5.15 0.432 8.04

Round 2 Audio 0.146 2.05 0.159 2.36 0.254 4.23
Visual 0.153 2.27 0.126 1.85 0.170 2.79

Round 3 Audio 0.141 1.93 0.138 2.09 0.231 3.88
Visual 0.136 1.77 0.108 1.63 0.152 2.48

Round 4 Audio 0.139 1.81 0.139 2.06 0.224 3.80
Visual 0.178 1.96 0.108 1.61 0.152 2.50

Round 5 Audio 0.142 1.92 0.136 2.03 0.222 3.72
Visual 0.147 2.19 0.105 1.78 0.145 2.57

2) Clustering evaluation: To evaluate the clustering quality,
we adopt three metrics following [46]: the normalized mutual
information, the clustering accuracy, and the mean maximal
purity per cluster.

Given the ground-truth clustering assignment U and the
predictive clustering assignment V , the normalized mutual
information (NMI) measures the information shared between
U and V and is defined as:

NMI(U, V ) =
2× I(U ;V )

H(U) +H(V )
(14)

where I(U ;V ) denotes the mutual information between U
and V , and H(·) denotes entropy. The NMI ranges from 0
to 1. With two largely independent clustering assignments,
NMI becomes 0. When they are insignificant agreement, NMI
equals 1.

The clustering accuracy is measured by matching the pseudo
labels V to the ground truth labels U . Hungarian algorithm
[72] is used to establish label correspondence between U and
V .

To measure the semantic purity of each pseudo cluster
comparing to the ground truth labels, we report the mean
maximal purity per cluster,

purity =
1

K

∑
k∈K

max (p (y|ŷ = k)) (15)

where K is the number of pseudo clusters, ŷ represents a
pseudo cluster and p (y|ŷ = k) is the distribution of ground-
truth clusters under pseudo cluster k. This metric ranges from

1
K , which corresponds to a random clustering assignment, to
perfect matching at 1.

VI. EXPERIMENTAL ANALYSIS

The experiments are performed in five parts. In section
VI-A, we report the speaker verification performance of the
proposed self-supervised learning framework using both single
modal and multi-modal datasets. In section VI-B, labeling
qualities are reported. In section VI-C, we discuss how the
choice of the number of clusters affects the learned rep-
resentations. Section VI-D shows that robust training can
further improve the performance with our generated pseudo
labels. Finally, section VI-E demonstrates the power of self-
supervised pre-training on the small-scale labeled dataset.

A. Speaker verification performance

Table II reports the verification results of our proposed
framework using both single modal and multi-modal training
data. The number of clusters of the k-means algorithm is set to
6,000. A detailed analysis of choosing the number of clusters
is provided in section VI-C. The performance of the audio
speaker verification system and visual face verification system
trained with full supervision is also provided in table II for
reference.

When training with single modal audio data, one round of
clustering and representation learning obtains EER reductions
of more than 50% relatively for all the trial lists compared to
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(a) Initial round - CSL (b) Single modal round 1 (c) Single modal round 2 (d) Single modal round 3

(e) Multi-modal (audio) round 1 (f) Multi-modal (audio) round 2 (g) Multi-modal (audio) round 3 (h) Multi-modal (audio) round 4

(i) Multi-modal (visual) round 1 (j) Multi-modal (visual) round 2 (k) Multi-modal (visual) round 3 (l) Multi-modal (visual) round 4

Fig. 4: t-SNE visualization of learned representations extracted from the VoxCeleb 1 dataset. Each color corresponds to a
different speaker.

the initial round of contrastive self-supervised learning. The
performance of the speaker verification system improves with
the increase of round number, which shows the effectiveness of
the proposed iterative self-supervision framework on speaker
representation learning. Three rounds of training provide EERs
of 2.93%, 3.23%, and 5.85% on trials of VoxCeleb 1-O,
VoxCeleb 1-E, VoxCeleb 1-H, respectively.

Also, we see a trend of performance saturation for both
audio modality and audio-visual modalities. With single modal
audio data, the relative EER reduction percentages of the
current and previous rounds are 53%, 19%, 6% and 5% on
VoxCeleb 1-H trials for the first four rounds. With multi-modal
audio-visual data, the relative EER reduction percentages are
53%, 45%, 8% and 2% for the first four rounds. The speaker
representation network trained with pseudo labels generated
from multi-modal data has a larger performance gain thanks
to incorporating the complementary information of audio and
visual modality.

Although the performance of the audio modality-based
system still improves at round 5, the relative performance gain
between two concessive rounds shrinks. We can thus safely
conclude that the performance of the audio-based system
converges. Five rounds of training on audio modality achieves
an EER of 2.74% on trials of VoxCeleb 1-O, while two rounds
of training on audio-visual modalities achieves an EER of
2.05%. We believe it’s worth jumping into the audio-visual
modality for maximum efficiency under limited resources.

More training rounds may still improve the verification
performance for the audio modality. However, more training
rounds require more computational resources due to the iter-
ative nature of the proposed method. We chose to stop the
training iteration at round 5 to save computational resources
based on the verification performance of the development set.

Figure 4 visualizes the learned representations by using the
t-distributed stochastic neighbor embedding (t-SNE) algorith-
m [79]. Ten random speakers from Voxceleb 1 dataset are
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TABLE III: Unsupervised labelling of VoxCeleb 2 development set with different number of clusters K.

Number of clusters 1,000 6,000 20,000

Model Modality NMI Accuracy Purity NMI Accuracy Purity NMI Accuracy Purity

Supervised Audio 0.8264 36.42% 46.02% 0.9607 77.20% 90.34% 0.9237 44.87% 96.74%
Visual 0.8470 36.77% 46.30% 0.9642 77.87% 91.32% 0.9250 46.92% 97.23%

CSL Audio 0.6189 19.84% 21.58% 0.7586 38.49% 51.45% 0.8114 27.68% 68.21%

Training with single modal audio data
Round 1 Audio 0.7315 30.15% 34.59% 0.9007 66.04% 78.62% 0.9005 40.51% 90.34%
Round 2 Audio 0.7413 29.82% 33.55% 0.9121 67.22% 81.03% 0.8978 39.71% 89.83%
Round 3 Audio 0.7443 29.82% 33.81% 0.9190 68.64% 82.27% 0.8937 38.69% 88.68%
Round 4 Audio - - - 0.9209 69.07% 82.80% - - -
Round 5 Audio - - - 0.9230 68.93% 83.50% - - -

Training with multi-modal audio-visual data

Round 1
Audio 0.7315 30.15% 34.59% 0.9007 66.04% 78.62% 0.9005 40.51% 90.34%
Visual 0.7531 31.21% 42.55% 0.9107 67.94% 79.33% 0.8979 40.95% 88.61%
Fused 0.7993 32.63% 43.16% 0.9531 77.11% 89.11% 0.9233 47.26% 96.33%

Round 2
Audio 0.7478 31.23% 37.22% 0.9445 73.24% 87.66% 0.9099 42.02% 93.11%
Visual 0.8121 32.63% 42.50% 0.9502 73.17% 89.04% 0.9069 41.88% 91.72%
Fused 0.8251 32.59% 44.32% 0.9608 77.34% 90.53% 0.9241 46.90% 96.91%

Round 3
Audio 0.7711 31.81% 38.00% 0.9519 74.68% 88.91% 0.9102 42.06% 93.12%
Visual 0.8082 32.46% 43.33% 0.9546 73.67% 89.47% 0.9135 42.94% 93.84%
Fused 0.8311 32.52% 46.00% 0.9627 77.60% 90.62% 0.9249 47.13% 97.20%

Round 4
Audio - - - 0.9523 74.38% 89.32% - - -
Visual - - - 0.9559 73.23% 89.85% - - -
Fused - - - 0.9624 76.66% 90.61% - - -

Round 5
Audio - - - 0.9514 74.08% 89.21% - - -
Visual - - - 0.9571 73.54% 90.17% - - -
Fused - - - 0.9624 76.91% 90.85% - - -

selected for visualization. The speaker representations learned
with the initial round of CSL (figure 4a) are not discriminative
enough as speaker subspaces overlap. We can observe that
the proposed iterative learning framework keeps optimizing
the within-class variance and between-class variance of the
learned speaker representations. By comparing the learned
speaker representations from the third round, we observe that
the representations trained with multi-modal data (figure 4g)
are more discriminative than those trained with single modal
data (figure 4d). Also, by comparing the feature spaces of
speaker representations (figure 4e) and face representations
(figure 4i), we observe that the one poorly learned speaker
subspace in one modality can be discriminative in the other
modality (see the red speaker and the blue speaker marked in
figure 4e and 4i). This indicates the complementary property
of the audio and visual modality, which allows the label
ensemble algorithm to generate noise-tolerant pseudo labels
from different modalities.

B. Unsupervised labeling of unlabeled dataset

Table III shows the quality of the labels obtained by the
proposed framework with both single modal and multi-modal
training data. We run k-means clustering on both audio repre-
sentations and visual representations trained with supervision
and calculate metrics of clustering quality as upper bounds for
reference.

We observe that the iterative training helps to obtain better
clustering quality in most experimental settings. Also, the
cluster ensemble of audio and visual modality greatly improves
all the clustering quality metrics under different settings of

the number of clusters. Compared with the single modal sys-
tem, the multi-modal training system improves the clustering
quality by a large margin. With multi-modal training data,
our proposed framework obtains a high labeling accuracy
of 77.60%, almost the same as the labeling accuracy of the
representations learned with supervision.

C. Choosing the number of clusters

The ‘elbow’ method introduced in section III-B2 is used to
determined the number of clusters for k-means algorithm. To
determine the number of clusters K for the calculation of the
total within-cluster sum of square W , we first attempt to guess
the reasonable maximum and minimum of the average cluster
size. Given the training data of the VoxCeleb 2 development
set with 1,092,009 data samples, the maximum and minimum
of the average cluster size could be 1,000 and 50, which lead
to minimal and maximal K around 1,000 and 20,000. The W -
K curve is then plotted with a step size of 1,000 for K. Figure
2 shows the W -K curve for the representations trained with
CSL. Auxiliary line and tangent line as introduced in section
III-B2 to help find the ‘elbow’ point are drawn in the figure.
By observing the ‘elbow’ of the W -K curve, an appropriate
number of clusters can choose from 5,000 to 7,000. Figure 5
shows W -K curves of each training round of our proposed
framework when the number of clusters is set to 6,000. For
better comparison, we normalize the value of W in the W -K
curve between 0 and 1. All the W -K curves show a consistent
‘elbow’ around 5,000 to 7,000.

To understand how the choice of the number of clusters
affects the verification performance and labeling quality of
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(c) Multi-modal training (visual)

Fig. 5: Within-cluster sum of square W of a clustering procedure versus the number of clusters K employed. For each training
round, the number of clusters is set to 6,000.
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(c) Multi-modal training (visual)

Fig. 6: Within-cluster sum of square W of a clustering procedure versus the number of clusters K employed. Each curve
corresponds to the last training round of our learning framework with a particular K.

our proposed framework, we train another two systems with
a small number of clusters of 1,000 and a large number of
clusters of 20,000. Figure 6 shows W -K curves from the last
training round of our learning framework with different K.
We observe a relatively consistent ‘elbow’ around 6,000 from
all W -K curves, which indicates that the ‘elbow’ method can
estimate a correct number of clusters even when the system is
trained with extremely small or large K.

Table III reports the clustering quality when the proposed
framework is trained with a number of clusters of 1,000 and
20,000. We observe a better mean maximal purity per cluster
with larger K. Larger K leads to smaller cluster sizes and
more semantic-related data samples within a cluster. Although
clustering with a number of clusters (K = 6, 000) that is close
to the actual number (K = 5, 994) gives the best NMI and
accuracy, clustering with a small (K = 1, 000) or large (K =
20, 000) number of clusters is also able to generate meaningful
pseudo labels with reasonable NMIs and accuracies.

Figure 7 presents the verification performance for all train-
ing rounds of the proposed framework with different set-
tings of the number of clusters. Training with a number of
clusters closed to the correct one gives the best verification
performance for both speaker and face verification. Also,
training with a small or large number of clusters can obtain
performance gain over the CSL system. However, the speaker
representation network is more likely to overfit with pseudo

TABLE IV: Self-supervised speaker verification performance
(EER %) of robust training on the final pseudo labels.

Model VoxCeleb 1-O VoxCeleb 1-E VoxCeleb 1-H

minDCF EER minDCF EER minDCF EER

Supervised 0.097 1.51 0.102 1.59 0.178 3.00

Single modal trained 0.190 2.93 0.214 3.23 0.334 5.85
with label smoothing 0.173 2.70 0.201 3.07 0.318 5.42
with SE + AAM 0.179 2.65 0.185 2.89 0.297 5.01

Multi-modal trained 0.139 1.81 0.139 2.06 0.224 3.80
with label smoothing 0.125 1.70 0.125 1.87 0.211 3.44
with SE + AAM 0.120 1.62 0.122 1.87 0.199 3.37

labels generated with extreme settings of the number of
clusters. We also see that systems with a large K (20,000)
outperform those with the estimated K (6,000) at the first
training round, which indicates that high cluster purity is
essential for the first training round.

D. Robust training

In this section, we show that speaker verification perfor-
mance can further improve with the generated pseudo labels.
Two robust training methods are applied separately to achieve
this goal:

1) Label smoothing regularization is used to deal with label
noise of the generated pseudo labels as described in
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Fig. 7: EER of each training round of the proposed framework trained with single modal data or multi-modal data. For each
setting of training data, we train the framework with different numbers of clusters, i.e., 1,000, 6,000, 20,000.

TABLE V: Fine-tune the self-supervised model with labeled data of different speakers.

Fine-tuning data None 10 speakers 100 speakers 600 speakers All speakers

Pre-trained model minDCF EER[%] minDCF EER[%] minDCF EER[%] minDCF EER[%] minDCF EER[%]

None - - 0.998 25.82 0.581 9.63 0.298 4.09 0.191 2.70
CSL 0.508 8.86 0.489 8.24 0.400 6.14 0.332 4.52 0.294 4.20
Single modal trained 0.190 2.93 0.199 2.90 0.171 2.53 0.151 2.06 0.148 1.91
Multi-modal trained 0.139 1.81 0.144 1.89 0.150 1.92 0.115 1.63 0.116 1.69

section III-D. The hyper-parameter ε is set to 0.1 here.
2) Squeeze-Excitation (SE) module [80] is added to improve

ResNet. Additive angular margin (AAM) loss [81] is
used to learn discriminative representations: the re-scaling
factor s is set to 32 and angular margin m is set to 0.2.

Table IV shows experimental results of the above robust
training strategies. Compared with the last round results of the
proposed framework, label smoothing regularization obtains a
relatively 5% gain in terms of EER for all testing trials; SE
module with AAM loss obtains a 10% relative gain.

E. Fine-tuning

In this section, the self-supervised learning model is fine-
tuned with small-scale labeled datasets. We use the develop-
ment set of VoxCeleb 1 [16] with 1,211 speakers for fine-
tuning. To test the performance of self-supervised pre-training
for the smaller dataset, we construct three datasets with 10,
100, 600 speakers randomly selected from VoxCeleb 1 dev
set. Results are reported on VoxCeleb 1-O test trials.

We use three pre-trained models, i.e., the model trained with
CSL, the model from the last round of the proposed framework
trained with single modal data, and the speaker representation
model from the last round of the proposed framework trained
with multi-modal data. The model trained with CSL uses a
ResNet with half feature map channel and 40-dimensional in-
put features. During fine-tuning, the final fully connected layer
is replaced to classify the speakers in the small-scale dataset.
We firstly freeze the speaker representation encoder and solely
train this classification layer until convergence. The remaining

training epochs optimize the parameters of the representation
encoder and the classification layer simultaneously.

Table V shows the verification results. Fine-tuning with
100 speakers on the model pre-rained with single modal data
achieves better performance than the fully supervised model
trained with 1,211 speakers. Also, the self-supervised model
trained with large-scale multi-modal data outperforms all the
fully-supervised models trained with the small-scale dataset.
Moreover, fine-tuning can further improve speaker verification
performance. With the multi-modal pre-trained model, fine-
tuning on VoxCeleb 1 development set obtains a relative EER
reduction of 37.4% compared to the counterpart without fine-
tuning. We do not see a performance gain when fine-tuning
with 10 or 100 speakers. This can be explained by the over-
fitting of the small-scale dataset. The pseudo labels generated
by our proposed framework are sufficient to train the speaker
representation encoder discriminatively, and overfitting hurts
the discriminative power of the encoder.

VII. CONCLUSION

In this paper, we proposed a self-supervised learning frame-
work for speaker recognition. The proposed framework iter-
atively performs clustering and representation learning, gen-
erates pseudo labels for unlabeled training data, and learns
speaker representations without human annotation. Several
rounds of discriminative training follow the initial training
round of contrastive self-supervised learning. Clustering is
performed between two rounds of representation learning to
generate pseudo labels. The framework exploits DNN’s ability
to learn from noisy labels and iteratively improves the dis-
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criminative power. Considering the complementary property of
audio and visual modality, we extend the proposed framework
to multi-modal audio-visual data. A visual encoder is added to
learn face representations from the visual modality. A cluster
ensemble algorithm fuses the pseudo labels from different
modalities, avoiding confirmation bias in self-training within
a single modality. We evaluate the proposed self-supervised
learning framework on the VoxCeleb dataset; experimental
results show that our proposed framework outperformed pre-
vious works with self-supervision by large margins. With an
additional modality of visual data, the proposed framework
greatly shrinks the performance gap between self-supervised
and fully supervised speaker recognition. Also, experimental
analysis shows that the proposed framework generates pseudo
labels that are highly correlated to ground truth labels.
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