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Abstract

Partially fake audio, a variant of deep fake that involves manipulating audio utterances through
the incorporation of fake or externally-sourced bona fide audio clips, constitutes a growing threat
as an audio forgery attack impacting both human and artificial intelligence applications. Re-
searchers have recently developed valuable databases to aid in the development of effective coun-
termeasures against such attacks. While existing countermeasures mainly focus on identifying
partially fake audio at the level of entire utterances or segments, this paper introduces a paradigm
shift by proposing frame-level systems. These systems are designed to detect manipulated utter-
ances and pinpoint the specific regions within partially fake audio where the manipulation occurs.
Our approach leverages acoustic features extracted from large-scale self-supervised pre-training
models, delivering promising results evaluated on diverse, publicly accessible databases. Addi-
tionally, we study the integration of boundary and deepfake detection systems, exploring their
potential synergies and shortcomings. Importantly, our techniques have yielded impressive re-
sults. We have achieved state-of-the-art performance on the test dataset of the Track 2 of ADD
2022 challenge with an equal error rate of 4.4%. Furthermore, our methods exhibit remarkable
performance in locating manipulated regions in Track 2 of the ADD 2023 challenge, resulting in
a final ADD score of 0.6713 and securing the top position.

Keywords: Audio splicing forgery, waveform boundary detection, audio deepfake detection
challenge

1. Introduction

Digital content, including text, images, and audio, plays a pivotal role in facilitating commu-
nication and disseminating knowledge among humans. These forms of content can also serve
as evidence in judicial proceedings [1]. However, as deep learning continues to advance rapidly,
there are now numerous methods available to generate and manipulate digital data. While these5

techniques were originally developed to provide a wide range of benefits and opportunities to
humanity, they also pose a significant threat to societal security [2, 3, 4]. Notably, there has been
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an increase in the accessibility of deep-generation applications to the general public [5, 6, 7].
These sophisticated tools have the ability to generate synthetic outputs that closely resemble
human-generated content, posing a challenge in verifying their authenticity and distinguishing10

them from genuine materials. Consequently, the misuse of such applications has the potential to
tamper with multimedia content and propagate false messages, amplifying the need for scrutiny
and verification [8].

Nevertheless, the development of corresponding countermeasures for detecting fraudulent
content is relatively slow and significantly lagging behind. Regarding speech synthesis, the two15

primary approaches, namely text-to-speech and voice conversion, have achieved remarkable lev-
els of naturalness and similarity with various deep architectures such as Tacotron-based [9, 10],
Fastspeech-based [11, 12], and VAE-based models [7]. However, this advancement also opens
up the possibility of launching audio spoofing attacks using any of these approaches, thus mak-
ing the detection of such attacks more difficult. In this context, researchers have dedicated their20

efforts to designing anti-spoofing speech detection systems [13, 14, 15], while comparatively less
attention has been given to spoofing algorithm detection [16, 17, 18]. While existing literature
has demonstrated impressive performance in anti-spoofing speech detection, it is important to
note that most deep learning models are trained and evaluated on specific systems and datasets,
limiting their discriminatory ability when faced with unseen scenarios and mismatched domain-25

s [19]. This includes detecting attacks generated through synthesis approaches not encountered
during training. As a result, the development of a universal anti-spoofing system still requires
further research and advancements.

One of the most challenging scenarios in anti-spoofing speech attacks is audio splicing or
tampering forgery. Audio splicing forgery refers to techniques used to manipulate audio record-30

ings by cutting, merging, or combining different sections of audio from multiple sources [20, 21].
This involves operations such as insertion, deletion, and substitution of specific audio segments
to create a seamless and coherent audio file [22]. Accordingly, fraudsters could exploit these
techniques to engage in deceptive practices, such as creating fake conversations, altering speech
content to misrepresent information, and generating misleading evidence. Nevertheless, the ad-35

vancement of deep speech synthesis has made this type of speech spoofing more difficult to
detect, as the inserted clips can now be high-fidelity audio segments that maintain the exact same
voice as the genuine speech. This presents a more intricate scenario where manipulation can be
achieved using either other genuine audio segments or high-fidelity synthesized ones. The re-
search community has recently acknowledged this emerging scenario, referring to it as partially40

fake audio attacks [23, 24]. Subsequently, several methodologies have been developed to detect
such attacks and, in some cases, even to identify and segment potentially falsified regions within
the manipulated utterances [25, 26, 27].

However, existing systems in the literature still have limitations. Most research predomi-
nantly concentrates on the detection of spoofed audio at the utterance or segment level, without45

being able to locate the precise manipulated part within spoofed utterances. On the other hand,
available techniques that can identify regions in partially spoofed utterances often lack the ca-
pability to authenticate each individual region. As such, there remains room for enhancing their
performance [28].

Concerning the challenges posed by the emerging partially fake audio attacks, this paper50

presents our novel frame-level detection systems, building upon our previous research [27].
These systems encompass a boundary detection system and a deepfake/spoofing detection sys-
tem, both of which are extensively trained and evaluated on multiple publicly available datasets,
including those from ADD challenges and the PartialSpoof database. Experimental findings

2



demonstrate the effectiveness of our proposed systems in detecting partially spoofed audio and55

accurately localizing the manipulated regions at the frame level. Notably, our approach achieves
state-of-the-art performance on the test dataset of ADD2022 Track 2, boasting an impressive
EER of 4.4%, and secures the first position in Track 2 of the ADD 2023 challenge. The main
contributions of this paper are as follows:

• Proposing effective frame-level systems capable of detecting partially spoofed audio and60

locating the corresponding manipulated regions.

• Exploring model integration techniques to facilitate the practical use of spoofing detection
models in identifying fake regions.

• Investigating the performance of various large-scale self-supervised pre-training models in
countering partially fake attacks.65

The remaining sections of the paper are structured as follows: Section 2 presents an overview
of related works from the existing literature. Section 3 introduces available databases for the s-
tudy of partially spoofed anti-spoofing. Section 4 details our proposed approach for detecting and
locating fake regions. Our experimental setup and corresponding results are presented and ana-
lyzed in Section 5. We discuss our work’s limitations and potential future directions in Section 6.70

Finally, in Section 7, we conclude our study.

2. Related Works

Conventional techniques rely on various speech signal processing algorithms to analyze the
inconsistencies introduced during the audio tampering process. Researchers have explored differ-
ent acoustic properties and statistical patterns to differentiate genuine speech utterances from ma-75

nipulated ones. One approach for audio authenticity verification is based on the electric network
frequency (ENF) criterion, which leverages artifacts caused by electronic circuits in recording
devices [29, 30]. Yang et al. presented a technique that explicitly investigates the discontinuity
of frame offsets in the context of the MP3 encoding scheme [31]. Furthermore, audio reverbera-
tion has been estimated as an audio environmental feature in forensic settings [32]. Subsequent80

studies have extended this exploration to encompass other environmental features, such as back-
ground noise level and inconsistency [16, 33, 34], aiming to detect spliced digital audio.

Subsequently, machine learning methods, particularly deep learning, have emerged as dom-
inant approaches in this field due to their remarkable efficacy. Jadhav et al. conducted a pilot
study that employed deep learning for audio splicing detection [22]. They utilize convolutional85

neural networks (CNN) and achieve high detection accuracy, demonstrating robustness against
noise attacks and compression. However, their proposed classification model is limited to deter-
mining if an audio clip has been tampered with and does not provide localization of the spliced
segment.

Consequently, several studies have focused on developing methods to precisely localize s-90

plicing segments. Various modern neural architectures, such as the encoder-decoder-based
ASLNet [35], ResNet-based models [36], and Conformer-based models [37], have been ex-
plored, demonstrating their ability to capture distinguishable patterns for detecting spliced
boundaries. These models exhibit promising results in boundary detection, particularly when
applied at the chunk level. The chunk sizes vary, with the ASLNet-based model utilizing 1-95

second chunks, the Conformer-based model using 0.256-second chunks, and the ResNet-based
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model employing 0.6-second chunks. Despite the ResNet-based model proposed by Zeng et
al. being capable of frame-level detection with a 40ms frame length, its performance does not
entirely match the proficiency observed in chunk-level detection [36].

In addition, these deep learning approaches have mainly been trained and assessed on self-100

constructed datasets, hindering uniform comparison and evaluation across studies. To address
this gap, publicly accessible datasets have been developed to encourage research on audio s-
plicing within the context of high-fidelity synthesis techniques. Zhang et al. introduce the
PartiallySpoof database [24], which contains manipulated bona fide utterances embedded with
synthesized audio segments from the ASVspoof 2019 logical access (LA) database. They al-105

so provide a benchmark model using linear frequency cepstral coefficients (LFCC) and Light
Convolutional Neural Networks (LCNN) [25].

Another database, named Half-Truth, is specifically designed to encompass additional sce-
narios allowing for splicing based on both genuine and fake clips [23]. Figure 1 illustrates an
example of a partially fake spoofed utterance generated by manipulating bona fide utterances110

with synthesized and externally-sourced genuine audio segments. The Half-Truth database is
publicly available through the Audio Deep Synthesis Detection Challenge (ADD) [38]. In Track
2 of ADD 2022, which represents the first challenge task designed for segment-level partially
spoofed audio detection, researchers explore large-scale self-supervised pre-training models and
demonstrate their impressive performance in comparison to traditional acoustic features like Mel115

frequency cepstral coefficients (MFCC) and LFCC [26, 39, 27]. Lv et al. participated in the
challenge and achieved the highest performance with an utterance-level detection system that
was fine-tuned using large-scale pre-training models [39]. The effectiveness of acoustic features
extracted by self-supervised models is also proven on the PartiallySpoof database, achieving an
utterance-level equal error rate (EER) of 0.49%, which outperforms models relying on conven-120

tional front-end acoustic features [40].

Inserted genuine clip Inserted synthesized clip

Figure 1: An illustrative example of partially spoofed speech

While approaches for utterance-level partial spoofing detection have demonstrated impres-
sive performance, the study of splicing segment localization is recognized as a more challenging
and crucial task. Regarding Track 2 of ADD 2022 challenge, systems based on frame-level detec-
tion have already enabled the identification of concatenation boundaries, including our previous125

boundary detection system and the Fake Span Discovery system developed by Wu et al [41]. In
addition to detecting partially fake audio, Track 2 of ADD 2023 emphasizes the localization of
manipulated regions within partially spoofed utterances [28].
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3. Databases

There are currently limited publicly available datasets for partially spoofed audio. We have130

access to three databases that can be used for the study: ADD2022-T2 [38], ADD2023-T2 [28],
and PartialSpoof [24]. While ADD2022-T2 and ADD2023-T2 contain Mandarin Chinese audio
utterances, the PartialSpoof dataset comprises English audio utterances. The detailed statistics
of these databases are outlined in Table 1, wherein the category of ‘Bona fide’ utterances pertain-
s to natural, unaltered utterances, ‘Fake’ utterances indicate synthetically generated utterances135

produced by text-to-speech and voice conversion systems, and ‘PartialFake’ utterances refer to
those that are partially manipulated.

Table 1: The statistics of the ADD2022 Track 2 database, the ADD2023 Track 2 database, and
the PartialSpoof database, ‘-’ denotes unknown number

Name #Utterances Duration (h) Audio length (s)
Bona fide Fake PartialFake All min - max mean / std

ADD2022-T2-Train 3,012 24,072 35,808 62,892 47.33 0.96 - 60.01 3.15 / 2.00
ADD2022-T2-Adapt 1,052 0 1,052 2,104 2.22 1.15 - 13.41 3.79 / 1.68
ADD2022-T2-Test - - - 100,625 166.29 1.07 - 158.14 5.95 / 4.87

ADD2023-T2-Train 26,554 1,185 25,354 53,093 53.39 0.87 - 14.77 3.62 / 1.44
ADD2023-T2-Dev 8,914 430 8,480 17,824 17.40 0.82 - 13.34 3.51 / 1.31
ADD2023-T2-Test 20,000 - - 50,000 56.45 0.77 - 153.81 4.06 / 3.14

PartialSpoof-Train 2,580 0 22,800 25,380 24.25 0.60 - 21.02 3.44 / 1.56
PartialSpoof-Dev 2,548 0 22,296 24,844 24.34 0.62 - 15.34 3.53 / 1.63
PartialSpoof-Eval 7,355 0 63,882 71,237 67.68 0.48 - 18.20 3.42 / 1.70

3.1. The ADD2022-T2 database
The ADD2022-T2 (ADD2022 Track 2) database, consists of three subsets: the training, adap-

tation, and test sets. The training set, referred to as ADD2022-T2-Train, is utilized for model140

training. The adaptation set, named as ADD2022-T2-Adapt, is used for performance evaluation
and model selection. The test set, denoted as ADD2022-T2-Test, serves as an evaluation set
containing out-of-domain data. Within the ADD2022-T2-Train set, there are 3,012 bona fide
utterances and 24,072 fake utterances. Additionally, 35,808 utterances are constructed by com-
bining bona fide and fake utterances, as explained in our previous work [27]. Only bona fide145

utterances and partially fake utterances are used for model training.
The ADD2022-T2 development set, though not displayed in the table, shares similarities

with ADD2022-T2-Train in terms of number of utterances. However, it does not contain partial-
ly fake utterances. Conversely, the adaptation dataset, provided by the official challenge, contains
1,052 partially fake utterances but lacks bona fide ones. To ensure fair evaluation, we random-150

ly select 1,052 bona fide utterances from the ADD2022-T2 development set. These selected
utterances, combined with the original adaptation dataset, constitute the ADD2022-T2-Adapt
dataset. This approach guarantees that all evaluation utterances are sourced from the challenge
itself. Both ADD2022-T2-Train and ADD2022-T2-Adapt datasets have utterance-level labels.
However, the ADD2022-T2-Test set comprises 100,625 utterances but lacks labeling informa-155

tion. The distribution of utterances within this set is unknown. The performance evaluation on
ADD2022-T2-Test can be exclusively obtained using the open-source platform CodaLab1.

1https://codalab.lisn.upsaclay.fr/competitions/4111
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3.2. The ADD2023-T2 database
Unlike the ADD2022 Track 2 challenge, ADD2023 Track 2 challenge provides partially fake

utterances, which are utilized in our study. The ADD2023-T2 database comprises three sub-160

sets: ADD2023-T2-Train, ADD2023-T2-Dev, and ADD2023-T2-Test. The ADD2023-T2-Train
subset contains 26,554 genuine utterances, 1,185 fake utterances, and 25,354 manipulated utter-
ances. In the ADD2023-T2-Dev dataset, we have 8,914 genuine utterances, 430 fake utterances,
and 17,824 partially fake utterances. Since Track 2 of ADD2023 specifically focuses on locating
the manipulated regions, both utterance-level and frame-level labeling information is available165

for ADD2023-T2-Train and ADD2023-T2-Dev. Lastly, the ADD2023-T2 database includes the
ADD2023-T2-Test dataset, consisting of 50,000 unlabelled utterances without any provided la-
beling information. Due to the absence of labeling information for ADD2023-T2-Test, we are
unable to analyze results on this dataset. As a result, we have excluded ADD2023-T2-Test as our
evaluation dataset in our experiments.170

3.3. The PartialSpoof database
Similarly, the PartialSpoof database comprises three subsets, each containing both utterance-

level and frame-level labels. This dataset is constructed from the ASVspoof 2019 logical access
(LA) database, which includes fake utterances generated by text-to-speech (TTS) systems and
voice conversion (VC) systems [42]. The construction of the PartialSpoof database involves sev-175

eral steps to ensure fine-grained data generation, aiming to avoid potential artifacts introduced
from concatenating audio segments [40]. This meticulous approach renders this database more
challenging in terms of both spoofing detection and the localization of fake regions, as compared
to the two databases previously mentioned. As illustrated in Table 1, the audio lengths of utter-
ances in the training, development, and evaluation sets are within a similar range, ranging from180

approximately 0.5 seconds to 20 seconds. Notably, the PartialSpoof-Eval set consists of spoofed
utterances generated by different TTS and VC systems from the PartialSpoof-Dev set.

4. Methods

We employ a frame-level boundary detection system and a frame-level anti-spoofing system
to detect partially spoofed utterances and identify the manipulated region at the same time. Both185

systems utilize the same network architecture as our previous model developed for ADD 2022
Track 2 [27], differing mainly in their output labeling strategy. The architecture and data flow
are visually depicted in Figure 2.

The frame-level detection models used in our approach, one for boundary detection and the
other for anti-spoofing detection, utilize the deep framework depicted in Figure 2. We em-190

ploy large-scale self-supervised pre-training models such as Wav2Vec2 [43] and WavLM [44]
to extract frame-level acoustic representations from raw audio signals. Following that, a 1-
dimensional residual network module (ResNet-1D) is utilized to further extract frame-level fea-
tures specific to our task. A backend classifier is then applied to predict the classification result
for each frame. Specifically, the ResNet-1D module consists of two 1-dimensional convolutional195

neural network (1D-CNN) layers surrounding a series of residual blocks. Each residual block
contains two 1D-CNN layers and incorporates a residual connection from input to output. The
backend classifier incorporates transformer encoders and a Bidirectional LSTM (BLSTM) to
capture long-range global contexts. It also includes a fully connected layer that maps the high-
dimensional output vectors to binary outputs. The details of our proposed model are presented200

in Table 2.
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Wav2Vec / WavLM

1D CNN

Batch Normalization

ReLU

1D CNN

Batch Normalization

ReLU

1D CNN

Batch Normalization

Transformer Encoder

BiLSTM

Linear

0 0 1 1 0 1 1 0 0 0 0 0 0

1 1 1 0 0 0 1 1 1 1 1 1 1

Backend Classifier

ResBlock

ResNet-1D

Genuine
Fake

Preditions

Boundary Predition

Authenticity Predition

1D CNN

Batch Normalization

Linear & Norm

Figure 2: The overall architecture of frame-level detection models
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Table 2: The network configuration of frame-level detection models, where C(kernal size,
padding, stride) denotes the convolutional layer, [·] denotes the residual block, E(number of lay-
ers, number of heads, FFN size) denotes the Transformer Encoder, BiLSTM(number of layers,
hidden units) denotes BiLSTM layer, Linear(input size, output size) denotes the fully-connected
layer; L relates to the duration of the input audio signal and T is the number of label frames

Layer Output Size Structure #Parameters Note

Input audio L × 1 - - l seconds

Wav2Vec2/WavLM T × 1024 - refer to Table 3 -

1D-CNN T × 512 C(5, 2, 1)w/o bias 2.62M -

ResBlock(s) T × 512
[
C(1, 0, 1) w/o bias
C(1, 0, 1) w/o bias

]
6.32M 12 blocks

1D-CNN T × 128 C(1, 0, 1) 0.066M -

Linear & Norm T × 128 Linear(128, 128) 0.017M -

Transformer Encoder T × 128 E(2, 4, 1024) 0.66M dropout=0.5

BiLSTM T × 128 BiLSTM(1, 128) 0.26M dropout=0

Linear (Boundary) T × 1 Linear(256, 1) - Binary Cross Entropy Loss
For (Anti-spoofing) T × 2 Linear(256, 2) - Cross Entropy Loss

Examples of the labeling process are also illustrated in Figure 2. The goal of the boundary
detection model is to identify discontinuities in a sequence of frames. To achieve this, we adopt
a labeling strategy that assigns a value of ‘1’ to certain frames surrounding waveform concate-
nation boundaries, while frames within genuine and fake segments are labeled with ‘0’. On the205

other hand, the anti-spoofing detection model assigns a label of ‘0’ to fake audio frames and ‘1’
to genuine frames in the target output.

4.1. Large-scale self-supervised pre-training models

Large-scale self-supervised pre-training models have demonstrated significant advantages in
extracting robust acoustic features for various speech-related tasks, including speech recogni-210

tion [45], speaker recognition [46, 47] and spoofing detection [48, 49]. Recent studies have
indicated that employing pre-training models with larger parameter sizes generally improves
system performance [27, 39, 40]. Therefore, we leverage multiple pre-training models for fea-
ture extraction in our approach and comprehensively analyze their performance. The large-scale
self-supervised pre-training models used in our study are listed in Table 3. All Wav2Vec2-based215

and WavLM-based models operate at a frame rate of 20ms.
The Wav2Vec2-Base model, previously utilized in our work, possesses a relatively smaller

parameter size and generates output features with a dimension of 768. On the other hand, all other
models have approximately 317M parameters and produce output features of size 1024. These
models are pre-trained using 16kHz audio files, which aligns with the sample rate of the database220

utilized in our study. The Wav2Vec2-XLSR-CN model is fine-tuned from Wav2Vec2-XLSR

2https://huggingface.co/facebook/wav2vec2-base-960h
3https://huggingface.co/facebook/wav2vec2-large-xlsr-53
4https://github.com/microsoft/unilm/tree/master/wavlm
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Table 3: Large-scale self-supervised pre-training models used in our approach

Model Name htrain hfine-tune nparams dmodel

Wav2Vec2-Base2 [43] 960 - 94.37M 768
Wav2Vec2-XLSR3 [50] 50k - 317.38M 1024

Wav2Vec2-XLSR-CN [51] 50k 215.27 317.38M 1024
Wav2Vec2-XLSR-EN [52] 50k 1,087 317.38M 1024

WavLM-Large4 [44] 94k - 316.62M 1024

on around 215.27 hours of Chinese data, using the training and validation splits of Common
Voice 6.1 [53], CSS10 [54], and ST-CMDS [55] datasets. Similarly, the Wav2Vec2-XLSR-EN
model is fine-tuned from Wav2Vec2-XLSR on 1,087 hours of English data, using the training
and validation splits of the Common Voice 6.1 dataset.225

4.2. Training

We employ several strategies to train our proposed models, including data loading and sam-
pling processes. During training, Our proposed frame-level models take raw audio clips ran-
domly cut from audio utterances. The input length of the model is fixed and set to l samples of
the raw audio signal. Additionally, each database has its unique data distribution and generation230

process. Therefore, the labeling process and data balancing are crucial to model training.

4.2.1. ADD2022-T2
For the training process on the ADD2022-T2 database, we adhere to the data sampling pro-

cedure outlined in our previous work [27]. This approach introduces a sampling strategy that
selects data and cuts to fixed length l from utterances with and without boundaries, following a235

probability distribution of {without boundary: 0.3, with boundaries: 0.7}. This strategy is em-
ployed to mitigate the issue of data imbalance during training. The statistics of the ADD2022-T2
database show that the number of bona fide utterances (those without boundaries) is significantly
less than the number of partially fake utterances. Therefore, including a limited sampling proba-
bility for utterances without boundaries is essential, as the model fails to converge otherwise.240

4.2.2. ADD2023-T2
The issue of data imbalance also arises in ADD2023-T2. Specifically, there are 1,185 fake

utterances compared to 26,554 bona fide utterances. Furthermore, partially manipulated utter-
ances contain a significant number of authentic audio frames, while the count of fake frames
is comparatively lower. To address this imbalance, we employ two strategies during the data245

loading process to ensure equilibrium between bona fide frames and fake frames. This balance
is achieved through the following probability distribution: {Strategy I.: 0.3, Strategy II.: 0.7}.

I. Randomly choose genuine and fake utterances from the training set, with a probability of
0.3 for selecting genuine utterances and a probability of 0.7 for selecting fake utterances.
Then cut to fixed length l as input for training.250

II. Randomly segment clips from the partially spoofed utterances in the training set.
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In the case of boundary detection models, genuine and fake utterances are treated as identical
because they don’t contain any boundaries within them. Therefore, when use Strategy I., there’s
no need to differentiate and sample between genuine and fake utterances. Similar to what is used
for ADD2022-T2, the distribution used for data sampling in boundary detection models is as255

follows: {Strategy I. (without boundary): 0.3, Strategy II. (with boundaries): 0.7}. Regarding
label generation, we assign labels of ‘1’ to the four closest frames surrounding each boundary.

4.2.3. PartialSpoof
The data construction process of the PartialSpoof database differs from that of ADD2022-

T2 and ADD2023-T2. It involves fine-grained editing techniques such as normalization and260

computation of the best fusion point between genuine and synthesized clips. The splicing of
partially spoofed audio occurs in non-speech segments, posing a greater challenge for detection.
The insertion is achieved through overlap-add between the non-speech portions of genuine and
synthesized audio. When utilizing the PartialSpoof database for training an anti-spoofing system,
we assign a label of ‘0’ to all frames associated with fake and edited segments, including the265

overlap-add regions, while genuine frames are labeled ‘1’. Regarding training the boundary
detection system, we consider the middle frame of the overlap-add sections as the boundaries
and set labels ‘1’ to the four closest frames surrounding each boundary. The sampling strategy
employed for this database is identical to the one used for ADD2022-T2.

4.3. Inference270

The inference process for our frame-level spoofing detection systems is illustrated in Figure 3.
Similarly, the inference process for boundary detection models follows a similar procedure, with
the distinction that the outputs correspond to boundary probabilities. During the inference stage,
we begin by dividing the audio signal into overlapping audio clips. Each clip has the same length
as the training samples, which is l, with a step size of l/2. After obtaining the authenticity prob-275

abilities for each frame within the audio clips, we merge the results of all the clips by averaging
the overlapping regions.

0.9 1 0.2 0

0 0 0.15 1

Authenticity Probabilities

Genuine
Fake

Seg 1
Seg 2

Seg 3
Seg 4

0.05 0.8 1 1

1 1 1 1

0.9 1 0.1 0 0.1 0.9 1 1 1 1

Figure 3: The inference process for our proposed frame-level spoofing detection system

4.4. Model integration

We conducted investigations with several model integration strategies to explore the practical
application of our frame-level detection models. The boundary detection system demonstrates280
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proficiency in detecting certain artifacts in partially spoofed utterances and segmenting them into
audio clips. However, it lacks the ability to verify the authenticity of each segment. On the other
hand, frame-level anti-spoofing systems do not excel in utterance-level spoofing detection.

Concerning model integration, we can apply various strategies to locate fake regions. One
approach is to consider the boundary detection model as a model for utterance-level partially285

spoofed audio detection. This means that if a boundary is detected, the corresponding utterance
is regarded as a partially spoofed utterance. Then, after the given utterance is classified as a
partially fake utterance, we can locate fake regions using the following strategies:

I. Directly use the anti-spoofing model for the whole utterance to obtain frame-level classifi-
cation results regarding authenticity.290

II. After segmenting the utterance into audio clips according to the detected boundaries, use
utterance-level or segment-level anti-spoofing models to validate the authenticity of each
audio segment.

Our frame-level anti-spoofing detection model can also be applied to the second strategy.
Specifically, we perform segment-level spoofing detection by employing majority voting. If most295

frames within an audio segment are considered genuine, then the segment is classified as a bona
fide audio clip; otherwise, it is regarded as a fake clip. Mathematically, for an audio clip with n
audio frames, and the corresponding binary prediction is y = [y1, y2, . . . , yn], where yi ∈ {0, 1},
we consider the audio clip as genuine when sum(y) > n/2, and regard it as fake otherwise. In
our study, for comparison purposes, we also incorporated the state-of-the-art segment-level anti-300

spoofing system known as Audio Anti-Spoofing using Integrated Spectro-Temporal (AASIST)
system5 [56] for the second strategy in our evaluation. The original AASIST model utilizes
a RawNet2-based encoder [57] for extracting high-level acoustic representations. Given that
our proposed model employs large-scale pre-training models for acoustic feature extraction, we
also incorporated pre-training models into AASIST, following the approach outlined by Tak et305

al. [58], to ensure a fair comparison.
Since the label for ADD2023-T2-Test remains inaccessible, we can only access the overall

performance through Codalab. In the context of the ADD 2023 Track 2 challenge, we engaged
with algorithm 1 presented below, which demonstrated the most exceptional performance in the
competition. The algorithm is implemented for each utterance in the ADD2023-T2-Test. Initial-310

ly, we extract segmented audio clips using the boundaries identified by the boundary detection
model. Some of the detection scenarios are shown in Figure 4. If the number of segments is 1,
indicating that no boundary is detected and the utterance is either bona fide or fake without any
inserted audio clips, we determine the authenticity of the utterance by assessing the proportion of
frames classified as fake, utilizing a spoofing detection model. The threshold ratio is set to 0.4.315

Consequently, if fewer than 40% of frames are classified as fake, the utterance is categorized as
bona fide; otherwise, it is labeled as fake.

In cases where the number of segments is 2, we apply the following criteria to classify a
segment as fake: 1. The proportion of predicted fake frames within the segment exceeds that of
the other segment; 2. This proportion is greater than the threshold ratio of 0.4. Alternatively, if320

these conditions are not met, we designate the segment with the shorter length as fake based on
insights gained from the training set of ADD 2023 Track 2. For utterances with 3 segments, we

5https://github.com/clovaai/aasist
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Algorithm 1 Scoring algorithm for ADD 2023 Track 2

Require: segmented audio clips from the boundary detection model
FakeProportionRatio = 0.4 . The Proportion of fake frames predicted by spoofing detection
model
if #Segments = 1 then

if #Fake frames
#Frames < FakeProportionRatio then
Classify as a bona fide segment

else
Classify as a fake segment

end if
else if #Segments = 2 then

if #Fake framesseg1

#Framesseg1
> FakeProportionRatio and #Fake framesseg1

#Framesseg1
>

#Fake framesseg2

#Framesseg2
then

Classify segment2 as a bona fide segment and segment1 as a fake segment
else if #Fake framesseg2

#Framesseg2
> FakeProportionRatio and #Fake framesseg2

#Framesseg2
>

#Fake framesseg1

#Framesseg1
then

Classify segment1 as a bona fide segment and segment2 as a fake segment
else

Assign the segment with shorter length as fake and the other as bona fide
. Prior knowledge from the training set, most fake clips are with shorter length

end if
else if #Segments = 3 then

Classify the middle segment as fake and the other two as bona fide segments
else

for each audio segment do
if #Fake frames

#Frames < FakeProportionRatio then
Classify as a bona fide segment

else
Classify as a fake segment

end if
end for

end if

classify the middle segment as fake and the other two as bona fide segments, again relying on
knowledge derived from the training set. Lastly, for utterances with more than 3 segments, we
determine their predicted authenticity based on the proportion of predicted fake frames.325

The frame-level anti-spoofing model we proposed exhibits limited robustness when dealing
with cross-domain data. We believe that ADD2023-T2-Test contains a substantial amount of
out-of-domain data from previously unseen scenarios, especially when compared to ADD2023-
T2-Dev. In light of this, we have integrated a robust Variational Autoencoder (VAE) model into
the scoring process to enhance the system’s performance in the competition. The VAE model is330

a probabilistic graphical model that effectively reduces dimensionality in a statistically grounded
manner. Unlike other techniques like autoencoders and principal component analysis (PCA), the
VAE offers reconstructed probability as a measure of deviation rather than relying on reconstruc-
tion error as an anomaly score [59]. The reconstruction probability is commonly employed as the
final score for deviation-based outlier detection [60]. Notably, the VAE model, functioning as an335

outlier detection model, only requires bona fide samples for its training. Wang et al. demonstrat-
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Fake

Bona fide

Bona fide | Fake

Fake | Bona fide

Bona fide | Fake | Bona fide

Figure 4: Three scenarios encountered during ADD2023-T2-Test scoring: (a) No boundary de-
tected, (b) One boundary detected, (c) Two boundaries detected

ed the applicability of this model in spoofing detection using real speech differential features as
input [15]. In line with their work, we utilized the open-source module “pyod”6 to train a VAE
model with bona fide utterances from ADD2023-T2-Train. It’s worth noting that the VAE model
is trained with WavLM-based acoustic features.340

The VAE model provides scoring at the utterance level, contributing solely to the enhance-
ment of sentence accuracy in the ADD2023-T2-Test evaluation. In this model, when there is a
larger deviation during inference, the input utterances are more likely to be classified as fake.
Consequently, we utilize the VAE model to finalize the authenticity of utterances falling into two
categories: those with either 0 boundaries (either bona fide or fake) and those with more than345

ten boundaries (considered outliers) as detected by the boundary detection system. Within these
categories, we identify and label utterances as fake based on the rescoring of samples within the
top 45% (Figure 5), which exhibit the greatest deviation from the genuine training samples.

5. Experimental Results

5.1. Experimental setup350

For all frame-level detection models, l is set to 1.28 seconds, according to the findings from
our previous work [27]. In this case, the input size L in Table 2 corresponds to 20,480 samples.
The number of frames T is set to 64, considering that Wav2Vec2-based and WavLM-based mod-
els operate at a frame rate of 20 ms. Furthermore, we incorporate online data augmentation using

6https://github.com/yzhao062/pyod
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Figure 5: Illustrative deviation score distribution

the MUSAN [61] and RIRs [62] corpora. All models are trained using binary cross-entropy loss355

and the Adam optimizer for a total of 200 epochs. The training process is carried out utilizing
eight 2080-Ti GPUs with a mini-batch size 16. The initial learning rate is 10−4, and we utilize
the Noam scheduler [63] with 1600 warm-up steps.

During the training process, the model’s performance measured by the relevant evaluation
metric is evaluated and recorded for each epoch. For training on the ADD2022-T2-Train dataset,360

the performance of the models is evaluated using the ADD2022-T2-Adapt dataset. The utiliza-
tion of a smaller dataset can expedite the evaluation procedure and performance tracking during
the training phase. This rationale guides the approach taken when training on ADD2023-T2.
Here, a subset of the ADD2023-T2-Dev dataset, comprising 1500 bona fide utterances, 430 fake
utterances, and 1,570 partially spoofed utterances, is randomly selected to monitor performance.365

Likewise, in the case of the PartialSpoof database, the performance evaluation set utilized dur-
ing training consists of all bona fide utterances and 2,548 partially spoofed utterances from the
PartialSpoof-Dev dataset.

The boundary detection models are evaluated based on the Equal Error Rate (EER), while the
anti-spoofing systems’ evaluation employs the F1 score. Following 200 epochs of training, for370

the boundary detection model, the average of the top five models with the lowest EER is selected
for inference and evaluation. The corresponding EERs are determined using the confidence score
at the utterance level, derived from the mean of the four largest probabilities. This approach is
taken as we assign the surrounding four frames for each boundary during the labeling process
in training. Regarding spoofing detection models, the top five models achieving the highest F1375

scores are averaged and employed for inference on evaluation datasets.
We conduct training of various models using different databases, systems, and features ex-

tracted by large-scale pre-training models. The obtained results are presented in this section.
Throughout the following content, the boundary detection system is referred to as BDR, and
the anti-spoofing system as SPF. Moreover, besides analyzing the individual performance of s-380

ingle models, we also investigate the effectiveness of model integration for different evaluation
datasets, aiming to find the best approach for detecting and locating manipulated audio clips.
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5.2. Evaluation metrics

In our study, we employ two primary evaluation metrics, namely the Equal Error Rate (EER)
and the segment F1 score. The choice of these metrics is based on their common usage in the385

literature, with the EER serving as the evaluation metric for Track 2 of ADD2022, and the F1
score being utilized in ADD2023. We evaluate the boundary detection models based on the
utterance-level EER, whereas the performance of the anti-spoofing detection systems is assessed
using the segment F1 score. The EER is a threshold-free metric calculated when the false alarm
rate P f a(θ) is equal to the miss rate Pmiss(θ) at a specific threshold θ. P f a(θ) and Pmiss(θ) are390

defined as shown in Equation 1 and Equation 2, respectively.

P f a(θ) =
# fake utterances with score > θ

# total spoofing utterances
(1)

Pmiss(θ) =
# bona fide utterances with score ≤ θ

# total bona fide utterances
(2)

Segment F1 score is employed to assess the performance in locating manipulated regions, as
formatted in Equation 3. Specifically, T P represents true positive (the count of bona fide audio
frames correctly predicted as bona fide), FP represents false positive (the count of fake frames
incorrectly classified as bona fide), and FN represents false negative (the count of bona fide395

frames incorrectly predicted as fake).

F1 =
2 ∗ T P

2 ∗ T P + FN + FP
(3)

The performance evaluation for ADD2023-T2-Test is only accessible through CodaLab7.
Regarding our approach’s performance on the ADD2023-T2-Test dataset in detecting partially
spoofed audio and locating manipulated regions, we report the ADD score obtained from the
challenge’s official leaderboard. The ADD score combines multiple metrics to calculate the400

overall performance. These metrics encompass sentence accuracy (A) and segment F1 score,
with the sentence accuracy formulated in Equation 4. The sentence accuracy metric measures the
model’s effectiveness in correctly classifying genuine and manipulated audio, while the segment
F1 score evaluates the model’s ability to identify fake regions. The official ADD score (S ADD)
is computed by a weighted sum of the sentence-level accuracy and the segment F1 score, as405

illustrated in Equation 5.

A =
# utterances with correct classification

# total utterances
(4)

S ADD = 0.3 × A + 0.7 × F1 (5)

5.3. Single models

The performance of boundary detection models trained with the ADD2022-T2 database is
shown in Table 4. Our previous model, which utilized Wav2Vec2-Base as the front-end feature

7https://codalab.lisn.upsaclay.fr/competitions/11361
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extractor, performs well on ADD2022-T2-Adapt and ADD2022-T2-Test. However, its perfor-410

mance on the cross-domain dataset PartialSpoof-Eval is unsatisfactory, with an EER of 34.11%.
Models based on larger Wav2Vec2 pre-training models show improvement across all three eval-
uation datasets. Notably, the boundary detection model based on Wav2Vec2-XLSR-CN, which
is fine-tuned on Chinese data, demonstrates improvements across all evaluation datasets in com-
parison to the model based on Wav2Vec2-XLSR. This suggests that using front-end features415

extracted by a pre-training model trained on Chinese data can benefit the system’s performance.
On the other hand, although the model based on the WavLM feature has a similar parameter size
to the Wav2Vec2-based models, it exhibits more robust performance. The WavLM-based model
achieves an EER of 4.40% on ADD2022-T2-Test, significantly outperforming the best model
based on Wav2Vec2 features. This outstanding performance establishes our system as the new420

state-of-the-art on the ADD2022-T2-Test set, surpassing the previous leading performance of
4.80% EER achieved by an utterance-level partially fake audio detection model that relies on a
larger pre-training model with 1 billion parameters [39]. Furthermore, the WavLM-based model
achieves an EER of 13.25% on the cross-domain dataset PartialSpoof-Eval, which is significantly
better than those based on Wav2Vec2 features.425

Table 4: The experimental performance of boundary detection (BDR) systems trained with the
ADD2022-T2 database, ‘-’ denotes unavailable result

Database System Feat. Performance on evaluation sets
EER ↓ (%)

ADD2022

ADD2022-T2-Adapt ADD2022-T2-Test PartialSpoof-Eval

BDR

Wav2Vec2-Base [27] 3.71 6.64 34.11
Wav2Vec2-XLSR 3.14 6.45 30.86

Wav2Vec2-XLSR-CN 3.04 5.47 27.59
WavLM 2.85 4.40 13.25

[39] Wav2Vec2-XLSR-1B 3.33† 4.80 -
[41] LFCC, MFCC, MSTFT - 7.90 -
[26] Wav2Vec2-XLSR-128 [45] - 16.59 -

† The number of bona fide utterances used for evaluation might be different

Table 5 presents the performance of systems trained on the ADD2023-T2 database, evaluated
on two datasets: ADD2023-T2-Dev, and the cross-domain dataset PartialSpoof-Eval. Among the
boundary detection systems, all models demonstrate impressive performance on ADD2023-T2-
Dev, with the WavLM-based model achieving the best result, obtaining an EER of 0.064. Con-
cerning the performance on the cross-domain dataset PartialSpoof-Eval, the Wav2Vec2-based430

boundary detection systems trained on ADD2023-T2 outperform those trained on the ADD2022-
T2 database. However, the WavLM-based model trained on ADD2023-T2 achieves a higher EER
than the one trained on ADD2022-T2.

Regarding frame-level anti-spoofing systems, all models achieve remarkably high F1 scores
on the ADD2023-T2-Dev set, with scores higher than 99.9%. The performance on the cross-435

domain dataset PartialSpoof-Eval is also provided in the table. Here, the WavLM-based model
demonstrates the best performance with an EER of 87.01%.

The performance of systems trained on the PartialSpoof database exhibits similar trends re-
garding different pre-training models, and the results are presented in Table 6. The WavLM-
based models consistently outperform the Wav2Vec2-based models on most evaluation dataset-440
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Table 5: Performance of frame-level systems trained on ADD2023-T2 database regarding acous-
tic features from different pre-training models, where SenAcc denotes the sentence accuracy

Database System Feat. Performance on evaluation sets

ADD2023

ADD2023-T2-Dev
EER ↓ (%)

PartialSpoof-Eval
EER ↓ (%)

BDR
Wav2Vec2-XLSR 0.289 25.20

Wav2Vec2-XLSR-CN 0.235 23.98
WavLM 0.064 15.27

F1 ↑ (%) F1 ↑ (%)

SPF
Wav2Vec2-XLSR 99.914 86.39

Wav2Vec2-XLSR-CN 99.918 86.72
WavLM 99.925 87.01

s. Specifically, the WavLM-based boundary detection model achieves an EER of 1.16% on
PartialSpoof-Dev and an EER of 1.74% on PartialSpoof-Eval, presenting a significant advantage
over the models trained with Wav2Vec2 features.

Table 6: Performance of frame-level systems trained on PartialSpoof database regarding acoustic
features from different pre-training models

Database System Feat. Performance on evaluation sets

PartialSpoof

PartialSpoof-Dev
EER ↓ (%)

PartialSpoof-Eval
EER ↓ (%)

ADD2023-T2-Dev
EER ↓ (%)

BDR
Wav2Vec2-XLSR 3.49 3.94 49.86

Wav2Vec2-XLSR-EN 2.91 3.64 49.75
WavLM 1.16 1.74 45.34

F1 ↑ (%) F1 ↑ (%) F1 ↑ (%)

SPF
Wav2Vec2-XLSR 96.20 91.48 91.55

Wav2Vec2-XLSR-EN 96.02 91.44 92.45
WavLM 95.95 92.96 94.06

However, when evaluating the performance on the cross-domain dataset ADD2023-T2-Dev,
all boundary detection systems fail to make correct predictions, as the EERs are above 40%.445

In contrast, the boundary system trained with the ADD2023-T2 dataset can achieve an EER of
15.27% in the PartialSpoof-Eval set. This suggests that models trained with utterances generat-
ed by coarse concatenation are robust for utterances with fine-grained concatenation, while the
opposite may not hold true.

In terms of anti-spoofing systems, all models demonstrate similar performance. The F1 s-450

cores on PartialSpoof-Dev are approximately 96%, while on PartialSpoof-Eval, the F1 scores
are around 92%. On the cross-domain dataset ADD2023-T2-Test, the Wav2Vec2-XLSR-based
SPF model achieves an F1 score of 91.55%, and the Wav2Vec2-XLSR-EN-based SPF model
achieves 92.45%. However, the WavLM-based model outperforms both systems with an F1 s-
core of 94.06%, further showcasing the robustness of WavLM features on cross-domain datasets.455

It is worth noting that SPF systems trained with Wav2Vec2-XLSR-EN feature perform similar-
ly to those trained with Wav2Vec-XLSR. This could be partly attributed to English utterances
constituting a substantial portion of the multilingual corpus used to pre-train Wav2Vec-XLSR,
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accounting for over 40% of the dataset [53]. Consequently, fine-tuning the Wav2Vec2-XLSR-EN
model on the English parts does not yield significant improvements.460

Additionally, we conducted testing using edited samples generated by a recently proposed
synthesis model called Voicebox [64]. 12 audio samples, comprising 6 original utterances and
their corresponding 6 edited versions, are available online8. Note that the unseen editing is per-
formed at the spectrogram level, and subsequently converted into seamless waveforms without
any discernible artifacts. It’s worth mentioning that our model, trained with ADD2023-T2, which465

typically detects editing boundaries at the waveform level, exhibited a noteworthy robustness in
identifying editing within these utterances, even in this spectrogram-level editing scenario. The
boundary detection results obtained by the three BDR systems are presented in Figure 6. This
figure illustrates the probability scores, indicating the likelihood that a given utterance has been
manipulated, where a higher score suggests a greater likelihood of manipulation. In particular,470

the BDR system trained with ADD2023-T2 demonstrated a strong capability in detecting editing
boundaries within the manipulated utterances generated by Voicebox. This detection is evident
in the audio samples labeled with ID 0, 1, 3, and 4. One of the detection results is shown in
Figure 7, where the boundaries of the edited content are correctly recognized.

Figure 6: Boundary detection scores on utterances manipulated by Voicebox

5.4. Model integration475

Figure 8 depicts the ground truth label and predictions generated by WavLM-based frame-
level detection models for an utterance from the PartialSpoof-Eval dataset. The ground truth
labels indicate that the utterance is constructed by merging four audio segments, comprising
two fake and two bona fide segments. The anti-spoofing prediction obtained from the spoofing

8https://voicebox.metademolab.com/edit.html
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Original text: and the carlsruhe professor had to devise an ingenious apparatus which enabled him to bring the preparation at the required temperature on to the very plate of the microscope

Edited text: and the inventive professor had to devise an ingenious apparatus which enabled him to bring the preparation at the required temperature on to the very plate of the microscope

Figure 7: Boundary detection result of an edited utterance from VoiceBox

detection system demonstrates accurate predictions for most frames except for the last segment.480

As for the predictions from the boundary detection system, the boundaries are well predicted and
match those from the ground truth.

Ground truth

Anti-spoofing predictions

Boundary predictions

Fake / Non-boundary Bona fide / Boundary

Figure 8: A randomly selected sample from the PartialSpoof-Eval dataset. The predictions are
obtained from frame-level WavLM-based models

As illustrated in Figure 8, we can segment the utterance into four audio clips based on the
boundary detection prediction results. However, the BDR output does not provide information
about the authenticity of each segment. Therefore, we can subsequently adopt the anti-spoofing485

results to classify each segmented region with the strategies mentioned in Section 4.4.
Table 7 demonstrates the limitations of the frame-level spoofing system in utterance-level

partially spoofed audio detection. Specifically, we calculate the utterance-level scores by tak-
ing the minimum value of the predicted probabilities of all frames in an utterance and obtain
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the EERs for the anti-spoofing system. As shown in Table 7, the EERs from the SPF systems490

are notably higher than those obtained from the BDR systems, indicating the weaknesses of the
SPF systems in this context of utterance level prediction. Consequently, to optimize the practi-
cal application of these two systems, we can use the BDR system to identify partially spoofed
utterances and subsequently employ the SPF system to locate fake regions.

Table 7: Utterance-level partially spoofed detection performance of systems trained with Partial-
Spoof database

Training Set Evaluation Set Performance regarding Feats. and models
EER of BDR / EER of SPF ↓ (%)

Wav2Vec2-XLSR Wav2Vec2-XLSR-EN WavLM

PartialSpoof-Train PartialSpoof-Dev 3.49 / 7.99 2.91 / 9.54 1.16 / 9.22
PartialSpoof-Eval 3.94 / 28.77 3.64 / 28.30 1.74 / 24.56

This section examines the model integration performance based on the strategies proposed495

in Section 4.4. We conduct the evaluation using WavLM-based models, as they demonstrate the
best performance in the single model evaluation.

5.4.1. PartialSpoof database
In addition to the WavLM-based SPF system, we incorporate three models with the state-of-

the-art framework AASIST as baselines for spoofing detection. As the PartialSpoof database is500

derived from ASVspoof2019, we utilize a pre-trained AASIST model trained on the LA dataset
of ASVspoof2019 for spoofing detection (the model is available on the AASIST project website).
Furthermore, we train another AASIST model using audio clips segmented based on the ground
truth labels from PartialSpoof-Train. The third AASIST model, referred to as WavLM-AASIST,
utilizes the same WavLM model for acoustic feature extraction and is trained on segmented audio505

clips from PartialSpoof-Train. The results of the integration performance on the PartialSpoof
database are presented in Table 8.

Table 8: Frame-level performance of integration results from systems trained with PartialSpoof
database

Waveform Segmentation Spoofing System Performance on evaluation sets
F1 ↑ (%)

PartialSpoof-Dev PartialSpoof-Eval

WavLM predicted boundaries
AASIST (ASVspoof2019) 64.90 61.26

AASIST (PartialSpoof) 92.29 88.00
WavLM-AASIST (PartialSpoof) 94.89 90.29

WavLM SPF 95.71 92.90

Ground truth boundaries
AASIST (ASVspoof2019) 66.35 62.76

AASIST (PartialSpoof) 95.68 89.90
WavLM-AASIST (PartialSpoof) 96.74 91.18

WavLM SPF 96.69 93.14

w/o segmentation WavLM SPF 95.95 92.96

As shown in the table, when incorporating the boundary information from the BDR model,
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the WavLM-based SPF model’s spoofing performance surpasses the AASIST’s. It’s important to
note that the WavLM-based SPF model conducts segment-level spoofing detection based on the510

majority class of frames within each segment. Specifically, on the PartialSpoof-Eval dataset, the
WavLM-based SPF model achieves an impressive F1 score of 92.9%. However, the fake region
detection performance of the AASIST model trained on ASVspoof2019 is unsatisfactory. This
model achieves an F1 score of 61.26%, primarily due to domain mismatch since the utterances
from ASVspoof2019 undergo normalization in the generation process of PartialSpoof. Converse-515

ly, the AASIST system trained on PartialSpoof segments achieves a score of 88%. Moreover, the
spoofing perfomrance has improved with AASIST system trained on WavLM-based features, re-
sulting with an F1 score of 90.29%. Similar results can be observed from the PartialSpoof-Dev
dataset.

Additionally, we can assess the segment-level spoofing performance by evaluating with520

ground truth boundaries. On the PartialSpoof-Dev set, both the WavLM-based AASIST and
WavLM-based SPF models perform well, achieving an F1 score close to 97%. However, for the
out-of-domain set, PartialSpoof-Eval, our proposed SPF model demonstrates greater robustness,
surpassing the performance of the WavLM-based AASIST model by approximately 2%.

Without ground truth boundaries, the best performance is achieved when using the frame-525

level WavLM-based SPF model directly. These performance gaps show the effectiveness of
frame-level spoofing detection model compared to the AASIST baselines in the task of locating
fake regions.

5.4.2. ADD2023-T2 database
We conduct a similar experiment using the ADD2023-T2 database, where the spoofing de-530

tection model AASIST is trained with the ADD2023-T2-Train dataset. The results of this exper-
iment are presented in Table 9. Notably, all model integration pairs perform exceptionally well
on the ADD2023-T2-Dev dataset, with an F1 score close to 100%. We observe that the WavLM-
based SPF model also outperforms the AASIST baselines on the ADD2023-T2-Dev dataset. In
addition, in scenarios where ground truth boundaries are available, conducting segment-level535

spoofing detection with the WavLM-based SPF system yields an impressive F1 score of 100%.

Table 9: Performance of integration results from systems trained with ADD2023-T2 database

Waveform Segmentation Spoofing System Performance on evaluation sets
ADD2023-T2-Dev

F1 ↑ (%)

WavLM predicted boundaries AASIST (ADD2023-T2) 99.89
WavLM-AASIST (ADD2023-T2) 99.89

WavLM SPF 99.925

Ground truth boundaries AASIST (ADD2023-T2) 99.923
WavLM-AASIST (ADD2023-T2) 99.92

WavLM SPF 100

w/o segmentation WavLM SPF 99.925

The performance of our proposed models in Track 2 of the ADD 2023 challenge is outlined
in Table 10. We employ Algorithm 1 to derive spoofing decisions based on regions segmented
by the SPF system, resulting in an ADD score (S ADD) of 0.6538, which is about 7.4% relatively
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higher than team C02. Then we apply the VAE model to rescore utterance-level spoofing deci-540

sions. After applying the VAE scoring strategy presented in Section 4.4, our final fusion system
achieves an ADD score of 0.6713. This performance positions our system at the top among 16
teams in the ADD 2023 challenge, outperforming the baseline system S04 [28] by a substantial
margin.

Table 10: ADD 2023 Track 2 Rankings on the test set evaluated by ADD score S ADD [28]

# System / ID S ADD # ID S ADD # ID S ADD

1 Our system 0.6713 7 C07 0.5399 13 S04 0.4225
2 C02 0.6249 8 C08 0.5086 14 C13 0.4211
3 C03 [65] 0.6202 9 C09 0.4855 15 C14 0.3874
4 C04 [66] 0.5962 10 C10 0.4539 16 C15 0.2757
5 C05 [67] 0.5912 11 C11 0.4456 17 C16 0.1880
6 C06 0.5663 12 C12 0.4350 Avg. 0.4882

6. Discussion545

The frame-level system offers the advantage of potential real-time detection with a certain
degree of delay. While real-time processing has yet to be studied and evaluated in our work,
it is valuable for practical deployment in various applications requiring real-time audio stream
processing.

However, our findings reveal certain limitations in partially spoofed audio detection. Despite550

the impressive improvement and robustness demonstrated by the WavLM-based features in de-
tecting cross-domain data, in some cases, models trained with specific datasets still struggle to
generalize to new, previously unseen, partially spoofed attacks. This highlights the significant
challenge in adapting spoofing detection to handle novel spoofing techniques. Our experiments
demonstrate that the model trained with PartialSpoof does not perform well on ADD2023-T2,555

while the one trained with ADD2023-T2 performs relatively better on PartialSpoof evaluation
datasets.

Furthermore, partially spoofed audio attacks can employ sophisticated techniques, such as
various synthesis approaches and methods to minimize artifacts between concatenated audio
clips. These complex attacks pose challenges for researchers, requiring the development of ad-560

vanced algorithms and, at times, extensive computational resources. To facilitate relevant studies,
the need for larger and more diverse datasets becomes evident. However, acquiring such datasets
can be a time-consuming and labor-intensive process, and it may also raise privacy and ethical
concerns. In this case, the release of the label for ADD2023-T2-Test could be helpful for future
studies on partially spoofed audio.565

In future research, considering that partially spoofed audios contain audio clips from differ-
ent utterances with preserved environmental acoustic backgrounds, the introduction of artifacts
becomes an important consideration. Exploring the integration of traditional signal processing
methods with machine learning approaches for our frame-level systems could be a worthwhile
endeavor to enhance the overall effectiveness of detecting forgery attacks. A hybrid approach570

may prove beneficial in addressing the challenges posed by complex spoofing techniques. Addi-
tionally, considering the capability of neural networks to learn representations of artifacts, there
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is an opportunity to develop novel network structures specifically designed to obtain discrimina-
tive environmental embeddings. Such advancements in network design may prove beneficial not
only in detecting partially spoofed attacks but also in accurately locating fake regions within the575

audio clips.
In our study, while frame-level systems show promise in detecting and locating fake regions,

there are still several avenues for further research to improve the robustness and generalization of
these systems in practical applications. Addressing real-time processing, obtaining diverse and
larger datasets, and exploring hybrid approaches with traditional signal processing methods are580

potential directions for future advancements in the field of partially spoofed audio detection.

7. Conclusion

This paper introduces our novel approach for detecting partially spoofed audio and locating
fake regions within the audio clips at the frame level. Our method utilizes frame-level detection
systems based on large-scale self-supervised pre-training models, and we extensively evaluate585

its performance on various publicly available datasets. The results affirm the effectiveness of our
proposed method in accurately detecting partially spoofed utterances and precisely identifying
manipulated regions at the same time. Notably, the acoustic features extracted by the WavLM
model outperform those extracted by the Wav2Vec2 models in our frame-level detection system-
s. This robustness is particularly evident in cross-domain evaluations, showcasing the potential590

of our approach in handling diverse audio datasets. The impressive outcomes are highlighted
by our state-of-the-art performance in Track 2 of the ADD 2022 challenge and securing the top
position in Track 2 of the ADD 2023 challenge. However, there is still room for improvement in
the practical deployment of partially spoofed audio detection models. This inspires our future ef-
forts to design countermeasures with enhanced robustness and generalization capabilities against595

partially spoofed audio forgery attacks. By further refining and extending our approach, we aim
to contribute to the ongoing efforts to strengthen the security and trustworthiness of audio-based
applications in real-world scenarios.
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