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Abstract. The common target speech separation directly estimate the
target source, ignoring the interrelationship between different speakers
at each frame. We propose a multiple-target speech separation model
(MTSS) to simultaneously extract each speaker’s voice from the mixed
speech rather than just optimally estimating the target source. Moreover,
we propose a speaker diarization (SD) aware MTSS system (SD-MTSS),
which consists of a SD module and MTSS module. By exploiting the
TSVAD decision and the estimated mask, our SD-MTSS model can ex-
tract the speech signal of each speaker concurrently in a conversational
recording without additional enrollment audio in advance. Experimen-
tal results show that our MTSS model achieves 1.38dB SDR, 1.34dB
SI-SDR, and 0.13 PESQ improvements over the baseline on the WSJ0-
2mix-extr dataset, respectively. The SD-MTSS system makes 19.2% rel-
ative speaker dependent character error rate (CER) reduction on the
Alimeeting dataset.

Keywords: Target speech separation, Interrelationship, Speaker Diariza-
tion, Target Speaker Voice Activity Detection, SD-MTSS.

1 Introduction

In the real world, noise and speaker interference can degrade the system perfor-
mance of back-end speech applications. Speech separation effectively solves this
problem by extracting the target speech from the mixed utterance. Early meth-
ods called blind speech separation, such as Deep Clustering (DPCL) [1], Deep
Attractor Network (DANet) [2], and Permutation Invariant Training (PIT) [3,
4], can separate each source from a mixed speech. These algorithms formulated
in the time-frequency domain have an upper bound on reconstructing waves [5].
Recent solutions in the time-domain, such as Time-Domain Audio Source Sep-
aration (Tas-Net) [5, 6] and Dual-Path RNN (DPRNN) [7], break through the
constraints and achieve state-of-the-art performance in the separation task. De-
spite this, the unknown number of speakers and the global permutation problem
are still two challenges for blind speech separation.
⋆ † Corresponding Author, E-mail: ming.li369@dukekunshan.edu.cn
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To address the above two problems, a framework called speaker extraction [8,
9] or target speech separation [10–12] can extract a target speaker’ speech from
the mixed audio by utilizing an auxiliary reference speech of the target speaker.
However, it is required to filter out multiple target speakers in certain tasks, e.g.,
meeting scenarios. The common approach is to infer the mixed speech for several
times and each process is independent of the other, ignoring the interrelationship
between the speech of different speakers at each frame. In addition, obtaining
the reference speech of multiple target speakers in advance is difficult to achieve.
Considering the aforementioned problems, repeatedly processing the mixture
speech towards different target speakers separately may not be a feasible solution.

It is worth noting that speech in the meeting scenario usually has a long
duration and contains both single-talker and overlapped voice segments. Thus,
it is possible to use the single-talker segments as the reference speech for partici-
pants instead of obtaining additional speech for enrollment. Speaker Diarization
(SD) [13] technology is very suitable for this role. SD aims to slice different
speaker segments in a continuous multiple speakers conversation and determine
which speaker each segment belongs to. More recently, MC-TS-VAD [14], which
selects TSVAD as the post-processing module and employs cross-channel self-
attention, achieved the best result in the Multi-party Meeting Transcription
Challenge (M2Met) [15].

In this work, we propose the MTSS model, which is a speech extraction
method for multiple target speakers. The MTSS model infers each speaker’s mask
simultaneously and limits their estimated masks to be sum to 1. We consider
that the energies of different speakers at each frame are not independent to each
other. Moreover, we propose the SD-MTSS framework, which associates target
speech separation with speaker diarization. We select the TSVAD system as
the speech diarization network. Based on the decisions from TSVAD [16], we
can obtain each speaker’s reference speech directly from the mixed audio. Then,
each speaker’s reference speech is fed into the MTSS module in the separation
stage.

The rest of this work is organized as follows. In Section 2, we present the
architecture of the proposed MTSS and SD-MTSS models. In Section 3, we
report the experimental setup. In Section 4, we report the results and discussions.
The conclusions are drawn in Section 5.

2 Methods

2.1 Multiple target speech separation model

Backbone The backbone of the Multiple Target Speech Separation (MTSS)
model is SpEx+ [17], which consists of two twin speech encoders, a speaker
encoder, a speaker extractor, and a speech decoder. The twin speech encoder
model the input sequence and auxiliary speech in a common latent space through
sharing the structure and parameters. The speaker encoder model is a ResNet-
based speaker classifier used to generate the speaker embedding of the reference
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Fig. 1. The details of the MTSS model. auxs1 and auxs2 are the reference wave of
two speakers. m is the mixed wave."C" denotes the operation of concatenate.⊗ is an
operation for element-wise product.

speech. The speaker extractor takes both the speaker embedding and the output
of the twin speech encoder as the inputs, and then produces masks in three
different scales. The speech decoder outputs the estimation by multiplying the
input sequence and the multi scales masks.

MTSS model Here, we propose a speech extraction model for multiple target
speakers (MTSS), which can simultaneously separate the speech of each speaker
present in the conversation. The schematic diagram of the MTSS model is shown
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Fig. 2. Schematic of the SD-MTSS system. γ is a threshold (0.5 often). m is the mixed
input. s1, s2 represent the two speakers presented in the mixture. auxs1 , auxs2 denote
the reference speech of two speakers. ests1 , ests2 denote the estimations of two speakers.
ds1 , ds2 indicates the binarized TSVAD decision.

in Figure 1. Unlike the original SpEx+ neural network takes only one speaker’s
reference speech, MTSS takes both two speaker’s reference speech as the inputs
and process them separatly. Moreover, we replace the ReLU with softmax to
establish the relationship between the masks of each speaker in the same utter-
ance. We believe that taking the interrelation into account will improve the final
separation performance of the model. Because in the definition of binary masks,
each time-frequency cell belongs to a speaker with stronger energy. Specifically,
the responses of MTSS s′1, s′2 can be formulated as:

(s′1, s
′
2) = m⊗ {softmax(cat(masks1 ,masks2))} (1)

where masks1 , masks2 ∈ RN×1×T . ⊗ is an operation of element-wise product.
softmax(∗) and cat(∗) indicates that a softmax function and concatenation
operates on the penultimate dimension, respectively. N is the feature dimention
and T is the time length. We also implement a multi-task learning framewrok
for the target speech separation.

2.2 SD-MTSS system

Considering that it is feaible to apply speaker diarazation techniques to tar-
get speech separation, we expend the MTSS to speaker diarization (SD) aware
MTSS (SD-MTSS) system. The SD-MTSS system architecture is shown in Fig-
ure 2. Rather than requiring additional registration, SD-MTSS directly obtains
reference speech from the long utterance itself through the SD module. In real
applications, the single-channel SD approach [18] can be used here. The SD-
MTSS system consists of a SD module and a MTSS module. The SD module
produces the TSVAD decision for multiple speakers, which are the probabilities
of each speaker’s presence at the frame level. The MTSS module adopts each
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speaker’s reference speech from the SD module and the mixture audio as inputs,
and then outputs the estimation for multiple target speakers.

Using the TSVAD decision, we can get the single-talker audio segments as the
reference speech for each speaker. The scheme of obtaining single-talker segments
in Figure 2 is organized as follows. We use m ∈ R1×T indicate the input sequence.
s1 and s2 indicate the two different speakers in the mixture. First, the TSVAD
decision is passed through a threshold mechanism and produces the binarized
results ds1 and ds2 . Its values consist of 0 and 1. Then the reference speech can
be formulated as:

auxs1 = m⊗ d̃s1 (2)

d̃s1 = (ds1 − ds1 ⊗ ds2) (3)

auxs2 = m⊗ d̃s2 (4)

d̃s2 = (ds2 − ds1 ⊗ ds2) (5)

where d̃s1 and d̃s2 indicates the mono-speaker activity part of ds1 and ds2 ,
respectively. ds1 , ds2 ∈ R1×T , ⊗ indicates the element-wise product. ⊗ is an
operation of element-wise product. Selected continuous audio segments of auxs1

and auxs2 will be fed into the MTSS module as the reference speech for the
subsequent separation task.

2.3 Speaker diarization (SD) module

The SD module in this work consists of a clustering-based module for target
speaker embedding extraction and a TSVAD system for diarization results re-
finement [14].

Clustering-based module The affinity matrix extraction model of TSVAD
is based on the neural network in [19], using an LSTM-based model in simi-
larity measurement for speaker diarization. It consists of two bidirectional long
short-term memory networks (Bi-LSTM) layers and two fully connected layers.
The LSTM-based model first splits the entire audio into short speech clips and
extracts the speaker embedding of all segments. Then it takes these segments as
inputs and produces the initialized diarization result through adopting spectral
clustering.

TSVAD system The architecture of the TSVAD [14] system is shown in Fig-
ure 3, which consists of three parts:

1. A pre-trained speaker embedding model ResNet [20] based on ArcFace [21]
and cosine similarity scoring. The dimension of the speaker embedding layer
is 128 and the margin and softmax prescaling of the ArcFace is 0.2 and 32.
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Fig. 3. The structure of the TSVAD system. The Front-end share the same architec-
ture with the pre-trained speaker embedding model. The target speaker embedding
concatenates with the frame-level speaker embedding repeatedly and then is fed into
the Back-end.

2. A front-end model with the same architecture as the pre-trained model is
used to extract the frame-level speaker embedding.

3. A back-end model consists of an encoder layer, a BiLSTM layer, a liner layer,
and a sigmoid function.

First, the pre-trained speaker embedding model extracts the target speaker
embeddings. Meanwhile, the front-end network loads its parameters to extract
the frame-level speaker embeddings. The target speaker embeddings are repeat-
edly concatenated with the frame-level speaker embeddings and then fed into the
back-end. Next, the encoder layer of the back-end model produces each target
speaker’s detection state. The BiLSTM layer inputs these detection states and
models the relationship between speakers. Finally, the linear layer coupled with
a sigmoid function generates each speaker’s final decision (TSVAD decision).
More details can be found in [14].
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3 Experiment Setup

3.1 Dataset

Datasets for MTSS model: We simulated a commonly used two-speakers
mixture datasets WSJ0-2mix-extr1 (20000 utterances in training set, 5000 ut-
terances in validation set, and 3000 utterances in test set, respectively), the
sampling rate of which is 8KHz. The simulation process is the same as [17], and
the only difference is that we produce a couple of target speakers speech (s1, s2)
and reference speech (auxs1 , auxs2 ) for each mixture utterance, while [17] only
select the first talker as the target speaker. The utterance from s1 and s2 are
set in a relative SNR between 0 to 5 dB. The average SI-SDR of mixed speech
is 2.50dB and -2.50dB when it takes s1 and s2 as the reference.
Datasets for SD-MTSS model: For the SD module, we use the training set
of Alimeeting [15] to train the clustering-based affinity matrix extraction neural
network. Alimeeting contains 118.75 hours of speech data, including 104.75 hours
(426 speakers) of the training set, 4 hours (25 speakers) of the validation set, and
10 hours of the test set. For the TSVAD model in the SD module, we create a
simulated datesets based on the Alimeeting training set. The simulation scheme
is the same as [14]. For MTSS module, we use the Libri-2mix [26] as the training
set, which has a sampling rate of 16KHz. We select the siganl channel signal
on channel 0 of the two-speakers samples from the Eval-Ali-far and Test-Ali-far
subsets of Alimeeting to evaluate the performance of SD-MTSS model.

3.2 Implementation details

To compare with the baseline, the hyperparameters and learning schedule of
MTSS module are set the same as [17]. The number of filters in the encoder is
256, the number of convolutional blocks in each repeat is 8, the number of repeat
is 4, the number of channels in the convolutional blocks is 512, the kernel size of
the convolutional blocks is 3. The hyperparameters of the network are shown in
Table 1.

Table 1. Hyperparameters of the MTSS module.

Symbol Settings Description
L1, L2, L3 20, 80, 160 Lengths of the Encoder filter

N 256 Number of filters in Encoder
X 8 Number of convolutional blocks
B 256 Number of channels in bottleneck conv blocks
H 512 Number of channels in convolutional blocks
P 3 Kernel size in convolutional blocks

spk_emb_dim 256 Dimension of the speaker embedding

1 https://github.com/xuchenglin28/speaker_extraction
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The initial learning rate is 1e−3 and decays by 0.5 if the accuracy of validation
set is not improved in 2 epochs. Early stopping is applied if the accuracy of
validation set have not improved for 6 epochs. As the same in SpEx+ [17], We
use the multi-task learning implementation for training with two objectives. We
use the scale-invariant signal-to-distortion ratio [32] (SISDR) as the loss output
speech quality and a cross-entropy (CE) loss for speaker classification:

SISDR = 10 log10(
||etarget||2

||eres||2
)

= 10 log10(
|| ŝT s
||s||2 s||

2

|| ŝT s
||s||2 s− ŝ||

2 )

(6)

ŝ = etarget + eres (7)

LSI−SDR = − [(1− α− β)SISDRl1 + αSISDRl2 + βSISDRl3 ] (8)

LCE = −
Ns∑
i=1

Ii log (σ(W · v)i) (9)

where ŝ represent the estimated speech. l1, l2 and l3 represent three different
multi-scale estimation, respectively. α and β are the weights to different scales.
etarget and eres indicate the estimated speech’s orthogonal projection and resid-
ual w.r.t. the reference speech, respectively. Ns is the number of speakers in
the training datasets. W represents a weight matrix, σ(·) represents a softmax
function. The multi-task objective function for single speaker is defined as:

Lmulti = LSI−SDR + LCE (10)

The overall objective function for our MTSS model is defined as:

L(θ|m, auxs1,2 , spk1,2, Is1,2) = λ1Lmultispk1 + λ2Lmultispk2 (11)

where m is the input sequence, auxs1,2 are the reference speeches of two
speakers, spk1 and spk2 are the target speeches of two speakers, λ1 and λ2 are
the weights of scale-invariant signal-to-distortion ratio (SI-SDR) loss and cross-
entropy (CE) loss, respectively. In this work, we set λ1 = 0.5 and λ2 = 0.25 as
the default values.

The SD module chooses the Adam and binary cross-entropy loss as the op-
timizer. The input chunk size is 16s, and the acoustic feature is 80-dim log
Mel-filterbank energies with a frame length of 25ms and a frame shift of 10ms.
The training details can be found in [27]. The trainging steps of the SD modeules
are as follow:
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1. Transfer the pre-trained speaker embedding model’s parameters to the front-
end model in the TSVAD model. Maintain the front-end model in a fixed
state while focusing our training efforts on the back-end model.

2. Subsequently, once the back-end model reaches convergence, we proceed to
unfreeze the front-end model and embark on a joint training phase for the
entire model, spanning an additional 10 epochs.

3. In the final stage, we initiate fine-tuning of the model using the AliMeet-
ing training set, extending this process over 200 epochs while employing a
learning rate of 1e−5.

The Diarization Error Rate (DER) of the single-channel SD module [18] on
the test set of Alimeeting are shown in the Table 2. We use the offline model as
the SD system in our proposed SD-MTSS model. The SD module has a 4.12%
DER on the evalution set of the Alimeeting dataset.

Table 2. The DERs(%) of the single-channel offline and online SD systems on Al-
iMeeting Eval set.

model 2-spk 3-spk 4-spk Total
offline 0.89 6.63 5.47 4.12
online 1.90 8.36 12.12 8.14

We evaluate our proposed models for two steps: 1) Examining the perfor-
mance of MTSS on WSJ0-2mix-extr dataset. We train the MTSS model with
a pre-trained model on the training set of WSJ0-2mix-extr. Then, we com-
pare MTSS-Softmax and MTSS-ReLU in terms of SDRi, SI-SDR, and PESQ.
2) Examining the performance of SD-MTSS system on Alimeeting. We com-
pare SpEx+2 (implemented by ourself with using Libri-2mix dataset as training
set) and SD-MTSS model in terms of spekaer dependent character error rate
(CER)[28].

4 Results and Discussions

4.1 Results on WSJ0-2mix-extr

The results of our proposed MTSS model and the baseline system is shown in
Table 3. Since we used the same simulation test set as [17] uses, we directly use
the evaluation results of SpeakerBeam, SBF-MTSAL-Concat, TseNet, SpEx, and
SpEx+ in [17]. As shown in Table 3, SpEx+ [17] is the baseline which we im-
plemented, and MTSS are the model we proposed. Our proposed MTSS model
achieves significantly better results across all the metrics. The samples of sepa-
rated audio are available at this link 3. Specifically, MTSS-Softmax outperforms
2 https://github.com/gemengtju/SpEx_Plus
3 https://github.com/ZBang/SD-MTSS
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Table 3. SDR(dB), SI-SDR(dB), and PESQ of separated speech using the MTSS
method on the WSJ0-2mix-extr dataset. N indicates the number of outputs per in-
ference. s1 and s2 indicate the different speaker of the mixture. MTSS-ReLU: Using
ReLU as the activation function and do not impose constraints on masks. MTSS-
Softmax: Using softmax function to limit the sum of masks to 1.

Methods N SDR SI-SDR PESQ
s1 s2 s1 s2 s1 s2

Mixture - 2.60 -2.14 2.50 -2.50 2.31 1.86
SpeakerBeam [22] 1 9.62 - 9.22 - 2.64 -

SBF-MTSAL-Concat [23] 1 11.39 - 10.60 - 2.77 -
TseNet [24] 1 15.24 - 14.73 - 3.14 -
SpEx [25] 1 17.15 - 16.68 - 3.36 -

SpEx+ [17] 1 18.54 - 18.20 - 3.49 -
Pre-trained model2 1 18.15 16.42 17.55 15.89 3.44 3.28

MTSS-ReLU 2 19.18 17.29 18.72 16.84 3.56 3.39
MTSS-Softmax 2 19.92 17.42 19.54 16.99 3.62 3.41

SpEx+ with relative improvements of 7.4% in terms of SDR, 7.3% in terms of
SI-SDR, and 3.2% in terms of PESQ, respectively. In addition, we get better
improvement on each speaker (s1, s2) while extracting their target speech simul-
taneously. Comparing the results of MTSS-ReLU and MTSS-Softmax, we can
conclude that setting the constraint for each speaker’s mask mainly contribute to
the improvements, and the interrelationship between different speakers at each
frame benefits the model to extract the target source.

Table 4. Average speaker dependent CER(%) results of SD-MTSS on
Eval_Ali_far and Test_Ali_far sets. N indicates the number of outputs per infer-
ence. Re indicates that the model is implemented by ourself. We use MTSS-Softmax
model as the MTSS module of the SD-MTSS system.

Methods N Eval Test Avg
Mixture - 96.70 95.51 95.83

SpEx+ [17] (Re) 1 45.80 43.79 44.34
SD-MTSS 2 35.97 35.78 35.83

* We use WeNet [30] as the speech recognition model in this experiments. The
wenet model is trained by WeNetSpeech [31] and our inhouse data together with
approximately 15K hours.

4.2 Results on Alimeeting

The speech recognition results of our proposed SD-MTSS system are shown in
Table 4. Here, we report the average speaker independent CER results on the
Eval_Ali_far and Test_Ali_far subsets of Alimeeting. It is important to note
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that we have adopted Minimum Variance Distortionless Response (MVDR4)
beamformer on the mixture in advance. Due to multi-speaker interference, many
insertion errors are generated in recognition of the mixed speech. The difference
between SpEx+ and our proposed SD-MTSS system is that the SD-MTSS can
extract the speech of each speaker simultaneously in one inference and does not
need an enrollment wave in advance. Compared with the SpEx+ model, the SD-
MTSS model achieves a 21.4% and 18.3% relative average speaker dependent
CER reduction on Eval_Ali_far and Test_Ali_far subsets of the Alimeeting,
respectively. Since we only need to evaluate the effectiveness of SD-MTSS model,
we did not train the recognition and separation models jointly. As far as we
know, joint training and fine-tuning with Alimeeting datasets can improve final
recognition performance [29]. The results of our proposed SD-MTSS system are
shown in Table 4. Since we evaluate the system on the far-field data and use
the corresponding close-talking data as the ground truth, the model does not
performance well in terms of SDRi and SI-SDRi. Nevertheless, from Table 4,
we can conclude that our proposed multiple target speech separation model
surpasses the pre-trained model (SpEx+) with a large margin in terms of SI-
SDRi.

5 Conclusions

In this work, we propose a Multiple Target Speech Separation (MTSS) model
which can simultaneously extract each speaker’s voice from the mixed speech. To
establish a relationship between different speakers in each frame, we constrain
the sum of each speaker’s estimated mask to 1 when extracting their speech
simultaneously. Moreover, we proposed a speaker diarization multiple target
speech separation system (SD-MTSS), which consists of a speaker diarization
(SD) module and a MTSS module. By associating the speaker diarization task
and the target speech separation task together, we do not require the additional
reference speech for enrollment. The experimental results show that our proposed
MTSS model significantly improves the separation performance on WSJ0-2mix-
extr datasets. In addition, the SD-MTSS model outperforms the baseline by a
large margin in terms of speaker independent CER on the Alimeeting datasets.
For future works, we will implement our method with different state-of-art net-
works and improve the system’s performance in the far-field scenarios.
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